Signature-based Gröbner basis algorithms in Singular

Christian Eder
University of Kaiserslautern

June 06, 2012

Conventions
$\vee R=K\left[x_{1}, \ldots, x_{n}\right], K$ field, $<$ well-ordering on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$

Preliminaries

Conventions

$\vee R=K\left[x_{1}, \ldots, x_{n}\right], K$ field, $<$ well-ordering on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$

- $f \in R$ can be represented in a unique way by $<$.
\Rightarrow Definitions as $\operatorname{Ic}(f), \operatorname{Im}(f)$, and $\operatorname{It}(f)$ make sense.

Preliminaries

Conventions

$\vee R=K\left[x_{1}, \ldots, x_{n}\right], K$ field, $<$ well-ordering on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$
$\nabla f \in R$ can be represented in a unique way by $<$. \Rightarrow Definitions as $\operatorname{Ic}(f), \operatorname{Im}(f)$, and $\operatorname{It}(f)$ make sense.

- An ideal I in R is an additive subgroup of R such that for $f \in I, g \in R$ it holds that $f g \in I$.

Conventions

$\vee R=K\left[x_{1}, \ldots, x_{n}\right], K$ field, $<$ well-ordering on $\operatorname{Mon}\left(x_{1}, \ldots, x_{n}\right)$

- $f \in R$ can be represented in a unique way by $<$. \Rightarrow Definitions as $\operatorname{Ic}(f), \operatorname{Im}(f)$, and $\operatorname{It}(f)$ make sense.
- An ideal $/$ in R is an additive subgroup of R such that for $f \in I, g \in R$ it holds that $f g \in I$.
$\checkmark G=\left\{g_{1}, \ldots, g_{s}\right\} \subset R$ is a Gröbner basis of $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ w.r.t. <

$$
L_{<}(G)=L_{<}(I)
$$

For all $f, g \in G \operatorname{spol}(f, g)$ reduces to zero w.r.t. G.

The basic problem

Generic signature-based algorithms
The basic idea
Generic signature-based Gröbner basis algorithm
Signature-based criteria

Implementations and recent work
Efficient variants
Timings
Recent work

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x y}-\mathbf{z}^{2}$, $\mathrm{g}_{2}=\mathbf{y}^{2}-\mathbf{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x y}-\mathbf{z}^{2}$, $\mathrm{g}_{2}=\mathrm{y}^{2}-\mathrm{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2},
\end{aligned}
$$

so it reduces w.r.t. G to $g_{3}=x z^{2}-y z^{2}$.

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x} \mathbf{y}-\mathbf{z}^{2}$, $\mathrm{g}_{2}=\mathbf{y}^{2}-\mathrm{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2},
\end{aligned}
$$

so it reduces w.r.t. G to $g_{3}=x z^{2}-y^{2}$.

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=x y z^{2}-y^{2} z^{2}-x y z^{2}+z^{4}=-y^{2} z^{2}+z^{4} .
$$

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x} \mathbf{y}-\mathbf{z}^{2}$, $\mathrm{g}_{2}=\mathbf{y}^{2}-\mathrm{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2},
\end{aligned}
$$

so it reduces w.r.t. G to $g_{3}=x z^{2}-y^{2}$.

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=\mathbf{x y z} z^{2}-y^{2} z^{2}-x_{x} z^{2}+z^{4}=-y^{2} z^{2}+z^{4} .
$$

We can reduce even further with $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0
$$

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x} \mathbf{y}-\mathbf{z}^{2}$, $\mathrm{g}_{2}=\mathbf{y}^{2}-\mathrm{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2},
\end{aligned}
$$

so it reduces w.r.t. G to $\mathbf{g}_{3}=x z^{2}-y^{2}$.

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=x y z^{2}-y^{2} z^{2}-x y z^{2}+z^{4}=-y^{2} z^{2}+z^{4} .
$$

We can reduce even further with $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0
$$

\Rightarrow How can we discard such zero reductions in advance?

The basic problem

Generic signature-based algorithms
The basic idea
Generic signature-based Gröbner basis algorithm
Signature-based criteria

