Improved Gröbner basis computation with applications in cryptography

Christian Eder
joint work with: John Perry, Justin Gash, Bjarke Roune Hammersholt and Jean-Charles Faugère
POLSYS Team, UPMC, Paris, France

June 25, 2013

1

Improvement 1: Signature-based Gröbner Basis algorithms

Improvement 2: Specialized Gaussian Elimination

Use GB algorithms in algebraic cryptanalysis

Gröbner Basis basics

Definition

$G=\left\{g_{1}, \ldots, g_{r}\right\}$ is a Gröbner Basis for $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ if

1. $G \subset I$ and
2. $\left\langle\operatorname{Im}\left(g_{1}\right), \ldots, \operatorname{Im}\left(g_{r}\right)\right\rangle=\langle\operatorname{Im}(f) \mid f \in I\rangle$.

Gröbner Basis basics

Definition

$G=\left\{g_{1}, \ldots, g_{r}\right\}$ is a Gröbner Basis for $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ if

1. $G \subset I$ and
2. $\left\langle\operatorname{Im}\left(g_{1}\right), \ldots, \operatorname{Im}\left(g_{r}\right)\right\rangle=\langle\operatorname{Im}(f) \mid f \in I\rangle$.

Satz (Buchberger's Criterion)

The following are equivalent:

1. G is a Gröbner Basis for $\langle G\rangle$.
2. For all $f, g \in G$ it holds that $\operatorname{spol}(f, g) \xrightarrow{G} 0$, where

$$
\operatorname{spol}(f, g)=\operatorname{Ic}(g) \frac{\operatorname{Icm}(\operatorname{Im}(f), \operatorname{Im}(g))}{\operatorname{Im}(f)} f-\operatorname{lc}(f) \frac{\operatorname{Icm}(\operatorname{Im}(f), \operatorname{Im}(g))}{\operatorname{Im}(g)} g .
$$

Buchberger's Algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis G for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(f_{i}, f_{j}\right) \mid f_{i}, f_{j} \in G, i>j\right\}$

Buchberger's Algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis G for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(f_{i}, f_{j}\right) \mid f_{i}, f_{j} \in G, i>j\right\}$
4. While $P \neq \emptyset$
(a) Choose $(f, g) \in P, P \leftarrow P \backslash\{(f, g)\}$
(b) $h \leftarrow \operatorname{spol}(f, g)$

Buchberger's Algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis G for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(f_{i}, f_{j}\right) \mid f_{i}, f_{j} \in G, i>j\right\}$
4. While $P \neq \emptyset$
(a) Choose $(f, g) \in P, P \leftarrow P \backslash\{(f, g)\}$
(b) $h \leftarrow \operatorname{spol}(f, g)$
(i) If $h \xrightarrow{G} 0$

Buchberger's Algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis G for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(f_{i}, f_{j}\right) \mid f_{i}, f_{j} \in G, i>j\right\}$
4. While $P \neq \emptyset$
(a) Choose $(f, g) \in P, P \leftarrow P \backslash\{(f, g)\}$
(b) $h \leftarrow \operatorname{spol}(f, g)$
(i) If $h \xrightarrow{G} 0$
(ii) If $h \xrightarrow{G} r \neq 0$

Buchberger's Algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis G for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(f_{i}, f_{j}\right) \mid f_{i}, f_{j} \in G, i>j\right\}$
4. While $P \neq \emptyset$
(a) Choose $(f, g) \in P, P \leftarrow P \backslash\{(f, g)\}$
(b) $h \leftarrow \operatorname{spol}(f, g)$
(i) If $h \xrightarrow{G} 0$
(ii) If $h \xrightarrow{G} r \neq 0$

$$
\begin{aligned}
& P \leftarrow P \cup\{(r, g) \mid g \in G\} \\
& G \leftarrow G \cup\{r\}
\end{aligned}
$$

