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How to detect zero reductions in advance?

Example

Let I = 〈g1, g2〉 ∈ Q[x , y , z ], g1 = xy − z2, g2 = y2 − z2.
< denotes the reverse lexicographical ordering.

spol(g2, g1) = xg2 − yg1 = xy2 − xz2 − xy2 + yz2

= −xz2 + yz2.

Thus it reduces to g3 = xz2 − yz2 w.r.t. G .

spol(g3, g1) = xyz2 − y2z2 − xyz2 + z4 = −y2z2 + z4.

We can reduce further using z2g2:

−y2z2 + z4 + y2z2 − z4 = 0.

How to get rid of this zero reduction?
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Signatures

Let I = 〈f1, . . . , fm〉.
Idea: Give each f ∈ I a bit more structure:

1. Let Rm be generated by e1, . . . , em and let ≺ be a compatible
monomial order on the monomials of Rm.

2. Let α 7→ α : Rm → R such that e i = fi for all i .

3. Each f ∈ I can be represented via some α ∈ Rm: f = α

4. A signature of f is given by s(f ) = lt≺(α) where f = α.
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Our example again – now with signatures and ≺pot

g1 = xy − z2, s(g1) = e1,

g2 = y2 − z2, s(g2) = e2,

g3 = spol(g2, g1) = xg2 − yg1

⇒ s(g3) = x s(g2) = xe2.

spol(g3, g1) = yg3 − z2g1:

s (spol(g3, g1)) = y s(g3) = xye2.

Note that s (spol(g3, g1)) = xye2 and lm(g1) = xy .

⇒ We know that spol(g3, g1) reduces to zero w.r.t. G .
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How do we know this?

General idea: Per signature we only need to compute 1 element
for G .

Several elements with the same signature?

Choose 1 and remove the others.

Our goal: Make good choices.

Our task: Keep signatures correct.
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Think in the module

α ∈ Rm stores all data needed:

I Polynomial α with leading term lt (α).

I Signature
[
s(α) =

]
s(α) = lt (α).

Conventions:

I α ∈ Rm with α = 0 is a syzygy.

I s-reduction =̂ polynomial reduction while retaining
signature

I s-reductions are always w.r.t. a finite basis G ⊂ Rm.
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Signature-based Gröbner Bases

I G is a signature-based Gröbner Basis in signature T if all
α ∈ Rm with s (α) = T s-reduce to zero w.r.t. G.

I G is a signature-based Gröbner Basis if G is a
signature-based Gröbner Basis in all signatures

I If G is a signature-based Gröbner Basis then {α | α ∈ G} is a
Gröbner Basis for 〈f1, . . . , fm〉.

Remark

In the following we need one detail from signature-based Gröbner
Basis computations:

The pair set is ordered by increasing signature.
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Signature-based criteria

s(α) = s(β) =⇒ Compute 1, remove 1.

Sketch of proof

1. s(α− β) ≺ s(α), s(β).

2. All S-pairs are handled by increasing signature.
⇒ All relatons ≺ s(α) are known:

α = β + elements of smaller signature
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Signature-based criteria

S-pairs in signature T

What are all possible
configurations to

reach signature T?

RT =
{
aα | α handled by the algorithm and s(aα) = T

}

Define an order on
RT and choose the
maximal element.
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Special cases

RT =
{
aα | α handled by the algorithm and s(aα) = T

}

1. If aα is a syzygy =⇒ Go on to next signature.
2. If aα is not part of an S-pair =⇒ Go on to next signature.

Revisiting our example with ≺pot

s (spol(g3, g1)) = xye2

g1 = xy − z2

g2 = y2 − z2

}
⇒ psyz(g2, g1) = g1e2 − g2e1 = xye2 + . . .
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A decade in signature-based Gröbner Basis algorithms
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[EP11] C. Eder and J. Perry. Signature-based algorithms to compute Gröbner bases
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