Implementations and recent work Efficient variants
 Timings
 Recent work

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m}, \prec a well-ordering on the monomials of R^{m}, and let $\pi: R^{m} \rightarrow R$ such that

$$
\pi\left(e_{i}\right)=f_{i} \text { for all } i .
$$

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m}, \prec a well-ordering on the monomials of R^{m}, and let $\pi: R^{m} \rightarrow R$ such that

$$
\pi\left(e_{i}\right)=f_{i} \text { for all } i .
$$

2. Each $p \in I$ can be represented by an

$$
s=\sum_{i=1}^{m} h_{i} e_{i} \in R^{m} \text { such that } p=\pi(s)
$$

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m}, \prec a well-ordering on the monomials of R^{m}, and let $\pi: R^{m} \rightarrow R$ such that

$$
\pi\left(e_{i}\right)=f_{i} \text { for all } i \text {. }
$$

2. Each $p \in I$ can be represented by an

$$
s=\sum_{i=1}^{m} h_{i} e_{i} \in R^{m} \text { such that } p=\pi(s)
$$

3. A signature of p is given by

$$
\operatorname{sig}(p)=\operatorname{Im}_{\prec}(s) \text { with } p=\pi(s)
$$

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m}, \prec a well-ordering on the monomials of R^{m}, and let $\pi: R^{m} \rightarrow R$ such that

$$
\pi\left(e_{i}\right)=f_{i} \text { for all } i \text {. }
$$

2. Each $p \in I$ can be represented by an

$$
s=\sum_{i=1}^{m} h_{i} e_{i} \in R^{m} \text { such that } p=\pi(s)
$$

3. A signature of p is given by

$$
\operatorname{sig}(p)=\operatorname{Im}_{\prec}(s) \text { with } p=\pi(s)
$$

4. A minimal signature of p exists due to \prec.

Our example - now with signatures and $\prec_{\text {pot }}$

We have already computed the following data:

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \operatorname{sig}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \operatorname{sig}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \operatorname{sig}\left(g_{3}\right) & =x \operatorname{sig}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

Our example - now with signatures and $\prec_{\text {pot }}$

We have already computed the following data:

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \operatorname{sig}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \operatorname{sig}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \operatorname{sig}\left(g_{3}\right) & =x \operatorname{sig}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

$\operatorname{spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}:$

$$
\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \operatorname{sig}\left(g_{3}\right)=x y e_{2} .
$$

Our example - now with signatures and $\prec_{\text {pot }}$

We have already computed the following data:

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \operatorname{sig}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \operatorname{sig}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \operatorname{sig}\left(g_{3}\right) & =x \operatorname{sig}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

$\operatorname{spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}:$

$$
\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \operatorname{sig}\left(g_{3}\right)=x y e_{2} .
$$

Note that $\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y e_{2}$ and $\operatorname{Im}\left(g_{1}\right)=x y$.

Our example - now with signatures and $\prec_{\text {pot }}$

We have already computed the following data:

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \operatorname{sig}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \operatorname{sig}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \operatorname{sig}\left(g_{3}\right) & =x \operatorname{sig}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

$\operatorname{spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}:$

$$
\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \operatorname{sig}\left(g_{3}\right)=x y e_{2} .
$$

Note that $\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y e_{2}$ and $\operatorname{Im}\left(g_{1}\right)=x y$.
\Rightarrow We know that $\operatorname{spol}\left(g_{3}, g_{1}\right)$ will reduce to zero w.r.t. G.

Why do we know this?

The general idea is to check the signatures of the generated s-polynomials.

Why do we know this?

The general idea is to check the signatures of the generated s-polynomials.

If $\operatorname{sig}(\operatorname{spol}(f, g))$ is not minimal for $\operatorname{spol}(f, g)$ then
$\Rightarrow \operatorname{spol}(f, g)$ is discarded.

Why do we know this?

The general idea is to check the signatures of the generated s-polynomials.

If $\operatorname{sig}(\operatorname{spol}(f, g))$ is not minimal for $\operatorname{spol}(f, g)$ then
$\Rightarrow \operatorname{spol}(f, g)$ is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the algorithm computes a non-minimal signature.

Why do we know this?

The general idea is to check the signatures of the generated s-polynomials.

If $\operatorname{sig}(\operatorname{spol}(f, g))$ is not minimal for $\operatorname{spol}(f, g)$ then
$\Rightarrow \operatorname{spol}(f, g)$ is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures throughout the computations.

Generic signature-based Gröbner basis algorithm

```
Input: Ideal \(I=\left\langle f_{1}, \ldots, f_{m}\right\rangle\)
Output: Gröbner Basis poly \((G)\) for \(I\)
    1. \(G \leftarrow \emptyset\)
    2. \(G \leftarrow G \cup\left\{\left(e_{i}, f_{i}\right)\right\}\) for all \(i \in\{1, \ldots, m\}\)
    3. \(P \leftarrow\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}\)
```


Generic signature-based Gröbner basis algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis poly (G) for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{\left(e_{i}, f_{i}\right)\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$
4. While $P \neq \emptyset$
(a) Choose $(f, g) \in P$ such that $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal, $P \leftarrow P \backslash\{(f, g)\}$
(b) If $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal for $\operatorname{spol}(f, g)$:

Generic signature-based Gröbner basis algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis poly (G) for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{\left(e_{i}, f_{i}\right)\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$
4. While $P \neq \emptyset$
(a) Choose $(f, g) \in P$ such that $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal, $P \leftarrow P \backslash\{(f, g)\}$
(b) If $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal for $\operatorname{spol}(f, g)$:
(i) $h \leftarrow \operatorname{spol}(f, g)$
(ii) If poly $(h) \xrightarrow{G} 0$

Generic signature-based Gröbner basis algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis poly (G) for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{\left(e_{i}, f_{i}\right)\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$
4. While $P \neq \emptyset$
(a) Choose $(f, g) \in P$ such that $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal, $P \leftarrow P \backslash\{(f, g)\}$
(b) If $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal for $\operatorname{spol}(f, g)$:
(i) $h \leftarrow \operatorname{spol}(f, g)$
(ii) If poly $(h) \xrightarrow{G} 0$
(iii) If poly $(h) \xrightarrow{G} \operatorname{poly}(r) \neq 0$

$$
\begin{aligned}
& P \leftarrow P \cup\{(r, g) \mid g \in G\} \\
& G \leftarrow G \cup\{r\}
\end{aligned}
$$

5. Return poly (G).

Generic signature-based Gröbner basis algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis poly (G) for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{\left(e_{i}, f_{i}\right)\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$
4. While $P \neq \emptyset$
(a) Choose $(f, g) \in P$ such that $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal, $P \leftarrow P \backslash\{(f, g)\}$
(b) If $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal for $\operatorname{spol}(f, g)$:
(i) $h \leftarrow \operatorname{spol}(f, g)$
(ii) If poly $(h) \xrightarrow{G} 0 \Leftarrow$ signature-safe
(iii) If poly $(h) \xrightarrow{G}$ poly $(r) \neq 0 \Leftarrow$ signature-safe
\& $\nexists g \in G$ such that $m \operatorname{sig}(g)=\operatorname{sig}(r)$ and
$m \operatorname{lm}(\operatorname{poly}(g))=\operatorname{Im}($ poly $(r))$
$P \leftarrow P \cup\{(r, g) \mid g \in G\}$
$G \leftarrow G \cup\{r\}$
5. Return poly (G).

Signature-safe reductions

Let p and q in R be given such that $m \operatorname{Im}(q)=\operatorname{Im}(p), c=\frac{\operatorname{lc}(p)}{\mathrm{lc}(q)}$. Assume

$$
p-c m q \text {. }
$$

Signature-safe reductions

Let p and q in R be given such that $m \operatorname{Im}(q)=\operatorname{Im}(p), c=\frac{\operatorname{lc}(p)}{\mathrm{lc}(q)}$. Assume

$$
p-c m q \text {. }
$$

signature-safe: $\operatorname{sig}(p-c m q)=\operatorname{sig}(p)$

Signature-safe reductions

Let p and q in R be given such that $m \operatorname{Im}(q)=\operatorname{Im}(p), c=\frac{\operatorname{lc}(p)}{\operatorname{lc}(q)}$. Assume

$$
p-c m q
$$

signature-safe: $\operatorname{sig}(p-c m q)=\operatorname{sig}(p)$
signature-increasing: $\operatorname{sig}(p-c m q)=m \operatorname{sig}(q)$

Signature-safe reductions

Let p and q in R be given such that $m \operatorname{Im}(q)=\operatorname{Im}(p), c=\frac{\mathrm{l}(p)}{\mathrm{lc}(q)}$. Assume

$$
p-c m q .
$$

signature-safe: $\operatorname{sig}(p-c m q)=\operatorname{sig}(p)$
signature-increasing: $\operatorname{sig}(p-c m q)=m \operatorname{sig}(q)$
signature-decreasing: $\operatorname{sig}(p-c m q) \prec \operatorname{sig}(p), m \operatorname{sig}(q)$

How does this work?

Termination

- If $\operatorname{sig}(r)=m \operatorname{sig}(g)$ and $\operatorname{Im}(\operatorname{poly}(r))=m \operatorname{Im}(\operatorname{poly}(g))$ is not added to G.
- Each new element in G enlarges $\langle(\operatorname{sig}(r), \operatorname{Im}(\operatorname{poly}(r)))\rangle$.

How does this work?

Termination

- If $\operatorname{sig}(r)=m \operatorname{sig}(g)$ and $\operatorname{Im}(\operatorname{poly}(r))=m \operatorname{Im}(\operatorname{poly}(g))$ is not added to G.
- Each new element in G enlarges $\langle(\operatorname{sig}(r), \operatorname{lm}(\operatorname{poly}(r)))\rangle$.