5. Return G

Buchberger's Algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis G for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(f_{i}, f_{j}\right) \mid f_{i}, f_{j} \in G, i>j\right\}$
4. While $P \neq \emptyset$
(a) Choose $(f, g) \in P, P \leftarrow P \backslash\{(f, g)\}$
(b) $h \leftarrow \operatorname{spol}(f, g)$
(i) If $h \xrightarrow{G} 0 \Rightarrow$ no new information
(ii) If $h \xrightarrow{G} r \neq 0 \Rightarrow$ new information $P \leftarrow P \cup\{(r, g) \mid g \in G\}$ $G \leftarrow G \cup\{r\}$
5. Return G

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x y}-\mathbf{z}^{2}$, $\mathbf{g}_{2}=\mathbf{y}^{2}-\mathbf{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x y}-\mathbf{z}^{2}$, $\mathrm{g}_{2}=\mathbf{y}^{2}-\mathbf{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2},
\end{aligned}
$$

so it reduces w.r.t. G to $g_{3}=x z^{2}-y^{2}$.

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x y}-\mathbf{z}^{2}$, $\mathrm{g}_{2}=\mathbf{y}^{2}-\mathbf{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2},
\end{aligned}
$$

so it reduces w.r.t. G to $g_{3}=x z^{2}-y^{2}$.

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=x y z^{2}-y^{2} z^{2}-x y z^{2}+z^{4}=-y^{2} z^{2}+z^{4} .
$$

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x} \mathbf{y}-\mathbf{z}^{2}$,
$\mathrm{g}_{2}=\mathbf{y}^{\mathbf{2}}-\mathrm{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2},
\end{aligned}
$$

so it reduces w.r.t. G to $g_{3}=x z^{2}-y^{2}$.

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=\mathrm{xyz}^{2}-y^{2} z^{2}-\mathrm{xyz}^{2}+z^{4}=-y^{2} z^{2}+z^{4} .
$$

We can reduce even further with $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0
$$

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x} \mathbf{y}-\mathbf{z}^{2}$, $\mathrm{g}_{2}=\mathbf{y}^{2}-\mathbf{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2},
\end{aligned}
$$

so it reduces w.r.t. G to $g_{3}=x z^{2}-y^{2}$.

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=x y z^{2}-y^{2} z^{2}-x y z^{2}+z^{4}=-y^{2} z^{2}+z^{4} .
$$

We can reduce even further with $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0
$$

\Rightarrow How can we discard such zero reductions in advance?

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m}, \prec a well-ordering on the monomials of R^{m}, and let $\pi: R^{m} \rightarrow R$ such that

$$
\pi\left(e_{i}\right)=f_{i} \text { for all } i \text {. }
$$

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m}, \prec a well-ordering on the monomials of R^{m}, and let $\pi: R^{m} \rightarrow R$ such that

$$
\pi\left(e_{i}\right)=f_{i} \text { for all } i
$$

2. Each $p \in I$ can be represented by an

$$
s=\sum_{i=1}^{m} h_{i} e_{i} \in R^{m} \text { such that } p=\pi(s)
$$

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m}, \prec a well-ordering on the monomials of R^{m}, and let $\pi: R^{m} \rightarrow R$ such that

$$
\pi\left(e_{i}\right)=f_{i} \text { for all } i .
$$

2. Each $p \in I$ can be represented by an

$$
s=\sum_{i=1}^{m} h_{i} e_{i} \in R^{m} \text { such that } p=\pi(s)
$$

3. A signature of p is given by

$$
\operatorname{sig}(p)=\operatorname{Im}_{\prec}(s) \text { with } p=\pi(s)
$$

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m}, \prec a well-ordering on the monomials of R^{m}, and let $\pi: R^{m} \rightarrow R$ such that

$$
\pi\left(e_{i}\right)=f_{i} \text { for all } i .
$$

2. Each $p \in I$ can be represented by an

$$
s=\sum_{i=1}^{m} h_{i} e_{i} \in R^{m} \text { such that } p=\pi(s)
$$

3. A signature of p is given by

$$
\operatorname{sig}(p)=\operatorname{Im}_{\prec}(s) \text { with } p=\pi(s)
$$

4. A minimal signature of p exists due to \prec.

Our example - now with signatures and $\prec_{\text {pot }}$

We have already computed the following data:

