
Improved Gröbner basis computation with
applications in cryptography

Christian Eder
joint work with: John Perry, Justin Gash, Bjarke Roune

Hammersholt and Jean-Charles Faugère

POLSYS Team, UPMC, Paris, France

June 25, 2013

1 / 27

1 Improvement 1: Signature-based Gröbner Basis algorithms

2 Improvement 2: Specialized Gaussian Elimination

3 Use GB algorithms in algebraic cryptanalysis

2 / 27

Gröbner Basis basics

Definition

G = {g1, . . . , gr} is a Gröbner Basis for I = 〈f1, . . . , fm〉 if

1. G ⊂ I and

2. 〈lm(g1), . . . , lm(gr)〉 = 〈lm(f) | f ∈ I 〉.

Satz (Buchberger’s Criterion)

The following are equivalent:

1. G is a Gröbner Basis for 〈G 〉.

2. For all f , g ∈ G it holds that spol(f , g)
G−→ 0, where

spol(f , g) = lc(g)
lcm(lm(f), lm(g))

lm(f)
f − lc(f)

lcm(lm(f), lm(g))

lm(g)
g .

3 / 27

Gröbner Basis basics

Definition

G = {g1, . . . , gr} is a Gröbner Basis for I = 〈f1, . . . , fm〉 if

1. G ⊂ I and

2. 〈lm(g1), . . . , lm(gr)〉 = 〈lm(f) | f ∈ I 〉.

Satz (Buchberger’s Criterion)

The following are equivalent:

1. G is a Gröbner Basis for 〈G 〉.

2. For all f , g ∈ G it holds that spol(f , g)
G−→ 0, where

spol(f , g) = lc(g)
lcm(lm(f), lm(g))

lm(f)
f − lc(f)

lcm(lm(f), lm(g))

lm(g)
g .

3 / 27

Buchberger’s Algorithm

Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner Basis G for I

1. G ← ∅
2. G ← G ∪ {fi} for all i ∈ {1, . . . ,m}
3. P ← {(fi , fj) | fi , fj ∈ G , i > j}

4. While P 6= ∅
(a) Choose (f , g) ∈ P, P ← P \ {(f , g)}
(b) h← spol(f , g)

(i) If h
G−→ 0 ⇒ no new information

(ii) If h
G−→ r 6= 0 ⇒ new information

P ← P ∪ {(r , g) | g ∈ G}
G ← G ∪ {r}

5. Return G

4 / 27

Buchberger’s Algorithm

Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner Basis G for I

1. G ← ∅
2. G ← G ∪ {fi} for all i ∈ {1, . . . ,m}
3. P ← {(fi , fj) | fi , fj ∈ G , i > j}
4. While P 6= ∅

(a) Choose (f , g) ∈ P, P ← P \ {(f , g)}
(b) h← spol(f , g)

(i) If h
G−→ 0 ⇒ no new information

(ii) If h
G−→ r 6= 0 ⇒ new information

P ← P ∪ {(r , g) | g ∈ G}
G ← G ∪ {r}

5. Return G

4 / 27

Buchberger’s Algorithm

Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner Basis G for I

1. G ← ∅
2. G ← G ∪ {fi} for all i ∈ {1, . . . ,m}
3. P ← {(fi , fj) | fi , fj ∈ G , i > j}
4. While P 6= ∅

(a) Choose (f , g) ∈ P, P ← P \ {(f , g)}
(b) h← spol(f , g)

(i) If h
G−→ 0

⇒ no new information

(ii) If h
G−→ r 6= 0 ⇒ new information

P ← P ∪ {(r , g) | g ∈ G}
G ← G ∪ {r}

5. Return G

4 / 27

Buchberger’s Algorithm

Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner Basis G for I

1. G ← ∅
2. G ← G ∪ {fi} for all i ∈ {1, . . . ,m}
3. P ← {(fi , fj) | fi , fj ∈ G , i > j}
4. While P 6= ∅

(a) Choose (f , g) ∈ P, P ← P \ {(f , g)}
(b) h← spol(f , g)

(i) If h
G−→ 0

⇒ no new information

(ii) If h
G−→ r 6= 0

⇒ new information
P ← P ∪ {(r , g) | g ∈ G}
G ← G ∪ {r}

5. Return G

4 / 27

Buchberger’s Algorithm

Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner Basis G for I

1. G ← ∅
2. G ← G ∪ {fi} for all i ∈ {1, . . . ,m}
3. P ← {(fi , fj) | fi , fj ∈ G , i > j}
4. While P 6= ∅

(a) Choose (f , g) ∈ P, P ← P \ {(f , g)}
(b) h← spol(f , g)

(i) If h
G−→ 0

⇒ no new information

(ii) If h
G−→ r 6= 0

⇒ new information

P ← P ∪ {(r , g) | g ∈ G}
G ← G ∪ {r}

5. Return G

4 / 27

Buchberger’s Algorithm

Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner Basis G for I

1. G ← ∅
2. G ← G ∪ {fi} for all i ∈ {1, . . . ,m}
3. P ← {(fi , fj) | fi , fj ∈ G , i > j}
4. While P 6= ∅

(a) Choose (f , g) ∈ P, P ← P \ {(f , g)}
(b) h← spol(f , g)

(i) If h
G−→ 0 ⇒ no new information

(ii) If h
G−→ r 6= 0 ⇒ new information

P ← P ∪ {(r , g) | g ∈ G}
G ← G ∪ {r}

5. Return G

4 / 27

How to predict zero reductions?

