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Gröbner Basis basics

Definition

G = {g1, . . . , gr} is a Gröbner Basis for I = 〈f1, . . . , fm〉 if

1. G ⊂ I and

2. 〈lm(g1), . . . , lm(gr )〉 = 〈lm(f ) | f ∈ I 〉.

Satz (Buchberger’s Criterion)

The following are equivalent:

1. G is a Gröbner Basis for 〈G 〉.

2. For all f , g ∈ G it holds that spol(f , g)
G−→ 0, where

spol(f , g) = lc(g)
lcm(lm(f ), lm(g))

lm(f )
f − lc(f )

lcm(lm(f ), lm(g))

lm(g)
g .
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Buchberger’s Algorithm

Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner Basis G for I

1. G ← ∅
2. G ← G ∪ {fi} for all i ∈ {1, . . . ,m}
3. P ← {(fi , fj) | fi , fj ∈ G , i > j}

4. While P 6= ∅
(a) Choose (f , g) ∈ P, P ← P \ {(f , g)}
(b) h← spol(f , g)

(i) If h
G−→ 0 ⇒ no new information

(ii) If h
G−→ r 6= 0 ⇒ new information

P ← P ∪ {(r , g) | g ∈ G}
G ← G ∪ {r}

5. Return G
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How to predict zero reductions?

Example

Let I = 〈g1, g2〉 ∈ Q[x , y , z ] be given where g1 = xy − z2,
g2 = y2 − z2, and let < be the graded reverse lexicographical
ordering.

spol(g2, g1) = xg2 − yg1 = xy2 − xz2 − xy2 + yz2

= −xz2 + yz2,

so it reduces w.r.t. G to g3 = xz2 − yz2.

spol(g3, g1) = xyz2 − y2z2 − xyz2 + z4 = −y2z2 + z4.

We can reduce even further with z2g2:

−y2z2 + z4 + y2z2 − z4 = 0.

⇒ How can we discard such zero reductions in advance?
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Signatures of polynomials

Let I = 〈f1, . . . , fm〉.
Idea: Give each f ∈ I a bit more structure:

1. Let Rm be generated by e1, . . . , em, ≺ a well-ordering on the
monomials of Rm, and let π : Rm → R such that

π(ei ) = fi for all i .

2. Each p ∈ I can be represented by an

s =
m∑
i=1

hiei ∈ Rm such that p = π(s).

3. A signature of p is given by

sig(p) = lm≺(s) with p = π(s).

4. A minimal signature of p exists due to ≺.
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Our example – now with signatures and ≺pot

We have already computed the following data:

g1 = xy − z2, sig(g1) = e1,

g2 = y2 − z2, sig(g2) = e2,

g3 = spol(g2, g1) = xg2 − yg1

⇒ sig(g3) = x sig(g2) = xe2.

spol(g3, g1) = yg3 − z2g1:

sig (spol(g3, g1)) = y sig(g3) = xye2.

Note that sig (spol(g3, g1)) = xye2 and lm(g1) = xy .

⇒ We know that spol(g3, g1) will reduce to zero w.r.t. G .
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Why do we know this?

The general idea is to check the signatures of the generated
s-polynomials.

If sig
(

spol(f , g)
)

is not minimal for spol(f , g) then
⇒ spol(f , g) is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the
algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures
throughout the computations.

Note

We order P by increasing signatures, so we always take the
s-polynomial of minimal signature.

8 / 27



Why do we know this?

The general idea is to check the signatures of the generated
s-polynomials.

If sig
(

spol(f , g)
)

is not minimal for spol(f , g) then
⇒ spol(f , g) is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the
algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures
throughout the computations.

Note

We order P by increasing signatures, so we always take the
s-polynomial of minimal signature.

8 / 27



Why do we know this?

The general idea is to check the signatures of the generated
s-polynomials.

If sig
(

spol(f , g)
)

is not minimal for spol(f , g) then
⇒ spol(f , g) is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the
algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures
throughout the computations.

Note

We order P by increasing signatures, so we always take the
s-polynomial of minimal signature.

8 / 27



Why do we know this?

The general idea is to check the signatures of the generated
s-polynomials.

If sig
(

spol(f , g)
)

is not minimal for spol(f , g) then
⇒ spol(f , g) is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the
algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures
throughout the computations.

Note

We order P by increasing signatures, so we always take the
s-polynomial of minimal signature.

8 / 27



Why do we know this?

The general idea is to check the signatures of the generated
s-polynomials.

If sig
(

spol(f , g)
)

is not minimal for spol(f , g) then
⇒ spol(f , g) is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the
algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures
throughout the computations.

Note

We order P by increasing signatures, so we always take the
s-polynomial of minimal signature.

8 / 27



Signature-based criteria

Non-minimal signature ( NM )

sig(h) not minimal for h? ⇒ Remove h.