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \operatorname{sig}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \operatorname{sig}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \operatorname{sig}\left(g_{3}\right) & =x \operatorname{sig}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

Our example - now with signatures and $\prec_{\text {pot }}$

We have already computed the following data:

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \operatorname{sig}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \operatorname{sig}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \operatorname{sig}\left(g_{3}\right) & =x \operatorname{sig}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

$\operatorname{spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}:$

$$
\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \operatorname{sig}\left(g_{3}\right)=x y e_{2} .
$$

Our example - now with signatures and $\prec_{\text {pot }}$

We have already computed the following data:

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \operatorname{sig}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \operatorname{sig}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \operatorname{sig}\left(g_{3}\right) & =x \operatorname{sig}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

$\operatorname{spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}:$

$$
\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \operatorname{sig}\left(g_{3}\right)=x y e_{2} .
$$

Note that $\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y e_{2}$ and $\operatorname{Im}\left(g_{1}\right)=x y$.

Our example - now with signatures and $\prec_{\text {pot }}$

We have already computed the following data:

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \operatorname{sig}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \operatorname{sig}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \operatorname{sig}\left(g_{3}\right) & =x \operatorname{sig}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

$\operatorname{spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}:$

$$
\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \operatorname{sig}\left(g_{3}\right)=x y e_{2} .
$$

Note that $\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y e_{2}$ and $\operatorname{Im}\left(g_{1}\right)=x y$.
\Rightarrow We know that $\operatorname{spol}\left(g_{3}, g_{1}\right)$ will reduce to zero w.r.t. G.

The general idea is to check the signatures of the generated s-polynomials.

Why do we know this?
The general idea is to check the signatures of the generated s-polynomials.

If $\operatorname{sig}(\operatorname{spol}(f, g))$ is not minimal for $\operatorname{spol}(f, g)$ then
$\Rightarrow \operatorname{spol}(f, g)$ is discarded.

Why do we know this?

The general idea is to check the signatures of the generated s-polynomials.

If $\operatorname{sig}(\operatorname{spol}(f, g))$ is not minimal for $\operatorname{spol}(f, g)$ then $\Rightarrow \operatorname{spol}(f, g)$ is discarded.

Our goal
Find and discard as many s-polynomials as possible for which the algorithm computes a non-minimal signature.

Why do we know this?

The general idea is to check the signatures of the generated s-polynomials.

If $\operatorname{sig}(\operatorname{spol}(f, g))$ is not minimal for $\operatorname{spol}(f, g)$ then $\Rightarrow \operatorname{spol}(f, g)$ is discarded.

Our goal
Find and discard as many s-polynomials as possible for which the algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures throughout the computations.

Why do we know this?

The general idea is to check the signatures of the generated s-polynomials.

If $\operatorname{sig}(\operatorname{spol}(f, g))$ is not minimal for $\operatorname{spol}(f, g)$ then
$\Rightarrow \operatorname{spol}(f, g)$ is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures throughout the computations.

Note

We order P by increasing signatures, so we always take the s-polynomial of minimal signature.

Signature-based criteria

Non-minimal signature (NM)

$\operatorname{sig}(h)$ not minimal for $h ? \Rightarrow$ Remove h.

Signature-based criteria

Non-minimal signature (NM)

$\operatorname{sig}(h)$ not minimal for $h ? \Rightarrow$ Remove h.

