Signature-based algorithms to compute Grobner
bases

Christian Eder
(joint work with John Perry)

University of Kaiserslautern

June 29, 2011

/21

The following section is about

@ Grobner bases
The problem of zero reductions

An example of zero reduction

Example

An example of zero reduction

Example

An example of zero reduction

Example

An example of zero reduction

Example

An example of zero reduction

Example

An example of zero reduction

Example

= How to detect zero reductions in advance?

The following section is about

@ Signature-based algorithms
The basic idea
Computing Grobner bases using signatures
How to reject useless pairs?

Signatures of polynomials

Let I = (f,...,fm). The idea is to give each polynomial during
the computations of the algorithm a so-called signature:

Signatures of polynomials

Let I = (f,...,fm). The idea is to give each polynomial during
the computations of the algorithm a so-called signature:

1. Let e1,...,em € R™ be canonical generators such that
m: R™— R: w(e) = f; for all i.

Signatures of polynomials

Let I = (f,...,fm). The idea is to give each polynomial during
the computations of the algorithm a so-called signature:
1. Let e1,...,em € R™ be canonical generators such that
m: R™— R: w(e) = f; for all i.
2. Any polynomial p € | can be written as
p=hmn(er) +...+ hpm(em).

Signatures of polynomials

Let I = (f,...,fm). The idea is to give each polynomial during
the computations of the algorithm a so-called signature:

1. Let e1,...,em € R™ be canonical generators such that
m: R™— R: w(e) = f; for all i.

2. Any polynomial p € | can be written as
p=hmn(er) +...+ hpm(em).

3. Let k be the greatest index such that hy is not zero.
= A signature S(p) = Im(hy)ex.

Signatures of polynomials

Let I = (f,...,fm). The idea is to give each polynomial during
the computations of the algorithm a so-called signature:

1. Let e1,...,em € R™ be canonical generators such that
m: R™— R: w(e) = f; for all i.

2. Any polynomial p € | can be written as
p=hmn(er) +...+ hpm(em).

3. Let k be the greatest index such that hy is not zero.
= A signature S(p) = Im(hy)ex.

4. A generating element f; of | gets the signature S(f;) = e;.

5/21

Signatures of polynomials

Let I = (f,...,fm). The idea is to give each polynomial during
the computations of the algorithm a so-called signature:

1. Let e1,...,em € R™ be canonical generators such that
m: R™— R: w(e) = f; for all i.

2. Any polynomial p € | can be written as
p=hmn(er) +...+ hpm(em).

3. Let k be the greatest index such that hy is not zero.
= A signature S(p) = Im(hy)ex.

4. A generating element f; of | gets the signature S(f;) = e;.

5. Well-order < on the set of all signatures
= Existence of the minimal signature of a polynomial p

5/21

Signatures of s-polynomials

Using signatures in a Grobner basis algorithm we clearly need to
define them for s-polynomials, too:

Spol(p, q) = le(q)upp — le(p)uqq
such that

S (Spol(p, q)) = max {upS(p), ugS(a)}

Input: Gi_1 = {gi,...

Computing Grobner bases using signatures

,8r—1}, a Grobner basis of (fi,..., fi—1)

Output: Grobner basis G of (fi,...,f)

Input: Gi_1 = {gi,...

Computing Grobner bases using signatures

,8r—1}, a Grobner basis of (fi,..., fi—1)

Output: Grobner basis G of (fi,...,f)

1 g =1

Computing Grobner bases using signatures

Input: Gi_1 = {g1,...,8—1}, a Grobner basis of (f,...,fi_1)
Output: Grobner basis G of (fi,...,f)

1 g =1
2. G={(e1,8),.--,(e—1,8-1),(er, &)} (monic)

Computing Grobner bases using signatures

Input: Gi_1 = {g1,...,8—1}, a Grobner basis of (f,...,fi_1)
Output: Grobner basis G of (fi,...,f)

1. g :=f
2. G={(e1,8),.--,(e—1,8-1),(er, &)} (monic)
3. Set P := {Sr,j,gr:gj)v.j < r}

Computing Grobner bases using signatures

Input: Gi_1 = {g1,...,8—1}, a Grobner basis of (f,...,fi_1)
Output: Grobner basis G of (fi,...,f)

1. g :=Ff

2. G = {(el,gl), vy (er—1, 8-1), (ehgf)} (monic)
3. Set P:={sj,g8).j<r}

4. While P £

(a) Choose (s, p,q) € P such that s is minimal.
(b) Delete (s, p, q) from P.

