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How to detect zero reductions in advance?

Example

Let | = (g1, &) € Q[x,y,2], g1 = xy — 22, g2 = y% — 2°.
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Example

Let | = (g1,8) € Qlx,y, 2], g1 =xy — 2%, g2 = y* — 22
< denotes the reverse lexicographical ordering.
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How to detect zero reductions in advance?

Example

Let I = (g1,8) € Qlx,y, 2], g1 =xy — 2%, g2 = y> — 2%.

< denotes the reverse lexicographical ordering.
spol(g2, 1) = xg2 — yg1 = xy* — xz* — xy? + yz°

= —xz>+ yzz.
Thus it reduces to g3 = xz2 — yz2 w.r.t. G.
spol(g3, g1) = xyz? — y?7% — xyz® + 24 = —y?% 4 24
We can reduce further using z?go:
—y222 4 Ay =0
How to get rid of this zero reduction?
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Signatures

Let I = (f,...,Tm).
Idea: Give each f € | a bit more structure:
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Signatures

Let I = (f,...,Tm).
Idea: Give each f € | a bit more structure:

1. Let R™ be generated by e1,..., ey, and let < be a compatible
monomial order on the monomials of R™.

2. Let o~ @: R™ — R such that €; = f; for all J.
3. Each f € I can be represented via some a« € R™: f =@

4. A signature of f is given by s(f) = lt<(«) where f = @.
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Our example again — now with signatures and <ot

g1 =Xy — 2, s(g1) = e1,

g =y"—2% s5(g) = e,

g3 = spol(g2, 81) = xg2 — yg1
s5(g3) = xs(g2) = xes.
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Our example again — now with signatures and <ot

g1 =Xy — 2, s(g1) = e1,

g =y"—2% s5(g) = e,

g3 = spol(g2, 81) = xg2 — yg1
s5(g3) = xs(g2) = xes.

spol(gs, g1) = ygs — z°gu:
s (spol(g3, 81)) = y s(g3) = xyen.

Note that s (spol(g3, 1)) = xyez2 and Im(g1) = xy.

= We know that spol(gs, g1) reduces to zero w.r.t. G.

6/16



How do we know this?

General idea: Per signature we only need to compute 1 element
for G.
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How do we know this?

General idea: Per signature we only need to compute 1 element
for G.

-

Several elements with the same signature? 1

Choose 1 and remove the others.

Our goal: Make good choices.

Our task: Keep signatures correct.
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Think in the module

o € R™ stores all data needed:

» Polynomial @ with leading term It (@).

» Signature [s(@) =] s(a) = It ().
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Think in the module

o € R™ stores all data needed:

» Polynomial @ with leading term It (@).

» Signature [s(@) =] s(a) = It ().

Conventions:

» a € R™ with @ =0 is a syzygy.

» s-reduction = polynomial reduction while retaining
signature

» s-reductions are always w.r.t. a finite basis G C R™.
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Signature-based Grobner Bases

» G is a signature-based Grébner Basis in signature T if all
a € R™ with s (a) = T s-reduce to zero w.r.t. G.

» G is a signature-based Grébner Basis if G is a
signature-based Grobner Basis in all signatures

» If G is a signature-based Grébner Basis then {a | a € G} is a
Grobner Basis for (f1, ..., m).

9/16



Signature-based Grobner Bases

» G is a signature-based Grébner Basis in signature T if all
a € R™ with s (a) = T s-reduce to zero w.r.t. G.

» G is a signature-based Grébner Basis if G is a
signature-based Grobner Basis in all signatures

» If G is a signature-based Grébner Basis then {a | a € G} is a
Grobner Basis for (f1, ..., m).

RENEIL

In the following we need one detail from signature-based Grobner
Basis computations:

The pair set is ordered by increasing signature.
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@ Signature-based criteria
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Signature-based criteria

Sketch of proof
1. s(a - B) < s(a), s(B).

2. All S-pairs are handled by increasing signature.
= All relatons < s(«) are known:

o = + elements of smaller signature

11/16



Signature-based criteria

S-pairs in signature T

12 /16



Signature-based criteria

S-pairs in signature T

What are all possible
configurations to
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Signature-based criteria

S-pairs in signature T

) Ve
What are all possible Define an order on
configurations to Rt and choose the
reach signature T7? maximal element.
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Special cases

If ace is a syzygy =—> Go on to next signature.
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Special cases

sy = {aa | & handled by the algorithm and s(aa) = T}

If ace is a syzygy =—> Go on to next signature.
If ace is not part of an S-pair = Go on to next signature.
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Special cases

sy = {aa | & handled by the algorithm and s(aa) = T}

—_____\

—

If ace is a syzygy =—> Go on to next signature.
2. If acv is not part of an S-pair = Go on to next signature.

Revisiting our example with <o

s (spol(g3, g1)) = xye
g1 =xy—z°

= psyz(82, = — gre; = xXyer + ...
g2:y2_22} psyz(g2, 81) = g1€2 — g2e1 = e
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@ A decade in signature-based Grébner Basis algorithms
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A decade in signature-based Grobner Basis algorithms

Quasihomog

F5

Faugere, .
Safey El-Din, F5 with BC

Verron Ars
(2013) (2005) Bihomog

F5
Faugere,
F5 using Safey EI-Din, Extended
sym Spaenlehauer :5 (’:_:"t:"a'
Faugere, 2011 rs, Hashemi
Svartz SAGBI F5 (2011) (2009)
(2013) Faugere,
Rahmany
(2009) G2v
AP Gao,Guan,Volny
Arri,Perry (2010)
(2009)
GVW
AP2 Gao,Volny,Wang
AP1 \ Arri,Perry,E. iG2V (2011)
Arri,Perry,E. (2012) E
(2011) - / (2012)
Involutive .
F5 F5C IFE5A
Gerdt, Perry,E. (2012)
Hashemi, iF5C (2009) F5A
Alizadeh E. Perry,E.
(2013) (2012) (2011)

15/16



[AP10]
[AP11]
[EGP11]
[EP10]
[EP11]
[ER13]
[F99]
[Fo2]
[FJ03]
[FL10]
[GGV10]
[GvW11]
[RS12]

References

M. Albrecht und J. Perry. F4/5

A. Arri und J. Perry. The F5 Criterion revised

C. Eder, J. Gash and J. Perry. Modifying Faugere's F5 Algorithm to ensure termination

C. Eder and J. Perry. F5C: A variant of Fauggre's F5 Algorithm with reduced Grébner bases

C. Eder and J. Perry. Signature-based algorithms to compute Grébner bases

C. Eder and B. H. Roune. Signature Rewriting in Grébner Basis Computation

J.-C. Faugere. A new efficient algorithm for computing Grobner bases (F4)

J.-C. Faugere. A new efficient algorithm for computing Grobner bases without reduction to zero rg

J.-C. Faugere and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Grobner Bases
J.-C. Faugere and S. Lachartre. Parallel Gaussian Elimination for Grobner bases computations in finite fields
S. Gao, Y. Guan and F. Volny IV. A New Incremental Algorithm for Computing Grébner Bases

S. Gao, F. Volny IV and M. Wang. A New Algorithm For Computing Grobner Bases

B. H. Roune and M. Stillman. Practical Grébner Basis Computation

16



	The basic problem
	Signature basics
	Signature-based criteria
	A decade in signature-based Gröbner Basis algorithms