Sketch of proof

1. There exists a syzygy $s \in R^{m}$ such that $\operatorname{Im}(s)=\operatorname{sig}(h)$. \Rightarrow We can represent h with a lower signature.
2. Pairs are handled by increasing signatures.
\Rightarrow All relations of lower signature are already taken care of.

Signature-based criteria

Non-minimal signature (NM)

$\operatorname{sig}(h)$ not minimal for $h ? \Rightarrow$ Remove h.
Sketch of proof

1. There exists a syzygy $s \in R^{m}$ such that $\operatorname{Im}(s)=\operatorname{sig}(h)$. \Rightarrow We can represent h with a lower signature.
2. Pairs are handled by increasing signatures.
\Rightarrow All relations of lower signature are already taken care of.

Our example with $\prec_{\text {pot }}$ revisited
$\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y e_{2}$
$\left.\begin{array}{l}g_{1}=x y-z^{2} \\ g_{2}=y^{2}-z^{2}\end{array}\right\} \Rightarrow \operatorname{psyz}\left(g_{2}, g_{1}\right)=g_{1} e_{2}-g_{2} e_{1}=x y e_{2}+\ldots$

Signature-based criteria

Rewritable signature (RW)

$\operatorname{sig}(g)=\operatorname{sig}(h) ? \Rightarrow$ Remove either g or h.

Signature-based criteria

Rewritable signature (RW)

$\operatorname{sig}(g)=\operatorname{sig}(h) ? \Rightarrow$ Remove either g or h.
Sketch of proof

1. $\operatorname{sig}(g-h) \prec \operatorname{sig}(g), \operatorname{sig}(h)$.
2. Pairs are handled by increasing signatures.
\Rightarrow All necessary computations of lower signature have already taken place.
\Rightarrow We can represent h by

$$
h=g+\text { elements of lower signature. }
$$

A good decade on signature-based algorithms

A good decade on signature-based algorithms

Improvement 1: Signature-based Gröbner Basis algorithms

Improvement 2: Specialized Gaussian Elimination

Use GB algorithms in algebraic cryptanalysis

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.

$$
\begin{array}{lllllll}
1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5 \\
0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 5 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 1
\end{array}
$$

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.

$$
\begin{array}{lllllll}
1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5 \\
0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 5 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 1
\end{array}
$$

Knowledge of underlying GB structure

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.
$\left.\begin{array}{l}\text { s-polynomial }\left\{\begin{array}{lllllll}1 & 3 & 0 & 0 & 7 & 1 & 0 \\ 1 & 0 & 4 & 1 & 0 & 0 & 5\end{array}\right. \\ \text { s-polynomial }\end{array} \begin{array}{lllllll}0 & 1 & 6 & 0 & 8 & 0 & 1 \\ 0 & 5 & 0 & 0 & 0 & 2 & 0\end{array}\right]$

Knowledge of underlying GB structure

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.
$\left.\begin{array}{l}\text { s-polynomial }\left\{\begin{array}{lllllll}1 & 3 & 0 & 0 & 7 & 1 & 0 \\ 1 & 0 & 4 & 1 & 0 & 0 & 5\end{array}\right. \\ \text { s-polynomial }\end{array} \begin{array}{lllllll}0 & 1 & 6 & 0 & 8 & 0 & 1 \\ 0 & 5 & 0 & 0 & 0 & 2 & 0\end{array}\right]$

Knowledge of underlying GB structure

Improve Gaussian Elimination

Use Linear Algebra for reduction steps in GB computations.
$\left.\begin{array}{l}\text { s-polynomial }\left\{\begin{array}{lllllll}1 & 3 & 0 & 0 & 7 & 1 & 0 \\ 1 & 0 & 4 & 1 & 0 & 0 & 5\end{array}\right. \\ \text { s-polynomial }\end{array} \begin{array}{lllllll}0 & 1 & 6 & 0 & 8 & 0 & 1 \\ 0 & 5 & 0 & 0 & 0 & 2 & 0\end{array}\right]$

Knowledge of underlying GB structure

Idea

Do a static reordering before the Gaussian Elimination to achieve a better initial shape. Reorder afterwards.