Example

Let I = 〈g1, g2〉 ∈ Q[x , y , z] be given where g1 = xy − z2,
g2 = y2 − z2, and let < be the graded reverse lexicographical
ordering.

spol(g2, g1) = xg2 − yg1 = xy2 − xz2 − xy2 + yz2

= −xz2 + yz2,

so it reduces w.r.t. G to g3 = xz2 − yz2.

spol(g3, g1) = xyz2 − y2z2 − xyz2 + z4 = −y2z2 + z4.

We can reduce even further with z2g2:

−y2z2 + z4 + y2z2 − z4 = 0.

⇒ How can we discard such zero reductions in advance?

5 / 27

How to predict zero reductions?

Example

Let I = 〈g1, g2〉 ∈ Q[x , y , z] be given where g1 = xy − z2,
g2 = y2 − z2, and let < be the graded reverse lexicographical
ordering.

spol(g2, g1) = xg2 − yg1 = xy2 − xz2 − xy2 + yz2

= −xz2 + yz2,

so it reduces w.r.t. G to g3 = xz2 − yz2.

spol(g3, g1) = xyz2 − y2z2 − xyz2 + z4 = −y2z2 + z4.

We can reduce even further with z2g2:

−y2z2 + z4 + y2z2 − z4 = 0.

⇒ How can we discard such zero reductions in advance?

5 / 27

How to predict zero reductions?

Example

Let I = 〈g1, g2〉 ∈ Q[x , y , z] be given where g1 = xy − z2,
g2 = y2 − z2, and let < be the graded reverse lexicographical
ordering.

spol(g2, g1) = xg2 − yg1 = xy2 − xz2 − xy2 + yz2

= −xz2 + yz2,

so it reduces w.r.t. G to g3 = xz2 − yz2.

spol(g3, g1) = xyz2 − y2z2 − xyz2 + z4 = −y2z2 + z4.

We can reduce even further with z2g2:

−y2z2 + z4 + y2z2 − z4 = 0.

⇒ How can we discard such zero reductions in advance?

5 / 27

How to predict zero reductions?

Example

Let I = 〈g1, g2〉 ∈ Q[x , y , z] be given where g1 = xy − z2,
g2 = y2 − z2, and let < be the graded reverse lexicographical
ordering.

spol(g2, g1) = xg2 − yg1 = xy2 − xz2 − xy2 + yz2

= −xz2 + yz2,

so it reduces w.r.t. G to g3 = xz2 − yz2.

spol(g3, g1) = xyz2 − y2z2 − xyz2 + z4 = −y2z2 + z4.

We can reduce even further with z2g2:

−y2z2 + z4 + y2z2 − z4 = 0.

⇒ How can we discard such zero reductions in advance?

5 / 27

How to predict zero reductions?

Example

Let I = 〈g1, g2〉 ∈ Q[x , y , z] be given where g1 = xy − z2,
g2 = y2 − z2, and let < be the graded reverse lexicographical
ordering.

spol(g2, g1) = xg2 − yg1 = xy2 − xz2 − xy2 + yz2

= −xz2 + yz2,

so it reduces w.r.t. G to g3 = xz2 − yz2.

spol(g3, g1) = xyz2 − y2z2 − xyz2 + z4 = −y2z2 + z4.

We can reduce even further with z2g2:

−y2z2 + z4 + y2z2 − z4 = 0.

⇒ How can we discard such zero reductions in advance?
5 / 27

Signatures of polynomials

Let I = 〈f1, . . . , fm〉.
Idea: Give each f ∈ I a bit more structure:

1. Let Rm be generated by e1, . . . , em, ≺ a well-ordering on the
monomials of Rm, and let π : Rm → R such that

π(ei) = fi for all i .

2. Each p ∈ I can be represented by an

s =
m∑
i=1

hiei ∈ Rm such that p = π(s).

3. A signature of p is given by

sig(p) = lm≺(s) with p = π(s).

4. A minimal signature of p exists due to ≺.

6 / 27

Signatures of polynomials

Let I = 〈f1, . . . , fm〉.
Idea: Give each f ∈ I a bit more structure:

1. Let Rm be generated by e1, . . . , em, ≺ a well-ordering on the
monomials of Rm, and let π : Rm → R such that

π(ei) = fi for all i .

2. Each p ∈ I can be represented by an

s =
m∑
i=1

hiei ∈ Rm such that p = π(s).

3. A signature of p is given by

sig(p) = lm≺(s) with p = π(s).

4. A minimal signature of p exists due to ≺.

6 / 27

Signatures of polynomials

Let I = 〈f1, . . . , fm〉.
Idea: Give each f ∈ I a bit more structure:

1. Let Rm be generated by e1, . . . , em, ≺ a well-ordering on the
monomials of Rm, and let π : Rm → R such that

π(ei) = fi for all i .

2. Each p ∈ I can be represented by an

s =
m∑
i=1

hiei ∈ Rm such that p = π(s).

3. A signature of p is given by

sig(p) = lm≺(s) with p = π(s).

