Signature-based Gröbner Basis Algorithms

Christian Eder

joint work with

Jean-Charles Faugère, Bjarke Hammersholt Roune, John Perry and Justin Gash

GBRELA2013 - Hagenberg, Austria

September 03 - 06, 2013

Signature basics

Signature-based criteria

Example

Let
$$I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$$
, $\mathbf{g_1} = \mathbf{xy} - \mathbf{z^2}$, $\mathbf{g_2} = \mathbf{y^2} - \mathbf{z^2}$

< denotes the reverse lexicographical ordering.

Example

Let $I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$, $\mathbf{g_1} = \mathbf{xy} - \mathbf{z^2}$, $\mathbf{g_2} = \mathbf{y^2} - \mathbf{z^2}$. < denotes the reverse lexicographical ordering.

$$spol(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2$$

= $-xz^2 + yz^2$.

Thus it reduces to $\mathbf{g}_3 = \mathbf{x}\mathbf{z}^2 - \mathbf{y}\mathbf{z}^2$ w.r.t. G.

Example

Let $I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$, $\mathbf{g_1} = \mathbf{xy} - \mathbf{z^2}$, $\mathbf{g_2} = \mathbf{y^2} - \mathbf{z^2}$. < denotes the reverse lexicographical ordering.

spol
$$(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2$$

= $-xz^2 + yz^2$.

Thus it reduces to $\mathbf{g}_3 = \mathbf{x}\mathbf{z}^2 - \mathbf{y}\mathbf{z}^2$ w.r.t. G.

$$spol(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$$

Example

Let $I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$, $\mathbf{g_1} = \mathbf{xy} - \mathbf{z^2}$, $\mathbf{g_2} = \mathbf{y^2} - \mathbf{z^2}$. < denotes the reverse lexicographical ordering.

spol
$$(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2$$

= $-xz^2 + yz^2$.

Thus it reduces to $\mathbf{g}_3 = \mathbf{x}\mathbf{z}^2 - \mathbf{y}\mathbf{z}^2$ w.r.t. G.

$$spol(g_3,g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$$

We can reduce further using z^2g_2 :

$$-y^2z^2 + z^4 + y^2z^2 - z^4 = 0.$$

Example

Let $I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$, $\mathbf{g_1} = \mathbf{xy} - \mathbf{z^2}$, $\mathbf{g_2} = \mathbf{y^2} - \mathbf{z^2}$. < denotes the reverse lexicographical ordering.

spol
$$(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2$$

= $-xz^2 + yz^2$.

Thus it reduces to $\mathbf{g}_3 = \mathbf{x}\mathbf{z}^2 - \mathbf{y}\mathbf{z}^2$ w.r.t. G.

$$spol(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$$

We can reduce further using z^2g_2 :

$$-y^2z^2 + z^4 + y^2z^2 - z^4 = 0.$$

How to get rid of this zero reduction?

The basic problem

Signature-based criteria

Let $I = \langle f_1, \ldots, f_m \rangle$. Idea: Give each $f \in I$ a bit more structure:

1. Let R^m be generated by e_1, \ldots, e_m and let \prec be a compatible monomial order on the monomials of R^m .

- **1.** Let R^m be generated by e_1, \ldots, e_m and let \prec be a compatible monomial order on the monomials of R^m .
- **2.** Let $\alpha \mapsto \overline{\alpha} : \mathbb{R}^m \to \mathbb{R}$ such that $\overline{e}_i = f_i$ for all i.

- **1.** Let R^m be generated by e_1, \ldots, e_m and let \prec be a compatible monomial order on the monomials of R^m .
- **2.** Let $\alpha \mapsto \overline{\alpha} : \mathbb{R}^m \to \mathbb{R}$ such that $\overline{e}_i = f_i$ for all *i*.
- **3.** Each $f \in I$ can be represented via some $\alpha \in R^m$: $f = \overline{\alpha}$

- **1.** Let R^m be generated by e_1, \ldots, e_m and let \prec be a compatible monomial order on the monomials of R^m .
- **2.** Let $\alpha \mapsto \overline{\alpha} : \mathbb{R}^m \to \mathbb{R}$ such that $\overline{e}_i = f_i$ for all *i*.
- **3.** Each $f \in I$ can be represented via some $\alpha \in R^m$: $f = \overline{\alpha}$
- **4.** A signature of f is given by $\mathfrak{s}(f) = \mathsf{lt}_{\prec}(\alpha)$ where $f = \overline{\alpha}$.