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

$$
\begin{array}{lllllll}
1 & 3 & 0 & 0 & 7 & 1 & 0 \\
1 & 0 & 4 & 1 & 0 & 0 & 5 \\
0 & 1 & 6 & 0 & 8 & 0 & 1 \\
0 & 5 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 1 & 3 & 1
\end{array}
$$

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

Faugère-Lachartre Idea

1st step: Sort pivot and non-pivot columns

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

$$
\begin{array}{lllllll}
1 & 3 & 7 & 0 & 0 & 1 & 0 \\
1 & 0 & 0 & 4 & 1 & 0 & 5 \\
0 & 1 & 8 & 6 & 0 & 0 & 9 \\
0 & 5 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 1 & 0 & 0 & 3 & 1
\end{array}
$$

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

Faugère-Lachartre Idea

2nd step: Sort pivot and non-pivot rows

Faugère-Lachartre Idea

3rd step: Reduce lower left part to zero

```
1 0 0:4 1 0 5
0 5 0:0 0 2 0
0 0 1:0 0 3 1
1 3 7:0 0 1 0
0 1 8:6 0 0 9
```


Faugère-Lachartre Idea

3rd step: Reduce lower left part to zero

Faugère-Lachartre Idea

4th step: Reduce lower right part

```
1 0 0:4 1 0 5
0 5 0:0
0}001:0 0 0 3 1
0 0 0:7 10 3 10
0 0 0:6 0 2 1
```


Faugère-Lachartre Idea

4th step: Reduce lower right part

1	0)		5	1	0	0	4		1	0	5
0	5			0	0	5	0	0		0	2	0
0	0	1		1	0	0	1	0		0	3	1
0	0	0		10	0	0	0	7		10	3	10
0	0			1	0	0	0	0		4	1	5

Faugère-Lachartre Idea

4th step: Reduce lower right part

1	0			5	1	0)	4	1	0	5
0	5			0	0	5)	0	0	2	0
0	0			1	0	0		1	0	0	3	1
0	0			10	0	0		0	7	10	3	
0	0			1	0	0		0	0	4	1	

5th step: Remap columns of lower right part

How our matrices look like

Faugère-Lachartre Idea

Improvements:

- Use knowledge of underlying GB structures
- Parallelization of Linear Algebra
- Divide sparse and dense data as much as possible

Faugère-Lachartre Idea

Improvements:

- Use knowledge of underlying GB structures
- Parallelization of Linear Algebra
- Divide sparse and dense data as much as possible

Recent research:

- Improve parallelization
- Better usage of cache:

Use small blocks inside matrix per thread

- Use more of the polynomials structure
- Relax idea of signature-based GB algorithms

Improvement 1: Signature-based Gröbner Basis algorithms

Improvement 2: Specialized Gaussian Elimination

Use GB algorithms in algebraic cryptanalysis

General idea of asymmetric cryptography

complete key
(set of data)

General idea of asymmetric cryptography

General idea of asymmetric cryptography

General idea of asymmetric cryptography

Choice of HFE Polynomial

Choose private polynomial p such that
$>p \in F_{q^{n}}(x)$ (mostly $q=2$),
$-\operatorname{deg}(p)=d$,
$>p$ is "easily" invertible over $F_{q^{n}}$, i.e. find any solution of $p(x)=y$.

Choice of HFE Polynomial

Choose private polynomial p such that

- $p \in F_{q^{n}}(x)$ (mostly $q=2$),
$-\operatorname{deg}(p)=d$,
$>p$ is "easily" invertible over $F_{q^{n}}$, i.e. find any solution of $p(x)=y$.

