Signature-based algorithms to compute Gröbner bases

Christian Eder
(joint work with John Perry)
University of Kaiserslautern
June 29, 2011

The following section is about

(1) Gröbner bases

The problem of zero reductions
(2) Signature-based algorithms

The basic idea
Computing Gröbner bases using signatures How to reject useless pairs?
(3) G2V and F5 - Differences and similarities

Implementations of the criteria
F5E - Combine the ideas
Implementations of the sig-safe reductions
(4) Experimental results

Experimental results
(5) Outlook

An example of zero reduction

Example

Given $g_{1}=x y-z^{2}, g_{2}=y^{2}-z^{2}$, we can compute

$$
\operatorname{Spol}\left(g_{2}, g_{1}\right)=\mathbf{x y}^{2}-x z^{2}-\mathbf{x} \mathbf{y}^{2}+y z^{2}=-x z^{2}+y z^{2}
$$

An example of zero reduction

Example

Given $g_{1}=x y-z^{2}, g_{2}=y^{2}-z^{2}$, we can compute

$$
\operatorname{Spol}\left(g_{2}, g_{1}\right)=\mathbf{x y}^{2}-x z^{2}-\mathbf{x} \mathbf{y}^{2}+y z^{2}=-x z^{2}+y z^{2}
$$

We get a new element $g_{3}=x z^{2}-y z^{2}$ for G.

An example of zero reduction

Example

$$
g_{1}=x y-z^{2}, g_{2}=y^{2}-z^{2}
$$

$$
g_{3}=x z^{2}-y z^{2}
$$

Let us compute $\operatorname{Spol}\left(g_{3}, g_{1}\right)$ next:

An example of zero reduction

Example

$$
g_{1}=x y-z^{2}, g_{2}=y^{2}-z^{2},
$$

$$
g_{3}=x z^{2}-y z^{2}
$$

Let us compute $\operatorname{Spol}\left(g_{3}, g_{1}\right)$ next:

$$
\operatorname{Spol}\left(g_{3}, g_{1}\right)=\mathbf{x y z}^{2}-y^{2} z^{2}-\mathbf{x y z}^{2}+z^{4}=-y^{2} z^{2}+z^{4}
$$

An example of zero reduction

Example

$$
\begin{gathered}
g_{1}=x y-z^{2}, g_{2}=y^{2}-z^{2} \\
g_{3}=x z^{2}-y z^{2}
\end{gathered}
$$

Let us compute $\operatorname{Spol}\left(g_{3}, g_{1}\right)$ next:

$$
\operatorname{Spol}\left(g_{3}, g_{1}\right)=\mathrm{xyz}^{2}-y^{2} z^{2}-\mathrm{xyz}^{2}+z^{4}=-y^{2} z^{2}+z^{4}
$$

Now we can reduce further with $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0
$$

An example of zero reduction

Example

$$
\begin{gathered}
g_{1}=x y-z^{2}, g_{2}=y^{2}-z^{2} \\
g_{3}=x z^{2}-y z^{2}
\end{gathered}
$$

Let us compute $\operatorname{Spol}\left(g_{3}, g_{1}\right)$ next:

$$
\operatorname{Spol}\left(g_{3}, g_{1}\right)=\mathrm{xyz}^{2}-y^{2} z^{2}-\mathrm{xyz}^{2}+z^{4}=-y^{2} z^{2}+z^{4}
$$

Now we can reduce further with $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0
$$

\Rightarrow How to detect zero reductions in advance?

The following section is about

(1) Gröbner bases

The problem of zero reductions
(2) Signature-based algorithms

The basic idea
Computing Gröbner bases using signatures How to reject useless pairs?
(3) G2V and F5 - Differences and similarities

Implementations of the criteria
F5E - Combine the ideas
Implementations of the sig-safe reductions
(4) Experimental results

Experimental results
(5) Outlook

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$. The idea is to give each polynomial during the computations of the algorithm a so-called signature:

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$. The idea is to give each polynomial during the computations of the algorithm a so-called signature:

1. Let $e_{1}, \ldots, e_{m} \in R^{m}$ be canonical generators such that $\pi: R^{m} \rightarrow R: \pi\left(e_{i}\right)=f_{i}$ for all i.