4. A minimal signature of p exists due to ≺.

6 / 27

Signatures of polynomials

Let I = 〈f1, . . . , fm〉.
Idea: Give each f ∈ I a bit more structure:

1. Let Rm be generated by e1, . . . , em, ≺ a well-ordering on the
monomials of Rm, and let π : Rm → R such that

π(ei) = fi for all i .

2. Each p ∈ I can be represented by an

s =
m∑
i=1

hiei ∈ Rm such that p = π(s).

3. A signature of p is given by

sig(p) = lm≺(s) with p = π(s).

4. A minimal signature of p exists due to ≺.

6 / 27

Signatures of polynomials

Let I = 〈f1, . . . , fm〉.
Idea: Give each f ∈ I a bit more structure:

1. Let Rm be generated by e1, . . . , em, ≺ a well-ordering on the
monomials of Rm, and let π : Rm → R such that

π(ei) = fi for all i .

2. Each p ∈ I can be represented by an

s =
m∑
i=1

hiei ∈ Rm such that p = π(s).

3. A signature of p is given by

sig(p) = lm≺(s) with p = π(s).

4. A minimal signature of p exists due to ≺.
6 / 27

Our example – now with signatures and ≺pot

We have already computed the following data:

g1 = xy − z2, sig(g1) = e1,

g2 = y2 − z2, sig(g2) = e2,

g3 = spol(g2, g1) = xg2 − yg1

⇒ sig(g3) = x sig(g2) = xe2.

spol(g3, g1) = yg3 − z2g1:

sig (spol(g3, g1)) = y sig(g3) = xye2.

Note that sig (spol(g3, g1)) = xye2 and lm(g1) = xy .

⇒ We know that spol(g3, g1) will reduce to zero w.r.t. G .

7 / 27

Our example – now with signatures and ≺pot

We have already computed the following data:

g1 = xy − z2, sig(g1) = e1,

g2 = y2 − z2, sig(g2) = e2,

g3 = spol(g2, g1) = xg2 − yg1

⇒ sig(g3) = x sig(g2) = xe2.

spol(g3, g1) = yg3 − z2g1:

sig (spol(g3, g1)) = y sig(g3) = xye2.

Note that sig (spol(g3, g1)) = xye2 and lm(g1) = xy .

⇒ We know that spol(g3, g1) will reduce to zero w.r.t. G .

7 / 27

Our example – now with signatures and ≺pot

We have already computed the following data:

g1 = xy − z2, sig(g1) = e1,

g2 = y2 − z2, sig(g2) = e2,

g3 = spol(g2, g1) = xg2 − yg1

⇒ sig(g3) = x sig(g2) = xe2.

spol(g3, g1) = yg3 − z2g1:

sig (spol(g3, g1)) = y sig(g3) = xye2.

Note that sig (spol(g3, g1)) = xye2 and lm(g1) = xy .

⇒ We know that spol(g3, g1) will reduce to zero w.r.t. G .

7 / 27

Our example – now with signatures and ≺pot

We have already computed the following data:

g1 = xy − z2, sig(g1) = e1,

g2 = y2 − z2, sig(g2) = e2,

g3 = spol(g2, g1) = xg2 − yg1

⇒ sig(g3) = x sig(g2) = xe2.

spol(g3, g1) = yg3 − z2g1:

sig (spol(g3, g1)) = y sig(g3) = xye2.

Note that sig (spol(g3, g1)) = xye2 and lm(g1) = xy .

⇒ We know that spol(g3, g1) will reduce to zero w.r.t. G .

7 / 27

Why do we know this?

The general idea is to check the signatures of the generated
s-polynomials.

If sig
(

spol(f , g)
)

is not minimal for spol(f , g) then
⇒ spol(f , g) is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the
algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures
throughout the computations.

Note

We order P by increasing signatures, so we always take the
s-polynomial of minimal signature.

8 / 27

Why do we know this?

The general idea is to check the signatures of the generated
s-polynomials.

If sig
(

spol(f , g)
)

is not minimal for spol(f , g) then
⇒ spol(f , g) is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the
algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures
throughout the computations.

Note

We order P by increasing signatures, so we always take the
s-polynomial of minimal signature.

8 / 27

Why do we know this?

The general idea is to check the signatures of the generated
s-polynomials.

If sig
(

spol(f , g)
)

is not minimal for spol(f , g) then
⇒ spol(f , g) is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the
algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures
throughout the computations.

Note

We order P by increasing signatures, so we always take the
s-polynomial of minimal signature.

8 / 27

Why do we know this?

The general idea is to check the signatures of the generated
s-polynomials.

If sig
(

spol(f , g)
)

is not minimal for spol(f , g) then
⇒ spol(f , g) is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the
algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures
throughout the computations.

Note

We order P by increasing signatures, so we always take the
s-polynomial of minimal signature.

8 / 27

Why do we know this?

The general idea is to check the signatures of the generated
s-polynomials.

If sig
(

spol(f , g)
)

is not minimal for spol(f , g) then
⇒ spol(f , g) is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the
algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures
throughout the computations.

Note

We order P by increasing signatures, so we always take the
s-polynomial of minimal signature.

8 / 27

Signature-based criteria

Non-minimal signature (NM)

sig(h) not minimal for h? ⇒ Remove h.