Common choice:

$$
p(x)=\sum_{i, j} \alpha_{i, j} x^{q^{u_{i, j}}+q^{v_{i, j}}}+\sum_{k} \beta_{k} x^{q^{w_{k}}}+\gamma .
$$

Choice of HFE Polynomial

Choose private polynomial p such that
$>p \in F_{q^{n}}(x)$ (mostly $q=2$),
$-\operatorname{deg}(p)=d$,
$>p$ is "easily" invertible over $F_{q^{n}}$, i.e. find any solution of $p(x)=y$.

Common choice:

$$
p(x)=\sum_{i, j} \alpha_{i, j} x^{q_{i, j}+q^{v_{i, j}}}+\sum_{k} \beta_{k} x^{q^{w_{k}}}+\gamma .
$$

Note

- Greater $d \Longrightarrow$ greater security

Choice of HFE Polynomial

Choose private polynomial p such that

- $p \in F_{q^{n}}(x)$ (mostly $q=2$),
$-\operatorname{deg}(p)=d$,
$>p$ is "easily" invertible over $F_{q^{n}}$, i.e. find any solution of $p(x)=y$.

Common choice:

$$
p(x)=\sum_{i, j} \alpha_{i, j} x^{q^{u_{i, j}}+q^{v_{i, j}}}+\sum_{k} \beta_{k} x^{q^{w_{k}}}+\gamma .
$$

Note

- Greater $d \Longrightarrow$ greater security
- Complexity of computing p^{-1} depends quadratically on d.

Choice of HFE Polynomial

Choose private polynomial p such that

- $p \in F_{q^{n}}(x)$ (mostly $q=2$),
$-\operatorname{deg}(p)=d$,
$>p$ is "easily" invertible over $F_{q^{n}}$, i.e. find any solution of $p(x)=y$.

Common choice:

$$
p(x)=\sum_{i, j} \alpha_{i, j} x^{q^{u_{i, j}}+q^{v_{i, j}}}+\sum_{k} \beta_{k} x^{q^{w_{k}}}+\gamma .
$$

Note

- Greater $d \Longrightarrow$ greater security
- Complexity of computing p^{-1} depends quadratically on d.

$$
\Longrightarrow d \leq 512 .
$$

Generate public key

Represent p publicly such that original structure and inversion are hidden:

Generate public key

Represent p publicly such that original structure and inversion are hidden:

- Represent $F_{q^{n}}$ as F_{q} vector space.
- Choose 2 linear transformations S and T.

Generate public key

Represent p publicly such that original structure and inversion are hidden:

- Represent $F_{q^{n}}$ as F_{q} vector space.
- Choose 2 linear transformations S and T.
\Longrightarrow public key $T \circ p \circ S$.

Generate public key

Represent p publicly such that original structure and inversion are hidden:

- Represent $F_{q^{n}}$ as F_{q} vector space.
- Choose 2 linear transformations S and T.
\Longrightarrow public key $T \circ p \circ S$.

Assume $q=2$
Frobenius map on $F_{2^{n}}$ is a linear transformation over F_{2} on $F_{2^{n}}$:

Generate public key

Represent p publicly such that original structure and inversion are hidden:

- Represent $F_{q^{n}}$ as F_{q} vector space.
- Choose 2 linear transformations S and T.
\Longrightarrow public key $T \circ p \circ S$.

Assume $q=2$
Frobenius map on $F_{2^{n}}$ is a linear transformation over F_{2} on $F_{2^{n}}$:

system of n quadratic equations in n variables over F_{2}

HFE Encryption

Public key: n multivariate polynomials $\left(p_{1}, \ldots, p_{n}\right)$ over F_{q}.

HFE Encryption

Public key: n multivariate polynomials $\left(p_{1}, \ldots, p_{n}\right)$ over F_{q}.
\Longrightarrow Transform message $M \in F_{q^{n}}$ to F_{q}^{n}, i.e. $M=\left(x_{1}, \ldots, x_{n}\right)$.

