Signature-based algorithms to compute Gröbner bases

Christian Eder (joint work with John Perry)

University of Kaiserslautern

June 29, 2011

The following section is about

1 Gröbner basesThe problem of zero reductions

Signature-based algorithms
 The basic idea
 Computing Gröbner bases using signatures
 How to reject useless pairs?

G2V and F5 – Differences and similarities Implementations of the criteria F5E – Combine the ideas Implementations of the sig-safe reductions

4 Experimental results
Experimental results

Outlook

Example

Given
$$g_1 = xy - z^2$$
, $g_2 = y^2 - z^2$, we can compute

$$\text{Spol}(g_2, g_1) = xy^2 - xz^2 - xy^2 + yz^2 = -xz^2 + yz^2.$$

Example

Given $g_1 = xy - z^2$, $g_2 = y^2 - z^2$, we can compute

$$\text{Spol}(g_2, g_1) = xy^2 - xz^2 - xy^2 + yz^2 = -xz^2 + yz^2.$$

We get a new element $g_3 = xz^2 - yz^2$ for G.

Example

$$g_1 = xy - z^2$$
, $g_2 = y^2 - z^2$,

$$g_3 = xz^2 - yz^2$$

Let us compute $Spol(g_3, g_1)$ next:

Example

$$g_1 = xy - z^2$$
, $g_2 = y^2 - z^2$,

$$g_3 = xz^2 - yz^2$$

Let us compute $Spol(g_3, g_1)$ next:

$$\text{Spol}(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$$

Example

$$g_1 = xy - z^2$$
, $g_2 = y^2 - z^2$,

$$g_3 = xz^2 - vz^2$$

Let us compute $Spol(g_3, g_1)$ next:

$$\text{Spol}(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$$

Now we can reduce further with z^2g_2 :

$$-y^2z^2 + z^4 + y^2z^2 - z^4 = 0.$$

Example

$$g_1 = xy - z^2$$
, $g_2 = y^2 - z^2$,

$$g_3 = xz^2 - yz^2$$

Let us compute $Spol(g_3, g_1)$ next:

Spol
$$(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$$

Now we can reduce further with z^2g_2 :

$$-y^2z^2 + z^4 + y^2z^2 - z^4 = 0.$$

⇒ How to detect zero reductions in advance?

The following section is about

- Gröbner bases
 The problem of zero reductions
- 2 Signature-based algorithms
 The basic idea
 Computing Gröbner bases using signatures
 How to reject useless pairs?
- 3 G2V and F5 Differences and similarities Implementations of the criteria F5E - Combine the ideas Implementations of the sig-safe reductions
- 4 Experimental results
 Experimental results
- **6** Outlook

Let $I = \langle f_1, \dots, f_m \rangle$. The idea is to give each polynomial during the computations of the algorithm a so-called **signature**:

1. Let $e_1, \ldots, e_m \in R^m$ be canonical generators such that $\pi: R^m \to R$: $\pi(e_i) = f_i$ for all i.

- 1. Let $e_1, \ldots, e_m \in R^m$ be canonical generators such that $\pi: R^m \to R$: $\pi(e_i) = f_i$ for all i.
- 2. Any polynomial $p \in I$ can be written as $p = h_1\pi(e_1) + \ldots + h_m\pi(e_m)$.

- 1. Let $e_1, \ldots, e_m \in R^m$ be canonical generators such that $\pi: R^m \to R$: $\pi(e_i) = f_i$ for all i.
- 2. Any polynomial $p \in I$ can be written as $p = h_1\pi(e_1) + \ldots + h_m\pi(e_m)$.
- 3. Let k be the greatest index such that h_k is not zero. \Rightarrow **A signature** $S(p) = \text{Im}(h_k)e_k$.

- 1. Let $e_1, \ldots, e_m \in R^m$ be canonical generators such that $\pi: R^m \to R$: $\pi(e_i) = f_i$ for all i.
- 2. Any polynomial $p \in I$ can be written as $p = h_1\pi(e_1) + \ldots + h_m\pi(e_m)$.
- 3. Let k be the greatest index such that h_k is not zero. \Rightarrow **A signature** $S(p) = \text{Im}(h_k)e_k$.
- 4. A generating element f_i of I gets the signature $S(f_i) = e_i$.