Correctness

- All possible s-polynomials are taken care of: signature-increasing reduction \Rightarrow new pair in the next step.
- All elements r with poly $(r) \neq 0$ are added to G besides those fulfilling $\operatorname{sig}(r)=m \operatorname{sig}(g)$ and $\operatorname{Im}(\operatorname{poly}(r))=m \operatorname{Im}(\operatorname{poly}(g))$.

Signature-based criteria

Non-minimal signature (NM)

$\operatorname{sig}(h)$ not minimal for $h ? \Rightarrow$ Remove h.

Signature-based criteria

Non-minimal signature (NM)

$\operatorname{sig}(h)$ not minimal for $h ? \Rightarrow$ Remove h.
Sketch of proof

1. There exists a syzygy $s \in R^{m}$ such that $\operatorname{Im}(s)=\operatorname{sig}(h)$. \Rightarrow We can represent h with a lower signature.
2. Pairs are handled by increasing signatures.
\Rightarrow All relations of lower signature are already taken care of.

Signature-based criteria

Non-minimal signature (NM)

$\operatorname{sig}(h)$ not minimal for $h ? \Rightarrow$ Remove h.
Sketch of proof

1. There exists a syzygy $s \in R^{m}$ such that $\operatorname{Im}(s)=\operatorname{sig}(h)$. \Rightarrow We can represent h with a lower signature.
2. Pairs are handled by increasing signatures.
\Rightarrow All relations of lower signature are already taken care of.

Our example with $\prec_{\text {pot }}$ revisited
$\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y e_{2}$
$\left.\begin{array}{l}g_{1}=x y-z^{2} \\ g_{2}=y^{2}-z^{2}\end{array}\right\} \Rightarrow \operatorname{psyz}\left(g_{2}, g_{1}\right)=g_{1} e_{2}-g_{2} e_{1}=x y e_{2}+\ldots$

Signature-based criteria

Rewritable signature (RW)

$\operatorname{sig}(g)=\operatorname{sig}(h) ? \Rightarrow$ Remove either g or h.

Signature-based criteria

Rewritable signature (RW)

$\operatorname{sig}(g)=\operatorname{sig}(h) ? \Rightarrow$ Remove either g or h.
Sketch of proof

1. $\operatorname{sig}(g-h) \prec \operatorname{sig}(g), \operatorname{sig}(h)$.
2. Pairs are handled by increasing signatures.
\Rightarrow All necessary computations of lower signature have already taken place.
\Rightarrow We can represent h by

$$
h=g+\text { elements of lower signature. }
$$

The basic problem

Generic signature-based algorithms
The basic idea
Generic signature-based Gröbner basis algorithm Signature-based criteria

Implementations and recent work
Efficient variants
Timings
Recent work

Efficient variants

F5

Faugère
(2002)

Efficient variants

Efficient variants

Efficient variants

Efficient variants

Efficient variants

AP1

Arri,Perry,E. (2011)

AP2

Arri,Perry,E. (2012)
nF5
iF5A
(2012)

Timings

Timings

Recent work

- Heuristics:
orderings on signatures; orderings for critical pairs (sugar degree), reducers
- F4:
linear algebra for reduction purposes
- Parallelisation:
modular methods, parallel criteria checks
- Computation of syzygies: implementation
- Generalization of signature-based criteria: more terms per signature, relaxing criteria for combination with Buchberger's criteria

Bibliography

[AH09] G. Ars und A. Hashemi. Extended F5 Criteria
[AP11] A. Arri und J. Perry. The F5 Criterion revised
[E12a] C. Eder. Improving incremental signature-based Gröbner bases algorithms
[E12b] C. Eder. Sweetening the sour taste of inhomogeneous signature-based Gröbner basis computations
[EGP11] C. Eder, J. Gash and J. Perry. Modifying Faugère's F5 Algorithm to ensure termination
[EP10] C. Eder and J. Perry. F5C: A variant of Faugère's F5 Algorithm with reduced Gröbner bases
[EP11] C. Eder and J. Perry. Signature-based algorithms to compute Gröbner bases
[Fa02] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero F_{5}
[Ga12a] V. Galkin. Termination of original F_{5}
[Ga12b] V. Galkin. Simple signature-based Groebner basis algorithm
[GGV10] S. Gao, Y. Guan and F. Volny IV. A New Incremental Algorithm for Computing Gröbner Bases
[GVW11] S. Gao, F. Volny IV and M. Wang. A New Algorithm For Computing Grobner Bases
[HS12] B. H. Roune and M. Stillman. Practical Gröbner Basis Computation
[SIN11] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann. Singular 3-1-4. A computer algebra system for polynomial computations, University of Kaiserslautern, 2012, http://www.singular.uni-kl.de.
[SW10] Y. Sun und D. Wang. A new proof of the F5 Algorithm
[SW11] Y. Sun and D. Wang. A Generalized Criterion for Signature Related Gröbner Basis Algorithms