Sketch of proof

1. There exists a syzygy s ∈ Rm such that lm(s) = sig(h).
⇒ We can represent h with a lower signature.

2. Pairs are handled by increasing signatures.
⇒ All relations of lower signature are already taken care of.

Our example with ≺pot revisited

sig (spol(g3, g1)) = xye2

g1 = xy − z2

g2 = y2 − z2

}
⇒ psyz(g2, g1) = g1e2 − g2e1 = xye2 + . . .

9 / 27

Signature-based criteria

Non-minimal signature (NM)

sig(h) not minimal for h? ⇒ Remove h.

Sketch of proof

1. There exists a syzygy s ∈ Rm such that lm(s) = sig(h).
⇒ We can represent h with a lower signature.

2. Pairs are handled by increasing signatures.
⇒ All relations of lower signature are already taken care of.

Our example with ≺pot revisited

sig (spol(g3, g1)) = xye2

g1 = xy − z2

g2 = y2 − z2

}
⇒ psyz(g2, g1) = g1e2 − g2e1 = xye2 + . . .

9 / 27

Signature-based criteria

Non-minimal signature (NM)

sig(h) not minimal for h? ⇒ Remove h.

Sketch of proof

1. There exists a syzygy s ∈ Rm such that lm(s) = sig(h).
⇒ We can represent h with a lower signature.

2. Pairs are handled by increasing signatures.
⇒ All relations of lower signature are already taken care of.

Our example with ≺pot revisited

sig (spol(g3, g1)) = xye2

g1 = xy − z2

g2 = y2 − z2

}
⇒ psyz(g2, g1) = g1e2 − g2e1 = xye2 + . . .

9 / 27

Signature-based criteria

Rewritable signature (RW)

sig(g) = sig(h)? ⇒ Remove either g or h.

Sketch of proof

1. sig(g − h) ≺ sig(g), sig(h).

2. Pairs are handled by increasing signatures.
⇒ All necessary computations of lower signature have already
taken place.
⇒ We can represent h by

h = g + elements of lower signature.

10 / 27

Signature-based criteria

Rewritable signature (RW)

sig(g) = sig(h)? ⇒ Remove either g or h.

Sketch of proof

1. sig(g − h) ≺ sig(g), sig(h).

2. Pairs are handled by increasing signatures.
⇒ All necessary computations of lower signature have already
taken place.
⇒ We can represent h by

h = g + elements of lower signature.

10 / 27

A good decade on signature-based algorithms

F5
Faugère
(2002)

G2V
Gao,Guan,Volny

(2010)

GVW
Gao,Volny,Wang

(2011)iG2V
E.

(2012)

SAGBI F5
Faugère,
Rahmany

(2009)

F5 using
sym

Faugère,
Svartz
(2013)

Bihomog
F5

Faugère,
Safey El-Din,
Spaenlehauer

(2011)

Quasihomog
F5

Faugère,
Safey El-Din,

Verron
(2013)

F4/5
Albrecht,

Perry
(2010)

Bihomog
F5

Faugère,
Safey El-Din,
Spaenlehauer

(2011)

Involutive
F5

Gerdt,
Hashemi,
Alizadeh
(2013)

Matrix F5
Bardet
(2002)

F5 with BC
Ars

(2005)

Extended
F5 Criteria
Ars, Hashemi

(2009)

F5C
Perry,E.
(2009) F5A

Perry,E.
(2011)

iF5A
E.

(2012)

iF5C
E.

(2012)

nF5
E.

(2012)

AP
Arri,Perry

(2009)

AP1
Arri,Perry,E.

(2011)

AP2
Arri,Perry,E.

(2012)

SB
Roune,

Stillmann

(2012)

11 / 27

A good decade on signature-based algorithms

F5
Faugère
(2002)

G2V
Gao,Guan,Volny

(2010)

GVW
Gao,Volny,Wang

(2011)iG2V
E.

(2012)

SAGBI F5
Faugère,
Rahmany

(2009)

F5 using
sym

Faugère,
Svartz
(2013)

Bihomog
F5

Faugère,
Safey El-Din,
Spaenlehauer

(2011)

Quasihomog
F5

Faugère,
Safey El-Din,

Verron
(2013)

F4/5
Albrecht,

Perry
(2010)

Involutive
F5

Gerdt,
Hashemi,
Alizadeh
(2013)

Matrix F5
Bardet
(2002)

F5 with BC
Ars

(2005)

Extended
F5 Criteria
Ars, Hashemi

(2009)

F5C
Perry,E.
(2009) F5A

Perry,E.
(2011)

iF5A
E.

(2012)

iF5C
E.

(2012)

nF5
E.

(2012)

AP
Arri,Perry

(2009)

AP1
Arri,Perry,E.

(2011)

AP2
Arri,Perry,E.

(2012)

SB
Roune,

Stillmann

(2012)

11 / 27

1 Improvement 1: Signature-based Gröbner Basis algorithms

2 Improvement 2: Specialized Gaussian Elimination

3 Use GB algorithms in algebraic cryptanalysis

12 / 27

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

s-polynomial

s-polynomial

reducer

Knowledge of underlying GB structure

Idea

Do a static reordering before the Gaussian Elimination to achieve
a better initial shape. Reorder afterwards.

13 / 27

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

s-polynomial

s-polynomial

reducer

Knowledge of underlying GB structure

Idea

Do a static reordering before the Gaussian Elimination to achieve
a better initial shape. Reorder afterwards.