- 1. Let $e_1, \ldots, e_m \in R^m$ be canonical generators such that $\pi: R^m \to R$: $\pi(e_i) = f_i$ for all i.
- 2. Any polynomial $p \in I$ can be written as $p = h_1\pi(e_1) + \ldots + h_m\pi(e_m)$.
- 3. Let k be the greatest index such that h_k is not zero. \Rightarrow **A signature** $S(p) = \text{lm}(h_k)e_k$.
- 4. A generating element f_i of I gets the signature $S(f_i) = e_i$.
- 5. Well-order \prec on the set of all signatures \Rightarrow Existence of **the minimal signature** of a polynomial *p*

Using **signatures** in a Gröbner basis algorithm we clearly need to define them **for s-polynomials**, too:

$$\mathrm{Spol}(p,q) = \mathrm{lc}(q)u_p p - \mathrm{lc}(p)u_q q$$

such that

$$S(\operatorname{Spol}(p,q)) = \max\{u_pS(p), u_qS(q)\}$$

```
Input: G_{i-1} = \{g_1, \dots, g_{r-1}\}, a Gröbner basis of \langle f_1, \dots, f_{i-1} \rangle
```

Output: Gröbner basis G of $\langle f_1, \ldots, f_i \rangle$

```
Input: G_{i-1} = \{g_1, \dots, g_{r-1}\}, a Gröbner basis of \langle f_1, \dots, f_{i-1} \rangle Output: Gröbner basis G of \langle f_1, \dots, f_i \rangle
1. g_r := f_i
```

```
Input: G_{i-1} = \{g_1, \dots, g_{r-1}\}, a Gröbner basis of \langle f_1, \dots, f_{i-1} \rangle Output: Gröbner basis G of \langle f_1, \dots, f_i \rangle
```

- 1. $g_r := f_i$
- 2. $G = \{(e_1, g_1), \dots, (e_{r-1}, g_{r-1}), (e_r, g_r)\}$ (monic)

- 1. $g_r := f_i$
- 2. $G = \{(e_1, g_1), \dots, (e_{r-1}, g_{r-1}), (e_r, g_r)\}$ (monic)
- 3. Set $P := \{s_{r,j}, g_r, g_j\}, j < r\}$

- 1. $g_r := f_i$
- 2. $G = \{(e_1, g_1), \dots, (e_{r-1}, g_{r-1}), (e_r, g_r)\}$ (monic)
- 3. Set $P := \{s_{r,j}, g_r, g_j\}, j < r\}$
- 4. While $P \neq \emptyset$
 - (a) Choose $(s, p, q) \in P$ such that s is minimal.
 - (b) Delete (s, p, q) from P.

- 1. $g_r := f_i$
- 2. $G = \{(e_1, g_1), \dots, (e_{r-1}, g_{r-1}), (e_r, g_r)\}$ (monic)
- 3. Set $P := \{s_{r,j}, g_r, g_j\}, j < r\}$
- 4. While $P \neq \emptyset$
 - (a) Choose $(s, p, q) \in P$ such that s is minimal.
 - (b) Delete (s, p, q) from P.
 - (c) s not minimal for $up vq \Rightarrow goto 4$.

- 1. $g_r := f_i$
- 2. $G = \{(e_1, g_1), \dots, (e_{r-1}, g_{r-1}), (e_r, g_r)\}$ (monic)
- 3. Set $P := \{s_{r,j}, g_r, g_j\}, j < r\}$
- 4. While $P \neq \emptyset$
 - (a) Choose $(s, p, q) \in P$ such that s is minimal.
 - (b) Delete (s, p, q) from P.
 - (c) s not minimal for $up vq \Rightarrow goto 4$.
 - (d) (s, h) = reduce((s, up vq), G)

- 1. $g_r := f_i$
- 2. $G = \{(e_1, g_1), \dots, (e_{r-1}, g_{r-1}), (e_r, g_r)\}$ (monic)
- 3. Set $P := \{s_{r,j}, g_r, g_j\}, j < r\}$
- 4. While $P \neq \emptyset$
 - (a) Choose $(s, p, q) \in P$ such that s is minimal.
 - (b) Delete (s, p, q) from P.
 - (c) s not minimal for $up vq \Rightarrow goto 4$.
 - (d) (s, h) = reduce((s, up vq), G)
 - (e) if $h \neq 0$ &

$$\nexists (\mathcal{S}(g),g) \in G, \ t \in M \text{ s.t. } t\mathcal{S}(g) = s \text{ and } t\mathrm{Im}(g) = \mathrm{Im}(h)$$

- (i) For all $g \in G$ add $(s_{h,g}, h, g)$ to P.
- (ii) Add (s, h) to G.
- 5. When $P = \emptyset$ we are done and G is a Gröbner basis of $\langle f_1, \dots, f_i \rangle$.