Computing Grobner bases using signatures

Input: Gi_1 = {g1,...,8—1}, a Grobner basis of (f,...,fi_1)
Output: Grobner basis G of (fi,...,f)

1. g :=Ff

2. G = {(el,gl), .o (er—1, gr-1), (e,,g,)} (monic)
3. Set P:={sj,g8).j<r}

4. While P £

(a) Choose (s, p,q) € P such that s is minimal.
(b) Delete (s, p, q) from P.
(c) s not minimal for up — vqg = goto 4.

Computing Grobner bases using signatures

Input: Gi_1 = {g1,...,8—1}, a Grobner basis of (f,...,fi_1)
Output: Grobner basis G of (fi,...,f)

1. g :=Ff

2. G = {(el,gl), .o (er—1, gr-1), (e,,g,)} (monic)
3. Set P:={sj,g8).j<r}

4. While P £ 0

(a) Choose (s, p,q) € P such that s is minimal.
(b) Delete (s, p, q) from P.

(c) s not minimal for up — vqg = goto 4.

(d)

(s, h) = reduce((s, up — vg), G)

Computing Grobner bases using signatures

Input: Gi_1 = {g1,...,8—1}, a Grobner basis of (f,...,fi_1)
Output: Grobner basis G of (fi,...,f)

1.

2
3.
4

5.

g =1
. G={(e1,8),-..,(er~1,81),(er, &)} (monic)
Set P:={s:j,&,8),j <r}
. While P £ 0
(a) Choose (s, p,q) € P such that s is minimal.
(b) Delete (s, p, q) from P.
(c) s not minimal for up — vqg = goto 4.
(d) (s, h) = reduce((s, up — vq), G)
(e) f h#£0&

3(S(g),g) € G, t € M s.t. tS(g) = s and tlm(g) = Im(h)
(i) Forall g € G add (sp4, h,g) to P.
(ii) Add (s, h) to G.
When P = () we are done and G is a Grobner basis of (fi,..., f;).

21

Computing Grobner bases using signatures

Input: Gi_1 = {g1,...,8—1}, a Grobner basis of (f,...,fi_1)
Output: Grobner basis G of (fi,...,f)

1.

2
3.
4

5.

g =1
. G={(e1,8),-..,(er~1,81),(er, &)} (monic)
Set P = {st:gr:gJ')v.j < r}
. While P £ 0
(a) Choose (s, p,q) € P such that s is minimal.
(b) Delete (s, p, q) from P.
(c) s not minimal for up — vqg = goto 4.
(d) () = reduce((s, up — vq), G)<: sig-safe!
(e) ifh#0&

3(S(g),g) € G, t € M s.t. tS(g) = s and tlm(g) = Im(h)
(i) Forall g € G add (sp4, h,g) to P.
(ii) Add (s, h) to G.
When P = () we are done and G is a Grobner basis of (fi,..., f;).

21

Reductions w.r.t. signatures

Let (S(p),p). (S(q),q) such that Alm(q) = Im(p).

Reductions w.r.t. signatures

Let (S(p),p). (S(q),q) such that Alm(q) = Im(p).
1. Sig-safe: S(p — Aq) = S(p) = S(p) = AS(q).
2. Sig-unsafe: S(p — A\q) = AS(q) = S(p) < A\S(q).

3. Sig-cancelling: S(p) = AS(q) = S(p — \q) =7

Computing Grobner bases using signatures

Termination?
1. No new s-polynomials for (S(h), h) = A(S(g),g)
2. Each new element expands ((S(h),1lm(h)))

Computing Grobner bases using signatures

Termination?
1. No new s-polynomials for (S(h), h) = A(S(g),g)
2. Each new element expands ((S(h),1lm(h)))

Correctness?
1. Proceed by minimal signature in P

2. All s-polynomials considered:
sig-unsafe reduction =- new critical pair next round

3. All nonzero elements added besides (S(h), h) = A(S(g),g)

Non-minimal signature (NM)
S(h) not minimal for h? = discard h

Allowed criteria?

Allowed criter

Non-minimal signature (NM)
S(h) not minimal for h? = discard h

1.
2.
3.

There exists syzygy s with lm(s) = S(h).
We can rewrite h using a lower signature.

We proceed by increasing signatures.
= Those reductions are already considered.

ia?

10/21

Rewritable signature (RW)
S(g) = S(h)? = discard either g or h

Allowed criteria?

Allowed criteria?