13 / 27

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

s-polynomial

s-polynomial

reducer

Knowledge of underlying GB structure

Idea

Do a static reordering before the Gaussian Elimination to achieve
a better initial shape. Reorder afterwards.

13 / 27

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

s-polynomial

s-polynomial

reducer

Knowledge of underlying GB structure

Idea

Do a static reordering before the Gaussian Elimination to achieve
a better initial shape. Reorder afterwards.

13 / 27

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

s-polynomial

s-polynomial

reducer

Knowledge of underlying GB structure

Idea

Do a static reordering before the Gaussian Elimination to achieve
a better initial shape. Reorder afterwards.

13 / 27

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

s-polynomial

s-polynomial

reducer

Knowledge of underlying GB structure

Idea

Do a static reordering before the Gaussian Elimination to achieve
a better initial shape. Reorder afterwards.

13 / 27

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

Pivot column Non-Pivot column

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

14 / 27

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

Pivot column

Non-Pivot column

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

14 / 27

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

Pivot column

Non-Pivot column

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

14 / 27

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

Pivot column Non-Pivot column

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

14 / 27

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

Pivot column Non-Pivot column

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

14 / 27

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

1 3 0 0 7 1 0

1 0 4 1 0 0 5

0 1 6 0 8 0 1

0 5 0 0 0 2 0

0 0 0 0 1 3 1

Pivot column Non-Pivot column

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

14 / 27

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

Pivot row Non-Pivot row

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

1 3 7 0 0 1 0

0 1 8 6 0 0 9

15 / 27

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

Pivot row

Non-Pivot row

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

1 3 7 0 0 1 0

0 1 8 6 0 0 9

15 / 27

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

Pivot row Non-Pivot row

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

1 3 7 0 0 1 0

0 1 8 6 0 0 9

15 / 27

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

Pivot row Non-Pivot row

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

1 3 7 0 0 1 0

0 1 8 6 0 0 9

15 / 27

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

1 3 7 0 0 1 0

1 0 0 4 1 0 5

0 1 8 6 0 0 9

0 5 0 0 0 2 0

0 0 1 0 0 3 1

Pivot row Non-Pivot row

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

1 3 7 0 0 1 0

0 1 8 6 0 0 9

15 / 27

Faugère-Lachartre Idea

3rd step: Reduce lower left part to zero

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

1 3 7 0 0 1 0

0 1 8 6 0 0 9

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

0 0 0 7 10 3 10

0 0 0 6 0 2 1

16 / 27

Faugère-Lachartre Idea

3rd step: Reduce lower left part to zero

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

1 3 7 0 0 1 0

0 1 8 6 0 0 9

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

0 0 0 7 10 3 10

0 0 0 6 0 2 1

16 / 27

Faugère-Lachartre Idea

4th step: Reduce lower right part

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

0 0 0 7 10 3 10

0 0 0 6 0 2 1

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

0 0 0 7 10 3 10

0 0 0 0 4 1 5

5th step: Remap columns of lower right part

17 / 27

Faugère-Lachartre Idea

4th step: Reduce lower right part

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

0 0 0 7 10 3 10

0 0 0 6 0 2 1

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

0 0 0 7 10 3 10

0 0 0 0 4 1 5

5th step: Remap columns of lower right part

17 / 27

Faugère-Lachartre Idea

4th step: Reduce lower right part

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

0 0 0 7 10 3 10

0 0 0 6 0 2 1

1 0 0 4 1 0 5

0 5 0 0 0 2 0

0 0 1 0 0 3 1

0 0 0 7 10 3 10

0 0 0 0 4 1 5

5th step: Remap columns of lower right part

17 / 27

How our matrices look like

18 / 27

Faugère-Lachartre Idea

Improvements:

I Use knowledge of underlying GB structures

I Parallelization of Linear Algebra

I Divide sparse and dense data as much as possible

Recent research:

I Improve parallelization

I Better usage of cache:
Use small blocks inside matrix per thread

I Use more of the polynomials structure

I Relax idea of signature-based GB algorithms

19 / 27

Faugère-Lachartre Idea

Improvements:

I Use knowledge of underlying GB structures

I Parallelization of Linear Algebra

I Divide sparse and dense data as much as possible

Recent research:

I Improve parallelization

I Better usage of cache:
Use small blocks inside matrix per thread

I Use more of the polynomials structure

I Relax idea of signature-based GB algorithms

19 / 27

1 Improvement 1: Signature-based Gröbner Basis algorithms

2 Improvement 2: Specialized Gaussian Elimination

3 Use GB algorithms in algebraic cryptanalysis

20 / 27

General idea of asymmetric cryptography

complete key
(set of data)

public key
(subset of complete key)

private key
(complete key \ public key)

message M ciphertext C

original message M

21 / 27

General idea of asymmetric cryptography

complete key
(set of data)

public key
(subset of complete key)

private key
(complete key \ public key)

message M ciphertext C

original message M

21 / 27

General idea of asymmetric cryptography

complete key
(set of data)

public key
(subset of complete key)

private key
(complete key \ public key)

message M ciphertext C

original message M

21 / 27

General idea of asymmetric cryptography

complete key
(set of data)

public key
(subset of complete key)

private key
(complete key \ public key)

message M ciphertext C

original message M

21 / 27

Choice of HFE Polynomial

Choose private polynomial p such that

I p ∈ Fqn(x) (mostly q = 2),

I deg(p) = d ,

I p is “easily” invertible over Fqn , i.e. find any solution of
p(x) = y .