- 1. $g_r := f_i$
- 2. $G = \{(e_1, g_1), \dots, (e_{r-1}, g_{r-1}), (e_r, g_r)\}$ (monic)
- 3. Set $P := \{s_{r,j}, g_r, g_j\}, j < r\}$
- 4. While $P \neq \emptyset$
 - (a) Choose $(s, p, q) \in P$ such that s is minimal.
 - (b) Delete (s, p, q) from P.
 - (c) s not minimal for $up vq \Rightarrow goto 4$.
 - (d) $(s, h) = \text{reduce}((s, up vq), G) \Leftarrow \text{sig-safe!}$
 - (e) if $h \neq 0 \&$

$$\nexists (\mathcal{S}(g),g) \in G, \ t \in M \text{ s.t. } t\mathcal{S}(g) = s \text{ and } t \text{lm}(g) = \text{lm}(h)$$

- (i) For all $g \in G$ add $(s_{h,g}, h, g)$ to P.
- (ii) Add (s, h) to G.
- 5. When $P = \emptyset$ we are done and G is a Gröbner basis of $\langle f_1, \dots, f_i \rangle$.

Reductions w.r.t. signatures

Let $(\mathcal{S}(p),p)$, $(\mathcal{S}(q),q)$ such that $\lambda \mathrm{lm}(q) = \mathrm{lm}(p)$.

Reductions w.r.t. signatures

Let
$$(S(p),p)$$
, $(S(q),q)$ such that $\lambda \mathrm{lm}(q) = \mathrm{lm}(p)$.

- 1. Sig-safe: $S(p \lambda q) = S(p) \Rightarrow S(p) \succ \lambda S(q)$.
- 2. Sig-unsafe: $S(p \lambda q) = \lambda S(q) \Rightarrow S(p) \prec \lambda S(q)$.
- 3. **Sig-cancelling:** $S(p) = \lambda S(q) \Rightarrow S(p \lambda q) = ?$

Termination?

- 1. No new s-polynomials for $(S(h), h) = \lambda(S(g), g)$
- 2. Each new element expands $\langle (\mathcal{S}(h), \operatorname{lm}(h)) \rangle$

Termination?

- 1. No new s-polynomials for $(S(h),h) = \lambda(S(g),g)$
- 2. Each new element expands $\langle (\mathcal{S}(h), \operatorname{lm}(h)) \rangle$

Correctness?

- 1. Proceed by minimal signature in P
- All s-polynomials considered:
 sig-unsafe reduction ⇒ new critical pair next round
- 3. All nonzero elements added besides $(S(h), h) = \lambda(S(g), g)$

Non-minimal signature (NM) S(h) not minimal for $h? \Rightarrow$ discard h

Non-minimal signature (NM)

S(h) not minimal for $h? \Rightarrow$ discard h

Proof.

- 1. There exists syzygy s with lm(s) = S(h).
- 2. We can rewrite h using a lower signature.
- 3. We proceed by increasing signatures.
 - \Rightarrow Those reductions are already considered.

Rewritable signature (RW) S(g) = S(h)? \Rightarrow discard either g or h

11 / 21

Rewritable signature (RW)

$$S(g) = S(h)$$
? \Rightarrow discard either g or h

Proof.

- 1. $S(g-h) \prec S(h), S(g)$.
- 2. We proceed by increasing signatures.
 - \Rightarrow Those reductions are already considered.
 - \Rightarrow We can rewrite h = g + terms of lower signature.

The following section is about

- Gröbner bases
 The problem of zero reductions
- 2 Signature-based algorithms
 The basic idea
 Computing Gröbner bases using signatures
 How to reject useless pairs?
- 3 G2V and F5 Differences and similarities Implementations of the criteria F5E - Combine the ideas Implementations of the sig-safe reductions
- 4 Experimental results
 Experimental results
- Outlook

Implementation of (NM)

$$H = \big\{ \operatorname{lm}(g_1), \dots, \operatorname{lm}(g_{r-1}) \big\}.$$

Implementation of (NM)

$$H = \{ \operatorname{lm}(g_1), \dots, \operatorname{lm}(g_{r-1}) \}.$$
 If
$$\mathcal{S}(g) = \sigma e_r, \exists h \in H \text{ such that } h \mid \sigma,$$
 then discard g . (There exists a principal syzygy $g_i e_r - g_r e_i, h = \operatorname{lm}(g_i), i < r.$)

