Signature-based Gröbner Basis Algorithms

Christian Eder
joint work with
Jean-Charles Faugère, Bjarke Hammersholt Roune, John Perry and Justin Gash
GBRELA2013 - Hagenberg, Austria

September 03 - 06, 2013

The basic problem

Signature basics

Signature-based criteria

A decade in signature-based Gröbner Basis algorithms

How to detect zero reductions in advance?

Example
Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z], \mathbf{g}_{1}=\mathbf{x y}-z^{2}, \mathbf{g}_{2}=\mathbf{y}^{2}-z^{2}$.
$<$ denotes the reverse lexicographical ordering.

How to detect zero reductions in advance?

Example
Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z], \mathbf{g}_{1}=\mathbf{x y}-z^{2}, \mathbf{g}_{2}=\mathbf{y}^{2}-z^{2}$.
$<$ denotes the reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2}
\end{aligned}
$$

Thus it reduces to $g_{3}=x z^{2}-y^{2}$ w.r.t. G.

How to detect zero reductions in advance?

Example
Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z], \mathbf{g}_{1}=\mathbf{x y}-z^{2}, \mathbf{g}_{2}=\mathbf{y}^{2}-z^{2}$.
$<$ denotes the reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2}
\end{aligned}
$$

Thus it reduces to $g_{3}=x z^{2}-y^{2}$ w.r.t. G.

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=x y z^{2}-y^{2} z^{2}-x y z^{2}+z^{4}=-y^{2} z^{2}+z^{4} .
$$

How to detect zero reductions in advance?

Example
Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z], \mathbf{g}_{1}=\mathbf{x y}-z^{2}, \mathbf{g}_{2}=\mathbf{y}^{2}-z^{2}$.
$<$ denotes the reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2}
\end{aligned}
$$

Thus it reduces to $g_{3}=x z^{2}-y^{2}$ w.r.t. G.

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=x y z^{2}-y^{2} z^{2}-x y z^{2}+z^{4}=-y^{2} z^{2}+z^{4} .
$$

We can reduce further using $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0
$$

How to detect zero reductions in advance?

Example
Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z], \mathbf{g}_{1}=\mathbf{x y}-z^{2}, \mathbf{g}_{2}=\mathbf{y}^{2}-z^{2}$.
$<$ denotes the reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2}
\end{aligned}
$$

Thus it reduces to $g_{3}=x z^{2}-y^{2}$ w.r.t. G.

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=x y z^{2}-y^{2} z^{2}-x y z^{2}+z^{4}=-y^{2} z^{2}+z^{4} .
$$

We can reduce further using $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0
$$

How to get rid of this zero reduction?

The basic problem

Signature basics

Signature-based criteria

A decade in signature-based Gröbner Basis algorithms

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m} and let \prec be a compatible monomial order on the monomials of R^{m}.

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m} and let \prec be a compatible monomial order on the monomials of R^{m}.
2. Let $\alpha \mapsto \bar{\alpha}: R^{m} \rightarrow R$ such that $\bar{e}_{i}=f_{i}$ for all i.

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m} and let \prec be a compatible monomial order on the monomials of R^{m}.
2. Let $\alpha \mapsto \bar{\alpha}: R^{m} \rightarrow R$ such that $\bar{e}_{i}=f_{i}$ for all i.
3. Each $f \in I$ can be represented via some $\alpha \in R^{m}: f=\bar{\alpha}$

Signatures

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m} and let \prec be a compatible monomial order on the monomials of R^{m}.
2. Let $\alpha \mapsto \bar{\alpha}: R^{m} \rightarrow R$ such that $\bar{e}_{i}=f_{i}$ for all i.
3. Each $f \in I$ can be represented via some $\alpha \in R^{m}: f=\bar{\alpha}$
4. A signature of f is given by $\mathfrak{s}(f)=\operatorname{lt}_{\prec}(\alpha)$ where $f=\bar{\alpha}$.