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$. The idea is to give each polynomial during the computations of the algorithm a so-called signature:

1. Let $e_{1}, \ldots, e_{m} \in R^{m}$ be canonical generators such that $\pi: R^{m} \rightarrow R: \pi\left(e_{i}\right)=f_{i}$ for all i.
2. Any polynomial $p \in I$ can be written as

$$
p=h_{1} \pi\left(e_{1}\right)+\ldots+h_{m} \pi\left(e_{m}\right)
$$

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$. The idea is to give each polynomial during the computations of the algorithm a so-called signature:

1. Let $e_{1}, \ldots, e_{m} \in R^{m}$ be canonical generators such that $\pi: R^{m} \rightarrow R: \pi\left(e_{i}\right)=f_{i}$ for all i.
2. Any polynomial $p \in I$ can be written as
$p=h_{1} \pi\left(e_{1}\right)+\ldots+h_{m} \pi\left(e_{m}\right)$.
3. Let k be the greatest index such that h_{k} is not zero.
\Rightarrow A signature $\mathcal{S}(p)=\operatorname{lm}\left(h_{k}\right) e_{k}$.

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$. The idea is to give each polynomial during the computations of the algorithm a so-called signature:

1. Let $e_{1}, \ldots, e_{m} \in R^{m}$ be canonical generators such that $\pi: R^{m} \rightarrow R: \pi\left(e_{i}\right)=f_{i}$ for all i.
2. Any polynomial $p \in I$ can be written as
$p=h_{1} \pi\left(e_{1}\right)+\ldots+h_{m} \pi\left(e_{m}\right)$.
3. Let k be the greatest index such that h_{k} is not zero.
\Rightarrow A signature $\mathcal{S}(p)=\operatorname{lm}\left(h_{k}\right) e_{k}$.
4. A generating element f_{i} of I gets the signature $\mathcal{S}\left(f_{i}\right)=e_{i}$.

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$. The idea is to give each polynomial during the computations of the algorithm a so-called signature:

1. Let $e_{1}, \ldots, e_{m} \in R^{m}$ be canonical generators such that $\pi: R^{m} \rightarrow R: \pi\left(e_{i}\right)=f_{i}$ for all i.
2. Any polynomial $p \in I$ can be written as $p=h_{1} \pi\left(e_{1}\right)+\ldots+h_{m} \pi\left(e_{m}\right)$.
3. Let k be the greatest index such that h_{k} is not zero.
\Rightarrow A signature $\mathcal{S}(p)=\operatorname{lm}\left(h_{k}\right) e_{k}$.
4. A generating element f_{i} of I gets the signature $\mathcal{S}\left(f_{i}\right)=e_{i}$.
5. Well-order \prec on the set of all signatures
\Rightarrow Existence of the minimal signature of a polynomial p

Signatures of s-polynomials

Using signatures in a Gröbner basis algorithm we clearly need to define them for s-polynomials, too:

$$
\operatorname{Spol}(p, q)=\operatorname{lc}(q) u_{p} p-\operatorname{lc}(p) u_{q} q
$$

such that

$$
\mathcal{S}(\operatorname{Spol}(p, q))=\max \left\{u_{p} \mathcal{S}(p), u_{q} \mathcal{S}(q)\right\}
$$

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$
2. $G=\left\{\left(e_{1}, g_{1}\right), \ldots,\left(e_{r-1}, g_{r-1}\right),\left(e_{r}, g_{r}\right)\right\}$ (monic)

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$
2. $G=\left\{\left(e_{1}, g_{1}\right), \ldots,\left(e_{r-1}, g_{r-1}\right),\left(e_{r}, g_{r}\right)\right\}$ (monic)
3. Set $\left.P:=\left\{s_{r}, j, g_{r}, g_{j}\right), j<r\right\}$

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$
2. $G=\left\{\left(e_{1}, g_{1}\right), \ldots,\left(e_{r-1}, g_{r-1}\right),\left(e_{r}, g_{r}\right)\right\}$ (monic)
3. Set $\left.P:=\left\{s_{r, j}, g_{r}, g_{j}\right), j<r\right\}$
4. While $P \neq \emptyset$
(a) Choose $(s, p, q) \in P$ such that s is minimal.
(b) Delete (s, p, q) from P.

