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The following section is about

@ Grobner bases
The problem of zero reductions
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= How to detect zero reductions in advance?




The following section is about

@ Signature-based algorithms
The basic idea
Computing Grobner bases using signatures
How to reject useless pairs?
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Signatures of polynomials

Let I = (f,...,fm). The idea is to give each polynomial during
the computations of the algorithm a so-called signature:

1. Let e1,...,em € R™ be canonical generators such that
m: R™— R: w(e) = f; for all i.

2. Any polynomial p € | can be written as
p=hmn(er) +...+ hpm(em).

3. Let k be the greatest index such that hy is not zero.
= A signature S(p) = Im(hy)ex.

4. A generating element f; of | gets the signature S(f;) = e;.

5. Well-order < on the set of all signatures
= Existence of the minimal signature of a polynomial p
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Signatures of s-polynomials

Using signatures in a Grobner basis algorithm we clearly need to
define them for s-polynomials, too:

Spol(p, q) = le(q)upp — le(p)uqq
such that

S (Spol(p, q)) = max {upS(p), ugS(a)}
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Computing Grobner bases using signatures

Input: Gi_1 = {g1,...,8—1}, a Grobner basis of (f,...,fi_1)
Output: Grobner basis G of (fi,...,f)

1. g :=Ff

2. G = {(el,gl), .o (er—1, gr-1), (e,,g,)} (monic)
3. Set P:={sj,g8).j<r}

4. While P £ 0

(a) Choose (s, p,q) € P such that s is minimal.
(b) Delete (s, p, q) from P.

(c) s not minimal for up — vqg = goto 4.

(d)

(s, h) = reduce((s, up — vg), G)



Computing Grobner bases using signatures

Input: Gi_1 = {g1,...,8—1}, a Grobner basis of (f,...,fi_1)
Output: Grobner basis G of (fi,...,f)

1.

2
3.
4

5.

g =1
. G={(e1,8),-..,(er~1,81),(er, &)} (monic)
Set P:={s:j,&,8),j <r}
. While P £ 0
(a) Choose (s, p,q) € P such that s is minimal.
(b) Delete (s, p, q) from P.
(c) s not minimal for up — vqg = goto 4.
(d) (s, h) = reduce((s, up — vq), G)
(e) f h#£0&

3(S(g),g) € G, t € M s.t. tS(g) = s and tlm(g) = Im(h)
(i) Forall g € G add (sp4, h,g) to P.
(ii) Add (s, h) to G.
When P = () we are done and G is a Grobner basis of (fi,..., f;).
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5.

g =1
. G={(e1,8),-..,(er~1,81),(er, &)} (monic)
Set P = {st:gr:gJ')v.j < r}
. While P £ 0
(a) Choose (s, p,q) € P such that s is minimal.
(b) Delete (s, p, q) from P.
(c) s not minimal for up — vqg = goto 4.
(d) ( ) = reduce((s, up — vq), G)<: sig-safe!
(e) ifh#0&

3(S(g),g) € G, t € M s.t. tS(g) = s and tlm(g) = Im(h)
(i) Forall g € G add (sp4, h,g) to P.
(ii) Add (s, h) to G.
When P = () we are done and G is a Grobner basis of (fi,..., f;).

21



Reductions w.r.t. signatures

Let (S(p),p). (S(q),q) such that Alm(q) = Im(p).



Reductions w.r.t. signatures

Let (S(p),p). (S(q),q) such that Alm(q) = Im(p).
1. Sig-safe: S(p — Aq) = S(p) = S(p) = AS(q).
2. Sig-unsafe: S(p — A\q) = AS(q) = S(p) < A\S(q).

3. Sig-cancelling: S(p) = AS(q) = S(p — \q) =7
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Computing Grobner bases using signatures

Termination?
1. No new s-polynomials for (S(h), h) = A(S(g),g)
2. Each new element expands ((S(h),1lm(h)))

Correctness?
1. Proceed by minimal signature in P

2. All s-polynomials considered:
sig-unsafe reduction =- new critical pair next round

3. All nonzero elements added besides (S(h), h) = A(S(g),g)
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Allowed criter

Non-minimal signature ( NM )
S(h) not minimal for h? = discard h

1.
2.
3.

There exists syzygy s with lm(s) = S(h).
We can rewrite h using a lower signature.

We proceed by increasing signatures.
= Those reductions are already considered.

ia?
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Rewritable signature ( RW )
S(g) = S(h)? = discard either g or h

Allowed criteria?



Allowed criteria?

Rewritable signature ( RW )
S(g) = S(h)? = discard either g or h

Proof.
1. S(g —h) < S(h),S(g).
2. We proceed by increasing signatures.

= Those reductions are already considered.
= We can rewrite h = g+ terms of lower signature.
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The following section is about

© G2V and F5 — Differences and similarities
Implementations of the criteria
F5E — Combine the ideas
Implementations of the sig-safe reductions
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Implementation of (NM)

H = {lm(g1),...,lm(gr—1)}.
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Implementation of (NM)

H= {lm(gl), . ,lm(g,_l)}.
If
S(g) = oe,,3h € H such that h | o,

then discard g.
(There exists a principal syzygy gie, — grei, h = 1lm(g;),i < r.)

Only in G2V: Whenever p reduces to zero

= H = HU{\} where S(p) = Xe,.



Implementation of (RW)

Quite different in F5 and G2V:
1. F5 implements (RW) very aggressive using divisibility
instead of equality.

2. G2V just uses the generic and soft (RW) when adding new
critical pairs to the pair set.



F5E — Combine the ideas

Behaviour depending on number of zero reductions
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Differences in the reduction process

Remark

The presented criteria (NM) and (RW) are also used during the
(sig-safe) reduction steps. This usage is quite soft in G2V and
quite aggressive in F5.

= Termination: G2V © — F5 ®
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The following section is about

O Experimental results
Experimental results
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Number of critical pairs and zero reductions

| System | F5 | F5E | G2v |
Katsura 9 886 0 886 0 886 0
Katsura 10 | 1,781 0| 1,781 0 1,781 0
Eco 8 830 322 565 57 2,012 57
Eco 9 2,087 929 | 1,278 120 5794 120
F744 1,324 342 | 1,151 169 2,145 169
Cyclic 7 1,018 76 978 36 3,072 36
Cyclic 8 7,066 244 | 5,770 244 | 24,600 244
Timings in seconds
[ System ] F5 [ FS5E | G2v

Katsura 9 14.98 14.87 17.63

Katsura 10 153.35 152.39 192.20

Eco 8 2.24 0.38 0.49

Eco 9 77.13 8.19 13.51

F744 19.35 8.79 26.86

Cyclic 7 7.01 7.22 33.85

Cyclic 8 7,310.39 | 4,961.58 | 26,242.12




The following section is about

@ Outlook
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Outlook

Efficient open source implementation:
Ongoing task, part of SINGULAR's restructuring

Parallelization:
On criteria checks, needs thread-safe memory management

Syzygy computations:
Needs implementation

Signature orders:
Non-incremental for non-complete intersections?
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