$$g_{1} = xy - z^{2}, \ \mathfrak{s}(g_{1}) = e_{1},$$

$$g_{2} = y^{2} - z^{2}, \ \mathfrak{s}(g_{2}) = e_{2},$$

$$g_{3} = \operatorname{spol}(g_{2}, g_{1}) = xg_{2} - yg_{1}$$

$$\Rightarrow \mathfrak{s}(g_{3}) = x \mathfrak{s}(g_{2}) = xe_{2}.$$

$$g_{1} = xy - z^{2}, \ \mathfrak{s}(g_{1}) = e_{1},$$

$$g_{2} = y^{2} - z^{2}, \ \mathfrak{s}(g_{2}) = e_{2},$$

$$g_{3} = \operatorname{spol}(g_{2}, g_{1}) = xg_{2} - yg_{1}$$

$$\Rightarrow \mathfrak{s}(g_{3}) = x \mathfrak{s}(g_{2}) = xe_{2}.$$

 $spol(g_3, g_1) = yg_3 - z^2g_1$:

$$\mathfrak{s}(\mathsf{spol}(g_3,g_1)) = y\,\mathfrak{s}(g_3) = xye_2.$$

$$g_{1} = xy - z^{2}, \ \mathfrak{s}(g_{1}) = e_{1},$$

$$g_{2} = y^{2} - z^{2}, \ \mathfrak{s}(g_{2}) = e_{2},$$

$$g_{3} = \operatorname{spol}(g_{2}, g_{1}) = xg_{2} - yg_{1}$$

$$\Rightarrow \mathfrak{s}(g_{3}) = x \mathfrak{s}(g_{2}) = xe_{2}.$$

 $\operatorname{spol}(g_3, g_1) = yg_3 - z^2g_1$: $\mathfrak{s}(\operatorname{spol}(g_3, g_1)) = y \mathfrak{s}(g_3) = xye_2.$

Note that $\mathfrak{s}(\operatorname{spol}(g_3, g_1)) = xye_2$ and $\operatorname{Im}(g_1) = xy$.

$$g_{1} = xy - z^{2}, \ \mathfrak{s}(g_{1}) = e_{1},$$

$$g_{2} = y^{2} - z^{2}, \ \mathfrak{s}(g_{2}) = e_{2},$$

$$g_{3} = \operatorname{spol}(g_{2}, g_{1}) = xg_{2} - yg_{1}$$

$$\Rightarrow \mathfrak{s}(g_{3}) = x \mathfrak{s}(g_{2}) = xe_{2}.$$

spol $(g_3, g_1) = yg_3 - z^2g_1$: $\mathfrak{s}(\operatorname{spol}(g_3, g_1)) = y\mathfrak{s}(g_3) = xye_2$.

Note that $\mathfrak{s}(\overline{\mathrm{spol}(g_3,g_1)}) = xye_2$ and $\overline{\mathrm{Im}(g_1) = xy}$.

 \Rightarrow We know that spol (g_3, g_1) reduces to zero w.r.t. G.

General idea: Per signature we only need to compute 1 element for *G*.

General idea: Per signature we only need to compute 1 element for *G*.

Several elements with the same signature?

General idea: Per signature we only need to compute 1 element for *G*.

General idea: Per signature we only need to compute 1 element for *G*.

Our goal: Make good choices.

General idea: Per signature we only need to compute 1 element for *G*.

Our goal: Make good choices.

Our task: Keep signatures correct.

Think in the module

$\alpha \in R^m$ stores all data needed:

▶ Polynomial $\overline{\alpha}$ with leading term It ($\overline{\alpha}$).

▶ Signature
$$[\mathfrak{s}(\overline{\alpha}) =]\mathfrak{s}(\alpha) = \operatorname{lt}(\alpha)$$
.

Think in the module

$\alpha \in \mathbf{R}^{m}$ stores all data needed:

▶ Polynomial $\overline{\alpha}$ with leading term It ($\overline{\alpha}$).

• Signature
$$\left[\mathfrak{s}(\overline{\alpha}) = \right]\mathfrak{s}(\alpha) = \operatorname{lt}(\alpha).$$

Conventions:

▶ $\alpha \in R^m$ with $\overline{\alpha} = 0$ is a syzygy.

s-reduction

 polynomial reduction while retaining signature

▶ \mathfrak{s} -reductions are always w.r.t. a finite basis $\mathcal{G} \subset \mathbb{R}^m$.