Our example again - now with signatures and $\prec_{\text {pot }}$

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \mathfrak{s}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \mathfrak{s}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathfrak{s}\left(g_{3}\right) & =x \mathfrak{s}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

Our example again - now with signatures and $\prec_{\text {pot }}$

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \mathfrak{s}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \mathfrak{s}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathfrak{s}\left(g_{3}\right) & =x \mathfrak{s}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

$\operatorname{spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}:$

$$
\mathfrak{s}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \mathfrak{s}\left(g_{3}\right)=x y e_{2} .
$$

Our example again - now with signatures and $\prec_{\text {pot }}$

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \mathfrak{s}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \mathfrak{s}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathfrak{s}\left(g_{3}\right) & =x \mathfrak{s}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

$\operatorname{spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}:$

$$
\mathfrak{s}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \mathfrak{s}\left(g_{3}\right)=x y e_{2} .
$$

Note that $\mathfrak{s}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y e_{2}$ and $\operatorname{Im}\left(g_{1}\right)=x y$.

Our example again - now with signatures and $\prec_{\text {pot }}$

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \mathfrak{s}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \mathfrak{s}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathfrak{s}\left(g_{3}\right) & =x \mathfrak{s}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

$\operatorname{spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}:$

$$
\mathfrak{s}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \mathfrak{s}\left(g_{3}\right)=x y e_{2} .
$$

Note that $\mathfrak{s}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y e_{2}$ and $\operatorname{Im}\left(g_{1}\right)=x y$.
\Rightarrow We know that $\operatorname{spol}\left(g_{3}, g_{1}\right)$ reduces to zero w.r.t. G.

How do we know this?

General idea: Per signature we only need to compute 1 element for G.

How do we know this?

General idea: Per signature we only need to compute 1 element for G.

Several elements with the same signature?

How do we know this?

General idea: Per signature we only need to compute 1 element for G.

Several elements with the same signature?

Choose 1 and remove the others.

How do we know this?

General idea: Per signature we only need to compute 1 element for G.

Several elements with the same signature?

Choose 1 and remove the others.

Our goal: Make good choices.

How do we know this?

General idea: Per signature we only need to compute 1 element for G.

Several elements with the same signature?

Choose 1 and remove the others.

Our goal: Make good choices.
Our task: Keep signatures correct.

Think in the module

$\alpha \in R^{m}$ stores all data needed:
\checkmark Polynomial $\bar{\alpha}$ with leading term It $(\bar{\alpha})$.

- Signature $[\mathfrak{s}(\bar{\alpha})=] \mathfrak{s}(\alpha)=\operatorname{lt}(\alpha)$.

Think in the module

$\alpha \in R^{m}$ stores all data needed:
$>$ Polynomial $\bar{\alpha}$ with leading term It $(\bar{\alpha})$.
\checkmark Signature $[\mathfrak{s}(\bar{\alpha})=] \mathfrak{s}(\alpha)=\operatorname{lt}(\alpha)$.

Conventions:
> $\alpha \in R^{m}$ with $\bar{\alpha}=0$ is a syzygy.

- \mathfrak{s}-reduction $\widehat{=}$ polynomial reduction while retaining signature
- \mathfrak{s}-reductions are always w.r.t. a finite basis $\mathcal{G} \subset R^{m}$.

Signature-based Gröbner Bases

$\checkmark \mathcal{G}$ is a signature-based Gröbner Basis in signature T if all $\alpha \in R^{m}$ with $\mathfrak{s}(\alpha)=T \mathfrak{s}$-reduce to zero w.r.t. \mathcal{G}.