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$
2. $G=\left\{\left(e_{1}, g_{1}\right), \ldots,\left(e_{r-1}, g_{r-1}\right),\left(e_{r}, g_{r}\right)\right\}$ (monic)
3. Set $\left.P:=\left\{s_{r, j}, g_{r}, g_{j}\right), j<r\right\}$
4. While $P \neq \emptyset$
(a) Choose $(s, p, q) \in P$ such that s is minimal.
(b) Delete (s, p, q) from P.
(c) s not minimal for $u p-v q \Rightarrow$ goto 4 .

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$
2. $G=\left\{\left(e_{1}, g_{1}\right), \ldots,\left(e_{r-1}, g_{r-1}\right),\left(e_{r}, g_{r}\right)\right\}$ (monic)
3. Set $\left.P:=\left\{s_{r, j}, g_{r}, g_{j}\right), j<r\right\}$
4. While $P \neq \emptyset$
(a) Choose $(s, p, q) \in P$ such that s is minimal.
(b) Delete (s, p, q) from P.
(c) s not minimal for $u p-v q \Rightarrow$ goto 4 .
(d) $(s, h)=\operatorname{reduce}((s, u p-v q), G)$

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$
2. $G=\left\{\left(e_{1}, g_{1}\right), \ldots,\left(e_{r-1}, g_{r-1}\right),\left(e_{r}, g_{r}\right)\right\}$ (monic)
3. Set $\left.P:=\left\{s_{r, j}, g_{r}, g_{j}\right), j<r\right\}$
4. While $P \neq \emptyset$
(a) Choose $(s, p, q) \in P$ such that s is minimal.
(b) Delete (s, p, q) from P.
(c) s not minimal for $u p-v q \Rightarrow$ goto 4 .
(d) $(s, h)=$ reduce $((s, u p-v q), G)$
(e) if $h \neq 0 \&$
$\nexists(\mathcal{S}(g), g) \in G, t \in M$ s.t. $t \mathcal{S}(g)=s$ and $t \operatorname{lm}(g)=\operatorname{lm}(h)$
(i) For all $g \in G$ add $\left(s_{h, g}, h, g\right)$ to P.
(ii) Add (s, h) to G.
5. When $P=\emptyset$ we are done and G is a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$.

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$
2. $G=\left\{\left(e_{1}, g_{1}\right), \ldots,\left(e_{r-1}, g_{r-1}\right),\left(e_{r}, g_{r}\right)\right\}$ (monic)
3. Set $\left.P:=\left\{s_{r, j}, g_{r}, g_{j}\right), j<r\right\}$
4. While $P \neq \emptyset$
(a) Choose $(s, p, q) \in P$ such that s is minimal.
(b) Delete (s, p, q) from P.
(c) s not minimal for $u p-v q \Rightarrow$ goto 4 .
(d) $(s, h)=$ reduce $((s, u p-v q), G) \Leftarrow$ sig-safe!
(e) if $h \neq 0$ \&
$\nexists(\mathcal{S}(g), g) \in G, t \in M$ s.t. $t \mathcal{S}(g)=s$ and $t \operatorname{lm}(g)=\operatorname{lm}(h)$
(i) For all $g \in G$ add $\left(s_{h, g}, h, g\right)$ to P.
(ii) Add (s, h) to G.
5. When $P=\emptyset$ we are done and G is a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$.

Reductions w.r.t. signatures

Let $(\mathcal{S}(p), p),(\mathcal{S}(q), q)$ such that $\lambda \operatorname{lm}(q)=\operatorname{lm}(p)$.

Reductions w.r.t. signatures

Let $(\mathcal{S}(p), p),(\mathcal{S}(q), q)$ such that $\lambda \operatorname{lm}(q)=\operatorname{lm}(p)$.

1. Sig-safe: $\mathcal{S}(p-\lambda q)=\mathcal{S}(p) \Rightarrow \mathcal{S}(p) \succ \lambda \mathcal{S}(q)$.
2. Sig-unsafe: $\mathcal{S}(p-\lambda q)=\lambda \mathcal{S}(q) \Rightarrow \mathcal{S}(p) \prec \lambda \mathcal{S}(q)$.
3. Sig-cancelling: $\mathcal{S}(p)=\lambda \mathcal{S}(q) \Rightarrow \mathcal{S}(p-\lambda q)=$?