Signature-based Gröbner Bases

- ▶ \mathcal{G} is a signature-based Gröbner Basis in signature T if all $\alpha \in \mathbb{R}^m$ with $\mathfrak{s}(\alpha) = T$ \mathfrak{s} -reduce to zero w.r.t. \mathcal{G} .
- ➤ G is a signature-based Gröbner Basis if G is a signature-based Gröbner Basis in all signatures
- If G is a signature-based Gröbner Basis then {α | α ∈ G} is a Gröbner Basis for ⟨f₁,..., f_m⟩.

Signature-based Gröbner Bases

- ▶ \mathcal{G} is a signature-based Gröbner Basis in signature T if all $\alpha \in \mathbb{R}^m$ with $\mathfrak{s}(\alpha) = T$ \mathfrak{s} -reduce to zero w.r.t. \mathcal{G} .
- If G is a signature-based Gröbner Basis then {α | α ∈ G} is a Gröbner Basis for ⟨f₁,..., f_m⟩.

Remark

In the following we need one detail from signature-based Gröbner Basis computations:

The pair set is ordered by increasing signature.

The basic problem

Signature basics


```
\mathfrak{s}(\alpha) = \mathfrak{s}(\beta) \implies Compute 1, remove 1.
```

 $\left(egin{array}{c} \mathfrak{s}(lpha) = \mathfrak{s}(eta) \implies {\sf Compute 1, remove 1.} \end{array}
ight)$

Sketch of proof

1. $\mathfrak{s}(\alpha - \beta) \prec \mathfrak{s}(\alpha), \mathfrak{s}(\beta).$

2. All S-pairs are handled by increasing signature. \Rightarrow All relatons $\prec \mathfrak{s}(\alpha)$ are known:

 $\alpha = \beta +$ elements of smaller signature

S-pairs in signature T

S-pairs in signature T

What are all possible configurations to reach signature *T*?

S-pairs in signature T

S-pairs in signature T

1. If $a\alpha$ is a syzygy \implies Go on to next signature.

 $\left\{ egin{array}{l} \mathfrak{R}_{\mathcal{T}} = \left\{ egin{array}{l} alpha \mid lpha \ extsf{handled} \ extsf{by the algorithm and } \mathfrak{s}(etalpha) = \mathcal{T}
ight\} \end{array}
ight\}$

1. If $a\alpha$ is a syzygy \implies Go on to next signature. 2. If $a\alpha$ is not part of an S-pair \implies Go on to next signature.

 $\left\{ \begin{array}{l} \mathfrak{R}_{\mathcal{T}} = \left\{ a\alpha \mid \alpha \text{ handled by the algorithm and } \mathfrak{s}(a\alpha) = \mathcal{T} \right\} \end{array} \right\}$

1. If $a\alpha$ is a syzygy \implies Go on to next signature. 2. If $a\alpha$ is not part of an S-pair \implies Go on to next signature.

Revisiting our example with \prec_{pot} $\mathfrak{s}(\operatorname{spol}(g_3, g_1)) = xye_2$ $g_1 = xy - z^2$ $g_2 = y^2 - z^2$ $\Rightarrow \operatorname{psyz}(g_2, g_1) = g_1e_2 - g_2e_1 = xye_2 + \dots$ The basic problem

Signature basics

Signature-based criteria

References

- [AP10] M. Albrecht und J. Perry. F4/5
- [AP11] A. Arri und J. Perry. The F5 Criterion revised
- [EGP11] C. Eder, J. Gash and J. Perry. Modifying Faugère's F5 Algorithm to ensure termination
- [EP10] C. Eder and J. Perry. F5C: A variant of Faugère's F5 Algorithm with reduced Gröbner bases
- [EP11] C. Eder and J. Perry. Signature-based algorithms to compute Gröbner bases
- [ER13] C. Eder and B. H. Roune. Signature Rewriting in Gröbner Basis Computation
- [F99] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4)
- [F02] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero F5
- [FJ03] J.-C. Faugère and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases
- [FL10] J.-C. Faugère and S. Lachartre. Parallel Gaussian Elimination for Gröbner bases computations in finite fields
- [GGV10] S. Gao, Y. Guan and F. Volny IV. A New Incremental Algorithm for Computing Gröbner Bases
- [GVW11] S. Gao, F. Volny IV and M. Wang. A New Algorithm For Computing Grobner Bases
- [RS12] B. H. Roune and M. Stillman. Practical Gröbner Basis Computation