Sketch of proof

1. There exists a syzygy s ∈ Rm such that lm(s) = sig(h).
⇒ We can represent h with a lower signature.

2. Pairs are handled by increasing signatures.
⇒ All relations of lower signature are already taken care of.

Our example with ≺pot revisited

sig (spol(g3, g1)) = xye2

g1 = xy − z2

g2 = y2 − z2

}
⇒ psyz(g2, g1) = g1e2 − g2e1 = xye2 + . . .
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Signature-based criteria

Rewritable signature ( RW )

sig(g) = sig(h)? ⇒ Remove either g or h.

Sketch of proof

1. sig(g − h) ≺ sig(g), sig(h).

2. Pairs are handled by increasing signatures.
⇒ All necessary computations of lower signature have already
taken place.
⇒ We can represent h by

h = g + elements of lower signature.
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A good decade on signature-based algorithms
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1 Improvement 1: Signature-based Gröbner Basis algorithms

2 Improvement 2: Specialized Gaussian Elimination

3 Use GB algorithms in algebraic cryptanalysis
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Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

s-polynomial

s-polynomial

reducer

Knowledge of underlying GB structure

Idea

Do a static reordering before the Gaussian Elimination to achieve
a better initial shape. Reorder afterwards.
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Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

Pivot column Non-Pivot column

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

14 / 27



Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

Pivot column

Non-Pivot column

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

14 / 27



Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

Pivot column

Non-Pivot column

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

14 / 27



Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

Pivot column Non-Pivot column

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

14 / 27



Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

Pivot column Non-Pivot column

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

14 / 27



Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

Pivot column Non-Pivot column

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

14 / 27
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Faugère-Lachartre Idea

3rd step: Reduce lower left part to zero
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Faugère-Lachartre Idea

4th step: Reduce lower right part
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How our matrices look like
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Faugère-Lachartre Idea

Improvements:

I Use knowledge of underlying GB structures

I Parallelization of Linear Algebra

I Divide sparse and dense data as much as possible

Recent research:

I Improve parallelization

I Better usage of cache:
Use small blocks inside matrix per thread

I Use more of the polynomials structure

I Relax idea of signature-based GB algorithms
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1 Improvement 1: Signature-based Gröbner Basis algorithms

2 Improvement 2: Specialized Gaussian Elimination

3 Use GB algorithms in algebraic cryptanalysis
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General idea of asymmetric cryptography

complete key
(set of data)

public key
(subset of complete key)

private key
(complete key \ public key)

message M ciphertext C

original message M
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Choice of HFE Polynomial

Choose private polynomial p such that

I p ∈ Fqn(x) (mostly q = 2),

I deg(p) = d ,

I p is “easily” invertible over Fqn , i.e. find any solution of
p(x) = y .

Common choice:

p(x) =
∑
i ,j

αi ,jx
q
ui,j +q

vi,j
+
∑
k

βkx
qwk + γ.

Note

I Greater d =⇒ greater security

I Complexity of computing p−1 depends quadratically on d .

=⇒ d ≤ 512.
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Generate public key

Represent p publicly such that original structure and inversion are
hidden:

I Represent Fqn as Fq vector space.

I Choose 2 linear transformations S and T .

=⇒ public key T ◦ p ◦ S .

Assume q = 2

Frobenius map on F2n is a linear transformation over F2 on F2n :

αi ,jx
2
ui,j +2

vi,j −→ quadratic term∑
k βkx

2wk −→ linear term
γ −→ constant term

system of n quadratic equations in n variables over F2
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HFE Encryption

Public key: n multivariate polynomials (p1, . . . , pn) over Fq.

=⇒ Transform message M ∈ Fqn to F n
q , i.e. M = (x1, . . . , xn).

Encryption: Evaluate each pi at M.

=⇒ Ciphertext C = (p1(x1, . . . , xn), . . . , pn(x1, . . . , xn)) ∈ F n
q .

Or in terms of p, S and T (those are not available to the public):

I Apply S to M: S(x1, . . . , xn) =⇒ x ′ (∈ Fqn).

I Evaluate p(x ′) = y ′ =⇒ (y ′1, . . . , y
′
n) ∈ F n

q .

I Apply T =⇒ C = Ty ′ ∈ F n
q .
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HFE Decryption

Simply put: Take C and apply T−1, p−1 and S−1.

I Computing S−1 and T−1 is easy.

I Finding solutions for p(x ′) = y ′ is crucial:

� deg(p) = d =⇒ at most d different solutions for one y ′

(p not nec. one-to-one).

� Redundancy r is added to message M to get a unique solution.

How to break the system ?

Solve a system of multivariate quadratic polynomials over Fq:

p1(x1, . . . , xn) = y1
...

...
...

pn(x1, . . . , xn) = yn
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HFE Challenge 1

Patarin defined the so-called HFE Challenge 1 by

I d = 96,

I q = 2,

I n = 80.

Faugère broke this system computing a Gröbner basis of the
corresponding system of quadratic multivariate polynomials over
F2 in 2002 using a specialized F5 Algorithm:

96 hours of CPU time on an HP workstation with an alpha EV68
processor at 1 GHz and 4 GB RAM

(Whole computation approx. 7.65 GB.)
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[FJ03] J.-C. Faugère and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases
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