Computing Gröbner bases using signatures

Termination?

1. No new s-polynomials for $(\mathcal{S}(h), h)=\lambda(\mathcal{S}(g), g)$
2. Each new element expands $\langle(\mathcal{S}(h), \operatorname{lm}(h))\rangle$

Computing Gröbner bases using signatures

Termination?

1. No new s-polynomials for $(\mathcal{S}(h), h)=\lambda(\mathcal{S}(g), g)$
2. Each new element expands $\langle(\mathcal{S}(h), \operatorname{lm}(h))\rangle$

Correctness?

1. Proceed by minimal signature in P
2. All s-polynomials considered:
sig-unsafe reduction \Rightarrow new critical pair next round
3. All nonzero elements added besides $(\mathcal{S}(h), h)=\lambda(\mathcal{S}(g), g)$

Allowed criteria?

Non-minimal signature (NM)
$\mathcal{S}(h)$ not minimal for h ? \Rightarrow discard h

Allowed criteria?

Non-minimal signature (NM)
$\mathcal{S}(h)$ not minimal for h ? \Rightarrow discard h

Proof.

1. There exists syzygy s with $\operatorname{lm}(s)=\mathcal{S}(h)$.
2. We can rewrite h using a lower signature.
3. We proceed by increasing signatures.
\Rightarrow Those reductions are already considered.

Allowed criteria?

Rewritable signature (RW)
$\mathcal{S}(g)=\mathcal{S}(h) ? \Rightarrow$ discard either g or h

Allowed criteria?

Rewritable signature (RW)

$\mathcal{S}(g)=\mathcal{S}(h) ? \Rightarrow$ discard either g or h

Proof.

1. $\mathcal{S}(g-h) \prec \mathcal{S}(h), \mathcal{S}(g)$.
2. We proceed by increasing signatures.
\Rightarrow Those reductions are already considered.
\Rightarrow We can rewrite $h=g+$ terms of lower signature.

The following section is about

(1) Gröbner bases

The problem of zero reductions
(2) Signature-based algorithms

The basic idea
Computing Gröbner bases using signatures How to reject useless pairs?
(3) G2V and F5 - Differences and similarities

Implementations of the criteria
F5E - Combine the ideas
Implementations of the sig-safe reductions
(4) Experimental results

Experimental results
(5) Outlook

Implementation of (NM)

$$
H=\left\{\operatorname{lm}\left(g_{1}\right), \ldots, \operatorname{lm}\left(g_{r-1}\right)\right\} .
$$

Implementation of (NM)

$$
H=\left\{\operatorname{lm}\left(g_{1}\right), \ldots, \operatorname{lm}\left(g_{r-1}\right)\right\} .
$$

If

$$
\mathcal{S}(g)=\sigma e_{r}, \exists h \in H \text { such that } h \mid \sigma,
$$

then discard g.
(There exists a principal syzygy $g_{i} e_{r}-g_{r} e_{i}, h=\operatorname{lm}\left(g_{i}\right), i<r$.)

Implementation of (NM)

$$
H=\left\{\operatorname{lm}\left(g_{1}\right), \ldots, \operatorname{lm}\left(g_{r-1}\right)\right\} .
$$

If

$$
\mathcal{S}(g)=\sigma e_{r}, \exists h \in H \text { such that } h \mid \sigma,
$$

then discard g.
(There exists a principal syzygy $g_{i} e_{r}-g_{r} e_{i}, h=\operatorname{lm}\left(g_{i}\right), i<r$.)

Only in G2V: Whenever p reduces to zero

$$
\Rightarrow H=H \cup\{\lambda\} \text { where } \mathcal{S}(p)=\lambda e_{r} .
$$

Implementation of (RW)

Quite different in F5 and G2V:

1. F5 implements (RW) very aggressive using divisibility instead of equality.
2. G2V just uses the generic and soft (RW) when adding new critical pairs to the pair set.