- \mathcal{G} is a signature-based Gröbner Basis if \mathcal{G} is a signature-based Gröbner Basis in all signatures
- If \mathcal{G} is a signature-based Gröbner Basis then $\{\bar{\alpha} \mid \alpha \in \mathcal{G}\}$ is a Gröbner Basis for $\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

Signature-based Gröbner Bases

$\checkmark \mathcal{G}$ is a signature-based Gröbner Basis in signature T if all $\alpha \in R^{m}$ with $\mathfrak{s}(\alpha)=T \mathfrak{s}$-reduce to zero w.r.t. \mathcal{G}.
$-\mathcal{G}$ is a signature-based Gröbner Basis if \mathcal{G} is a signature-based Gröbner Basis in all signatures

- If \mathcal{G} is a signature-based Gröbner Basis then $\{\bar{\alpha} \mid \alpha \in \mathcal{G}\}$ is a Gröbner Basis for $\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

Remark

In the following we need one detail from signature-based Gröbner Basis computations:

The pair set is ordered by increasing signature.

The basic problem

Signature basics

Signature-based criteria

A decade in signature-based Gröbner Basis algorithms

Signature-based criteria

Signature-based criteria

$$
\mathfrak{s}(\alpha)=\mathfrak{s}(\beta) \quad \Longrightarrow \quad \text { Compute 1, remove } 1 .
$$

Sketch of proof

1. $\mathfrak{s}(\alpha-\beta) \prec \mathfrak{s}(\alpha), \mathfrak{s}(\beta)$.
2. All S-pairs are handled by increasing signature.
\Rightarrow All relatons $\prec \mathfrak{s}(\alpha)$ are known:

$$
\alpha=\beta+\text { elements of smaller signature }
$$

Signature-based criteria

S-pairs in signature T

Signature-based criteria

S-pairs in signature T

What are all possible configurations to reach signature T ?

Signature-based criteria

S-pairs in signature T

Signature-based criteria

S-pairs in signature T

Special cases

Special cases

1. If a α is a syzygy
\Longrightarrow Go on to next signature.

Special cases

$\mathfrak{R}_{T}=\{a \alpha \mid \alpha$ handled by the algorithm and $\mathfrak{s}(a \alpha)=T\}$

1. If a α is a syzygy $\quad \Longrightarrow$ Go on to next signature.
2. If a α is not part of an S-pair \Longrightarrow Go on to next signature.

Special cases

$\mathfrak{R}_{T}=\{a \alpha \mid \alpha$ handled by the algorithm and $\mathfrak{s}(a \alpha)=T\}$

1. If a α is a syzygy $\quad \Longrightarrow$ Go on to next signature.
2. If a α is not part of an S-pair \Longrightarrow Go on to next signature.

Revisiting our example with $\prec_{\text {pot }}$

$\mathfrak{s}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y e_{2}$
$\left.\begin{array}{l}g_{1}=x y-z^{2} \\ g_{2}=y^{2}-z^{2}\end{array}\right\} \Rightarrow \operatorname{psyz}\left(g_{2}, g_{1}\right)=g_{1} e_{2}-g_{2} e_{1}=x y e_{2}+\ldots$

The basic problem

Signature basics

Signature-based criteria

A decade in signature-based Gröbner Basis algorithms

A decade in signature-based Gröbner Basis algorithms

A decade in signature-based Gröbner Basis algorithms

References

[AP10] M. Albrecht und J. Perry. F4/5
[AP11] A. Arri und J. Perry. The F5 Criterion revised
[EGP11] C. Eder, J. Gash and J. Perry. Modifying Faugère's F5 Algorithm to ensure termination
[EP10] C. Eder and J. Perry. F5C: A variant of Faugère's F5 Algorithm with reduced Gröbner bases
[EP11] C. Eder and J. Perry. Signature-based algorithms to compute Gröbner bases
[ER13] C. Eder and B. H. Roune. Signature Rewriting in Gröbner Basis Computation
[F99] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4)
[F02] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero F_{5}
[FJ03] J.-C. Faugère and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases
[FL10] J.-C. Faugère and S. Lachartre. Parallel Gaussian Elimination for Gröbner bases computations in finite fields
[GGV10] S. Gao, Y. Guan and F. Volny IV. A New Incremental Algorithm for Computing Gröbner Bases
[GVW11] S. Gao, F. Volny IV and M. Wang. A New Algorithm For Computing Grobner Bases
[RS12] B. H. Roune and M. Stillman. Practical Gröbner Basis Computation