Common choice:

p(x) =
∑
i ,j

αi ,jx
q
ui,j +q

vi,j
+
∑
k

βkx
qwk + γ.

Note

I Greater d =⇒ greater security

I Complexity of computing p−1 depends quadratically on d .

=⇒ d ≤ 512.

22 / 27

Choice of HFE Polynomial

Choose private polynomial p such that

I p ∈ Fqn(x) (mostly q = 2),

I deg(p) = d ,

I p is “easily” invertible over Fqn , i.e. find any solution of
p(x) = y .

Common choice:

p(x) =
∑
i ,j

αi ,jx
q
ui,j +q

vi,j
+
∑
k

βkx
qwk + γ.

Note

I Greater d =⇒ greater security

I Complexity of computing p−1 depends quadratically on d .

=⇒ d ≤ 512.

22 / 27

Choice of HFE Polynomial

Choose private polynomial p such that

I p ∈ Fqn(x) (mostly q = 2),

I deg(p) = d ,

I p is “easily” invertible over Fqn , i.e. find any solution of
p(x) = y .

Common choice:

p(x) =
∑
i ,j

αi ,jx
q
ui,j +q

vi,j
+
∑
k

βkx
qwk + γ.

Note

I Greater d =⇒ greater security

I Complexity of computing p−1 depends quadratically on d .

=⇒ d ≤ 512.

22 / 27

Choice of HFE Polynomial

Choose private polynomial p such that

I p ∈ Fqn(x) (mostly q = 2),

I deg(p) = d ,

I p is “easily” invertible over Fqn , i.e. find any solution of
p(x) = y .

Common choice:

p(x) =
∑
i ,j

αi ,jx
q
ui,j +q

vi,j
+
∑
k

βkx
qwk + γ.

Note

I Greater d =⇒ greater security

I Complexity of computing p−1 depends quadratically on d .

=⇒ d ≤ 512.

22 / 27

Choice of HFE Polynomial

Choose private polynomial p such that

I p ∈ Fqn(x) (mostly q = 2),

I deg(p) = d ,

I p is “easily” invertible over Fqn , i.e. find any solution of
p(x) = y .

Common choice:

p(x) =
∑
i ,j

αi ,jx
q
ui,j +q

vi,j
+
∑
k

βkx
qwk + γ.

Note

I Greater d =⇒ greater security

I Complexity of computing p−1 depends quadratically on d .

=⇒ d ≤ 512.

22 / 27

Generate public key

Represent p publicly such that original structure and inversion are
hidden:

I Represent Fqn as Fq vector space.

I Choose 2 linear transformations S and T .

=⇒ public key T ◦ p ◦ S .

Assume q = 2

Frobenius map on F2n is a linear transformation over F2 on F2n :

αi ,jx
2
ui,j +2

vi,j −→ quadratic term∑
k βkx

2wk −→ linear term
γ −→ constant term

system of n quadratic equations in n variables over F2

23 / 27

Generate public key

Represent p publicly such that original structure and inversion are
hidden:

I Represent Fqn as Fq vector space.

I Choose 2 linear transformations S and T .

=⇒ public key T ◦ p ◦ S .

Assume q = 2

Frobenius map on F2n is a linear transformation over F2 on F2n :

αi ,jx
2
ui,j +2

vi,j −→ quadratic term∑
k βkx

2wk −→ linear term
γ −→ constant term

system of n quadratic equations in n variables over F2

23 / 27

Generate public key

Represent p publicly such that original structure and inversion are
hidden:

I Represent Fqn as Fq vector space.

I Choose 2 linear transformations S and T .

=⇒ public key T ◦ p ◦ S .

Assume q = 2

Frobenius map on F2n is a linear transformation over F2 on F2n :

αi ,jx
2
ui,j +2

vi,j −→ quadratic term∑
k βkx

2wk −→ linear term
γ −→ constant term

system of n quadratic equations in n variables over F2

23 / 27

Generate public key

Represent p publicly such that original structure and inversion are
hidden:

I Represent Fqn as Fq vector space.

I Choose 2 linear transformations S and T .

=⇒ public key T ◦ p ◦ S .

Assume q = 2

Frobenius map on F2n is a linear transformation over F2 on F2n :

αi ,jx
2
ui,j +2

vi,j −→ quadratic term∑
k βkx

2wk −→ linear term
γ −→ constant term

system of n quadratic equations in n variables over F2

23 / 27

Generate public key

Represent p publicly such that original structure and inversion are
hidden:

I Represent Fqn as Fq vector space.

I Choose 2 linear transformations S and T .

=⇒ public key T ◦ p ◦ S .

Assume q = 2

Frobenius map on F2n is a linear transformation over F2 on F2n :

αi ,jx
2
ui,j +2

vi,j −→ quadratic term∑
k βkx

2wk −→ linear term
γ −→ constant term

system of n quadratic equations in n variables over F2

23 / 27

HFE Encryption

Public key: n multivariate polynomials (p1, . . . , pn) over Fq.