Implementation of (NM)

$$H = \{ \operatorname{lm}(g_1), \dots, \operatorname{lm}(g_{r-1}) \}.$$
 If
$$\mathcal{S}(g) = \sigma e_r, \exists h \in H \text{ such that } h \mid \sigma,$$
 then discard g . (There exists a principal syzygy $g_i e_r - g_r e_i, h = \operatorname{lm}(g_i), i < r.$)

Only in G2V: Whenever p reduces to zero

$$\Rightarrow H = H \cup \{\lambda\} \text{ where } \mathcal{S}(p) = \lambda e_r.$$

Implementation of (RW)

Quite different in F5 and G2V:

- 1. F5 implements (RW) **very aggressive** using divisibility instead of equality.
- 2. G2V just uses the **generic and soft** (RW) when adding new critical pairs to the pair set.

F5E – Combine the ideas

Behaviour depending on number of zero reductions

- ▶ G2V actively uses zero reductions to improve (NM).
- ► F5 does not do this, but possible incorporates some of this data in (RW).
- Checking by F5's (RW) costs much more time than checking by (NM).

Differences in the reduction process

Remark

The presented criteria (NM) and (RW) are also used during the (sig-safe) reduction steps. This usage is quite **soft in G2V** and quite **aggressive in F5**.

 \Rightarrow Termination: G2V \odot - F5 \odot

The following section is about

1 Gröbner basesThe problem of zero reductions

Signature-based algorithms
 The basic idea
 Computing Gröbner bases using signatures
 How to reject useless pairs?

3 G2V and F5 - Differences and similarities Implementations of the criteria F5E - Combine the ideas Implementations of the sig-safe reductions

- 4 Experimental results
 Experimental results
- Outlook

Number of critical pairs and zero reductions

The state of the s							
System	F5		F5E		G2V		
Katsura 9	886	0	886	0	886	0	
Katsura 10	1,781	0	1,781	0	1,781	0	
Eco 8	830	322	565	57	2,012	57	
Eco 9	2,087	929	1,278	120	5,794	120	
F744	1,324	342	1,151	169	2,145	169	
Cyclic 7	1,018	76	978	36	3,072	36	
Cyclic 8	7,066	244	5,770	244	24,600	244	

Timings in seconds

System	F5	F5E	G2V				
Katsura 9	14.98	14.87	17.63				
Katsura 10	153.35	152.39	192.20				
Eco 8	2.24	0.38	0.49				
Eco 9	77.13	8.19	13.51				
F744	19.35	8.79	26.86				
Cyclic 7	7.01	7.22	33.85				
Cyclic 8	7,310.39	4,961.58	26,242.12				

The following section is about

1 Gröbner bases
The problem of zero reductions

Signature-based algorithms
 The basic idea
 Computing Gröbner bases using signatures
 How to reject useless pairs?

G2V and F5 – Differences and similarities Implementations of the criteria F5E – Combine the ideas Implementations of the sig-safe reductions

4 Experimental results
Experimental results

6 Outlook

Outlook

- ► Efficient open source implementation: Ongoing task, part of SINGULAR's restructuring
- ► Parallelization:
 On criteria checks, needs thread-safe memory management
- Syzygy computations: Needs implementation
- ➤ **Signature orders:**Non-incremental for non-complete intersections?

References

- [AH09] G. Ars and A. Hashemi. Extended F5 Criteria
- [EP10] C. Eder and J. Perry. F5C: A variant of Faugère's F5 Algorithm with reduced Gröbner bases
- [EGP11] C. Eder, J. Gash, and J. Perry. Modifying Faugère's F5 Algorithm to ensure termination
- [EP11] C. Eder and J. Perry. Signature-based algorithms to compute Gröbner bases
- [Fa02] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero F_5
- [GGV10] S. Gao, Y. Guan, and F. Volny IV. A New Incremental Algorithm for Computing Gröbner Bases
- [GVW11] S. Gao, F. Volny IV, and M. Wang. A New Algorithm For Computing Gröbner Bases
- [SIN11] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann. SINGULAR 3-1-3. A computer algebra system for polynomial computations. University of Kaiserslautern, 2011, http://www.singular.uni-kl.de.
- [SW10] Y. Sun and D. Wang. A new proof of the F5 Algorithm
- [SW11] Y. Sun and D. Wang. A Generalized Criterion for Signature Related Gröbner Basis Algorithms