F5E - Combine the ideas

Behaviour depending on number of zero reductions

- G2V actively uses zero reductions to improve (NM).
- F5 does not do this, but possible incorporates some of this data in (RW).
- Checking by F5's (RW) costs much more time than checking by (NM).

Differences in the reduction process

Remark

The presented criteria (NM) and (RW) are also used during the (sig-safe) reduction steps. This usage is quite soft in G2V and quite aggressive in F5.
\Rightarrow Termination: G2V $\odot-\mathrm{F} 5 \odot$

The following section is about

(1) Gröbner bases

The problem of zero reductions
(2) Signature-based algorithms

The basic idea
Computing Gröbner bases using signatures How to reject useless pairs?
(3) G2V and F5 - Differences and similarities

Implementations of the criteria
F5E - Combine the ideas
Implementations of the sig-safe reductions
(4) Experimental results

Experimental results
(5) Outlook

Number of critical pairs and zero reductions

System	F5		F5E		G2V	
Katsura 9	886	0	886	0	886	0
Katsura 10	1,781	0	1,781	0	1,781	0
Eco 8	830	322	$\mathbf{5 6 5}$	$\mathbf{5 7}$	2,012	$\mathbf{5 7}$
Eco 9	2,087	929	$\mathbf{1 , 2 7 8}$	$\mathbf{1 2 0}$	5,794	$\mathbf{1 2 0}$
F744	1,324	342	$\mathbf{1 , 1 5 1}$	$\mathbf{1 6 9}$	2,145	$\mathbf{1 6 9}$
Cyclic 7	1,018	76	$\mathbf{9 7 8}$	$\mathbf{3 6}$	3,072	$\mathbf{3 6}$
Cyclic 8	7,066	244	$\mathbf{5 , 7 7 0}$	$\mathbf{2 4 4}$	24,600	$\mathbf{2 4 4}$

Timings in seconds

System	F5	F5E	G2V
Katsura 9	14.98	$\mathbf{1 4 . 8 7}$	17.63
Katsura 10	153.35	$\mathbf{1 5 2 . 3 9}$	192.20
Eco 8	2.24	$\mathbf{0 . 3 8}$	0.49
Eco 9	77.13	$\mathbf{8 . 1 9}$	13.51
F744	19.35	$\mathbf{8 . 7 9}$	26.86
Cyclic 7	$\mathbf{7 . 0 1}$	7.22	33.85
Cyclic 8	$7,310.39$	$\mathbf{4 , 9 6 1 . 5 8}$	$26,242.12$

The following section is about

(1) Gröbner bases

The problem of zero reductions
(2) Signature-based algorithms

The basic idea
Computing Gröbner bases using signatures How to reject useless pairs?
(3) G2V and F5 - Differences and similarities

Implementations of the criteria
F5E - Combine the ideas
Implementations of the sig-safe reductions
(4) Experimental results

Experimental results
(5) Outlook

- Efficient open source implementation:

Ongoing task, part of Singular's restructuring

- Parallelization:

On criteria checks, needs thread-safe memory management

- Syzygy computations:

Needs implementation

- Signature orders:

Non-incremental for non-complete intersections?

References

[AH09] G. Ars and A. Hashemi. Extended F5 Criteria
[EP10] C. Eder and J. Perry. F5C: A variant of Faugère's F5 Algorithm with reduced Gröbner bases
[EGP11] C. Eder, J. Gash, and J. Perry. Modifying Faugère's F5 Algorithm to ensure termination
[EP11] C. Eder and J. Perry. Signature-based algorithms to compute Gröbner bases
[Fa02] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero F_{5}
[GGV10] S. Gao, Y. Guan, and F. Volny IV. A New Incremental Algorithm for Computing Gröbner Bases
[GVW11] S. Gao, F. Volny IV, and M. Wang. A New Algorithm For Computing Gröbner Bases
[SIN11] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann. Singular 3-1-3. A computer algebra system for polynomial computations, University of Kaiserslautern, 2011, http://www.singular.uni-kl.de.
[SW10] Y. Sun and D. Wang. A new proof of the F5 Algorithm
[SW11] Y. Sun and D. Wang. A Generalized Criterion for Signature Related Gröbner Basis Algorithms