=⇒ Transform message M ∈ Fqn to F n
q , i.e. M = (x1, . . . , xn).

Encryption: Evaluate each pi at M.

=⇒ Ciphertext C = (p1(x1, . . . , xn), . . . , pn(x1, . . . , xn)) ∈ F n
q .

Or in terms of p, S and T (those are not available to the public):

I Apply S to M: S(x1, . . . , xn) =⇒ x ′ (∈ Fqn).

I Evaluate p(x ′) = y ′ =⇒ (y ′1, . . . , y
′
n) ∈ F n

q .

I Apply T =⇒ C = Ty ′ ∈ F n
q .

24 / 27

HFE Encryption

Public key: n multivariate polynomials (p1, . . . , pn) over Fq.

=⇒ Transform message M ∈ Fqn to F n
q , i.e. M = (x1, . . . , xn).

Encryption: Evaluate each pi at M.

=⇒ Ciphertext C = (p1(x1, . . . , xn), . . . , pn(x1, . . . , xn)) ∈ F n
q .

Or in terms of p, S and T (those are not available to the public):

I Apply S to M: S(x1, . . . , xn) =⇒ x ′ (∈ Fqn).

I Evaluate p(x ′) = y ′ =⇒ (y ′1, . . . , y
′
n) ∈ F n

q .

I Apply T =⇒ C = Ty ′ ∈ F n
q .

24 / 27

HFE Encryption

Public key: n multivariate polynomials (p1, . . . , pn) over Fq.

=⇒ Transform message M ∈ Fqn to F n
q , i.e. M = (x1, . . . , xn).

Encryption: Evaluate each pi at M.

=⇒ Ciphertext C = (p1(x1, . . . , xn), . . . , pn(x1, . . . , xn)) ∈ F n
q .

Or in terms of p, S and T (those are not available to the public):

I Apply S to M: S(x1, . . . , xn) =⇒ x ′ (∈ Fqn).

I Evaluate p(x ′) = y ′ =⇒ (y ′1, . . . , y
′
n) ∈ F n

q .

I Apply T =⇒ C = Ty ′ ∈ F n
q .

24 / 27

HFE Encryption

Public key: n multivariate polynomials (p1, . . . , pn) over Fq.

=⇒ Transform message M ∈ Fqn to F n
q , i.e. M = (x1, . . . , xn).

Encryption: Evaluate each pi at M.

=⇒ Ciphertext C = (p1(x1, . . . , xn), . . . , pn(x1, . . . , xn)) ∈ F n
q .

Or in terms of p, S and T (those are not available to the public):

I Apply S to M: S(x1, . . . , xn) =⇒ x ′ (∈ Fqn).

I Evaluate p(x ′) = y ′ =⇒ (y ′1, . . . , y
′
n) ∈ F n

q .

I Apply T =⇒ C = Ty ′ ∈ F n
q .

24 / 27

HFE Encryption

Public key: n multivariate polynomials (p1, . . . , pn) over Fq.

=⇒ Transform message M ∈ Fqn to F n
q , i.e. M = (x1, . . . , xn).

Encryption: Evaluate each pi at M.

=⇒ Ciphertext C = (p1(x1, . . . , xn), . . . , pn(x1, . . . , xn)) ∈ F n
q .

Or in terms of p, S and T (those are not available to the public):

I Apply S to M: S(x1, . . . , xn) =⇒ x ′ (∈ Fqn).

I Evaluate p(x ′) = y ′ =⇒ (y ′1, . . . , y
′
n) ∈ F n

q .

I Apply T =⇒ C = Ty ′ ∈ F n
q .

24 / 27

HFE Encryption

Public key: n multivariate polynomials (p1, . . . , pn) over Fq.

=⇒ Transform message M ∈ Fqn to F n
q , i.e. M = (x1, . . . , xn).

Encryption: Evaluate each pi at M.

=⇒ Ciphertext C = (p1(x1, . . . , xn), . . . , pn(x1, . . . , xn)) ∈ F n
q .

Or in terms of p, S and T (those are not available to the public):

I Apply S to M: S(x1, . . . , xn) =⇒ x ′ (∈ Fqn).

I Evaluate p(x ′) = y ′ =⇒ (y ′1, . . . , y
′
n) ∈ F n

q .

I Apply T =⇒ C = Ty ′ ∈ F n
q .

24 / 27

HFE Encryption

Public key: n multivariate polynomials (p1, . . . , pn) over Fq.

=⇒ Transform message M ∈ Fqn to F n
q , i.e. M = (x1, . . . , xn).

Encryption: Evaluate each pi at M.

=⇒ Ciphertext C = (p1(x1, . . . , xn), . . . , pn(x1, . . . , xn)) ∈ F n
q .

Or in terms of p, S and T (those are not available to the public):

I Apply S to M: S(x1, . . . , xn) =⇒ x ′ (∈ Fqn).

I Evaluate p(x ′) = y ′ =⇒ (y ′1, . . . , y
′
n) ∈ F n

q .

I Apply T =⇒ C = Ty ′ ∈ F n
q .

24 / 27

HFE Decryption

Simply put: Take C and apply T−1, p−1 and S−1.

I Computing S−1 and T−1 is easy.

I Finding solutions for p(x ′) = y ′ is crucial:

� deg(p) = d =⇒ at most d different solutions for one y ′

(p not nec. one-to-one).