Rewritable signature (RW)
S(g) = S(h)? = discard either g or h

Proof.
1. S(g —h) < S(h),S(g).
2. We proceed by increasing signatures.

= Those reductions are already considered.
= We can rewrite h = g+ terms of lower signature.

11/21

The following section is about

© G2V and F5 — Differences and similarities
Implementations of the criteria
F5E — Combine the ideas
Implementations of the sig-safe reductions

12/21

Implementation of (NM)

H = {lm(g1),...,lm(gr—1)}.

13/21

Implementation of (NM)

H = {lm(g1),...,lm(gr—1)}.
If

S(g) = oe,,3h € H such that h | o,

then discard g.
(There exists a principal syzygy gie, — grei, h = 1lm(g;),i < r.)

13/21

Implementation of (NM)

H= {lm(gl), . ,lm(g,_l)}.
If
S(g) = oe,,3h € H such that h | o,

then discard g.
(There exists a principal syzygy gie, — grei, h = 1lm(g;),i < r.)

Only in G2V: Whenever p reduces to zero

= H = HU{\} where S(p) = Xe,.

Implementation of (RW)

Quite different in F5 and G2V:
1. F5 implements (RW) very aggressive using divisibility
instead of equality.

2. G2V just uses the generic and soft (RW) when adding new
critical pairs to the pair set.

F5E — Combine the ideas

Behaviour depending on number of zero reductions

15/21

Differences in the reduction process

Remark

The presented criteria (NM) and (RW) are also used during the
(sig-safe) reduction steps. This usage is quite soft in G2V and
quite aggressive in F5.

= Termination: G2V © — F5 ®

16/21

The following section is about

O Experimental results
Experimental results

17/21

Number of critical pairs and zero reductions

| System | F5 | F5E | G2v |
Katsura 9 886 0 886 0 886 0
Katsura 10 | 1,781 0| 1,781 0 1,781 0
Eco 8 830 322 565 57 2,012 57
Eco 9 2,087 929 | 1,278 120 5794 120
F744 1,324 342 | 1,151 169 2,145 169
Cyclic 7 1,018 76 978 36 3,072 36
Cyclic 8 7,066 244 | 5,770 244 | 24,600 244
Timings in seconds
[System] F5 [FS5E | G2v

Katsura 9 14.98 14.87 17.63

Katsura 10 153.35 152.39 192.20

Eco 8 2.24 0.38 0.49

Eco 9 77.13 8.19 13.51

F744 19.35 8.79 26.86

Cyclic 7 7.01 7.22 33.85

Cyclic 8 7,310.39 | 4,961.58 | 26,242.12

The following section is about

@ Outlook

19/21

Outlook

Efficient open source implementation:
Ongoing task, part of SINGULAR's restructuring

Parallelization:
On criteria checks, needs thread-safe memory management

Syzygy computations:
Needs implementation

Signature orders:
Non-incremental for non-complete intersections?

20/21

[AH09]
[EP10]
[EGP11]
[EP11]
[Fa02]
[GGV10]
[Gvwi1]
[SIN11]

[sw10]
[swi1]

References

G. Ars and A. Hashemi. Extended F5 Criteria

C. Eder and J. Perry. F5C: A variant of Faugére's F5 Algorithm with reduced Grobner bases

C. Eder, J. Gash, and J. Perry. Modifying Faugere's F5 Algorithm to ensure termination

C. Eder and J. Perry. Signature-based algorithms to compute Grobner bases

J.-C. Faugere. A new efficient algorithm for computing Grébner bases without reduction to zero Fs
S. Gao, Y. Guan, and F. Volny IV. A New Incremental Algorithm for Computing Grobner Bases

S. Gao, F. Volny IV, and M. Wang. A New Algorithm For Computing Grobner Bases

W. Decker, G.-M. Greuel, G. Pfister and H. Schénemann. SINGULAR 3-1-3. A computer algebra system
for polynomial computations, University of Kaiserslautern, 2011, http://www.singular.uni-k1.de.

Y. Sun and D. Wang. A new proof of the F5 Algorithm

Y. Sun and D. Wang. A Generalized Criterion for Signature Related Grobner Basis Algorithms

21

/21

	Gröbner bases
	The problem of zero reductions

	Signature-based algorithms
	The basic idea
	Computing Gröbner bases using signatures
	How to reject useless pairs?

	G2V and F5 – Differences and similarities
	Implementations of the criteria
	F5E – Combine the ideas
	Implementations of the sig-safe reductions

	Experimental results
	Experimental results

	Outlook