� Redundancy r is added to message M to get a unique solution.

How to break the system ?

Solve a system of multivariate quadratic polynomials over Fq:

p1(x1, . . . , xn) = y1
...

...
...

pn(x1, . . . , xn) = yn

25 / 27

HFE Decryption

Simply put: Take C and apply T−1, p−1 and S−1.

I Computing S−1 and T−1 is easy.

I Finding solutions for p(x ′) = y ′ is crucial:

� deg(p) = d =⇒ at most d different solutions for one y ′

(p not nec. one-to-one).

� Redundancy r is added to message M to get a unique solution.

How to break the system ?

Solve a system of multivariate quadratic polynomials over Fq:

p1(x1, . . . , xn) = y1
...

...
...

pn(x1, . . . , xn) = yn

25 / 27

HFE Decryption

Simply put: Take C and apply T−1, p−1 and S−1.

I Computing S−1 and T−1 is easy.

I Finding solutions for p(x ′) = y ′ is crucial:

� deg(p) = d =⇒ at most d different solutions for one y ′

(p not nec. one-to-one).

� Redundancy r is added to message M to get a unique solution.

How to break the system ?

Solve a system of multivariate quadratic polynomials over Fq:

p1(x1, . . . , xn) = y1
...

...
...

pn(x1, . . . , xn) = yn

25 / 27

HFE Decryption

Simply put: Take C and apply T−1, p−1 and S−1.

I Computing S−1 and T−1 is easy.

I Finding solutions for p(x ′) = y ′ is crucial:

� deg(p) = d =⇒ at most d different solutions for one y ′

(p not nec. one-to-one).

� Redundancy r is added to message M to get a unique solution.

How to break the system ?

Solve a system of multivariate quadratic polynomials over Fq:

p1(x1, . . . , xn) = y1
...

...
...

pn(x1, . . . , xn) = yn

25 / 27

HFE Decryption

Simply put: Take C and apply T−1, p−1 and S−1.

I Computing S−1 and T−1 is easy.

I Finding solutions for p(x ′) = y ′ is crucial:

� deg(p) = d =⇒ at most d different solutions for one y ′

(p not nec. one-to-one).

� Redundancy r is added to message M to get a unique solution.

How to break the system ?

Solve a system of multivariate quadratic polynomials over Fq:

p1(x1, . . . , xn) = y1
...

...
...

pn(x1, . . . , xn) = yn

25 / 27

HFE Challenge 1

Patarin defined the so-called HFE Challenge 1 by

I d = 96,

I q = 2,

I n = 80.

Faugère broke this system computing a Gröbner basis of the
corresponding system of quadratic multivariate polynomials over
F2 in 2002 using a specialized F5 Algorithm:

96 hours of CPU time on an HP workstation with an alpha EV68
processor at 1 GHz and 4 GB RAM

(Whole computation approx. 7.65 GB.)

26 / 27

HFE Challenge 1

Patarin defined the so-called HFE Challenge 1 by

I d = 96,

I q = 2,

I n = 80.

Faugère broke this system computing a Gröbner basis of the
corresponding system of quadratic multivariate polynomials over
F2 in 2002 using a specialized F5 Algorithm:

96 hours of CPU time on an HP workstation with an alpha EV68
processor at 1 GHz and 4 GB RAM

(Whole computation approx. 7.65 GB.)

26 / 27

HFE Challenge 1

Patarin defined the so-called HFE Challenge 1 by

I d = 96,

I q = 2,

I n = 80.

Faugère broke this system computing a Gröbner basis of the
corresponding system of quadratic multivariate polynomials over
F2 in 2002 using a specialized F5 Algorithm:

96 hours of CPU time on an HP workstation with an alpha EV68
processor at 1 GHz and 4 GB RAM

(Whole computation approx. 7.65 GB.)

26 / 27

Bibliography

[AP10] M. Albrecht und J. Perry. F4/5

[AP11] A. Arri und J. Perry. The F5 Criterion revised

[EGP11] C. Eder, J. Gash and J. Perry. Modifying Faugère’s F5 Algorithm to ensure termination

[EP10] C. Eder and J. Perry. F5C: A variant of Faugère’s F5 Algorithm with reduced Gröbner bases

[EP11] C. Eder and J. Perry. Signature-based algorithms to compute Gröbner bases

[ER13] C. Eder and B. H. Roune. Signature Rewriting in Gröbner Basis Computation

[F99] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4)

[F02] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero F5

[FJ03] J.-C. Faugère and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases

[FL10] J.-C. Faugère and S. Lachartre. Parallel Gaussian Elimination for Gröbner bases computations in finite fields

[GGV10] S. Gao, Y. Guan and F. Volny IV. A New Incremental Algorithm for Computing Gröbner Bases

[GVW11] S. Gao, F. Volny IV and M. Wang. A New Algorithm For Computing Grobner Bases

[P96] J. Patarin. Hidden Field Equations (HFE) and Isomorphic Polynomial (IP): two new families of asymmetric algorithm

[RS12] B. H. Roune and M. Stillman. Practical Gröbner Basis Computation

27 / 27

	Improvement 1: Signature-based Gröbner Basis algorithms
	Improvement 2: Specialized Gaussian Elimination
	Use GB algorithms in algebraic cryptanalysis