HFE Encryption

Public key: n multivariate polynomials $\left(p_{1}, \ldots, p_{n}\right)$ over F_{q}.
\Longrightarrow Transform message $M \in F_{q^{n}}$ to F_{q}^{n}, i.e. $M=\left(x_{1}, \ldots, x_{n}\right)$.
Encryption: Evaluate each p_{i} at M.
\Longrightarrow Ciphertext $C=\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{n}\left(x_{1}, \ldots, x_{n}\right)\right) \in F_{q}^{n}$.

HFE Encryption

Public key: n multivariate polynomials $\left(p_{1}, \ldots, p_{n}\right)$ over F_{q}.
\Longrightarrow Transform message $M \in F_{q^{n}}$ to F_{q}^{n}, i.e. $M=\left(x_{1}, \ldots, x_{n}\right)$.
Encryption: Evaluate each p_{i} at M.
\Longrightarrow Ciphertext $C=\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{n}\left(x_{1}, \ldots, x_{n}\right)\right) \in F_{q}^{n}$.

Or in terms of p, S and T (those are not available to the public):

HFE Encryption

Public key: n multivariate polynomials $\left(p_{1}, \ldots, p_{n}\right)$ over F_{q}.
\Longrightarrow Transform message $M \in F_{q^{n}}$ to F_{q}^{n}, i.e. $M=\left(x_{1}, \ldots, x_{n}\right)$.
Encryption: Evaluate each p_{i} at M.
\Longrightarrow Ciphertext $C=\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{n}\left(x_{1}, \ldots, x_{n}\right)\right) \in F_{q}^{n}$.

Or in terms of p, S and T (those are not available to the public):

- Apply S to $M: S\left(x_{1}, \ldots, x_{n}\right) \Longrightarrow x^{\prime}\left(\in F_{q^{n}}\right)$.

HFE Encryption

Public key: n multivariate polynomials $\left(p_{1}, \ldots, p_{n}\right)$ over F_{q}.
\Longrightarrow Transform message $M \in F_{q^{n}}$ to F_{q}^{n}, i.e. $M=\left(x_{1}, \ldots, x_{n}\right)$.
Encryption: Evaluate each p_{i} at M.
\Longrightarrow Ciphertext $C=\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{n}\left(x_{1}, \ldots, x_{n}\right)\right) \in F_{q}^{n}$.

Or in terms of p, S and T (those are not available to the public):

- Apply S to $M: S\left(x_{1}, \ldots, x_{n}\right) \Longrightarrow x^{\prime}\left(\in F_{q^{n}}\right)$.
- Evaluate $p\left(x^{\prime}\right)=y^{\prime} \Longrightarrow\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \in F_{q}^{n}$.

HFE Encryption

Public key: n multivariate polynomials $\left(p_{1}, \ldots, p_{n}\right)$ over F_{q}.
\Longrightarrow Transform message $M \in F_{q^{n}}$ to F_{q}^{n}, i.e. $M=\left(x_{1}, \ldots, x_{n}\right)$.
Encryption: Evaluate each p_{i} at M.
\Longrightarrow Ciphertext $C=\left(p_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, p_{n}\left(x_{1}, \ldots, x_{n}\right)\right) \in F_{q}^{n}$.

Or in terms of p, S and T (those are not available to the public):

- Apply S to $M: S\left(x_{1}, \ldots, x_{n}\right) \Longrightarrow x^{\prime}\left(\in F_{q^{n}}\right)$.
- Evaluate $p\left(x^{\prime}\right)=y^{\prime} \Longrightarrow\left(y_{1}^{\prime}, \ldots, y_{n}^{\prime}\right) \in F_{q}^{n}$.
- Apply $T \Longrightarrow C=T y^{\prime} \in F_{q}^{n}$.

HFE Decryption

Simply put: Take C and apply T^{-1}, p^{-1} and S^{-1}.

HFE Decryption

Simply put: Take C and apply T^{-1}, p^{-1} and S^{-1}.

- Computing S^{-1} and T^{-1} is easy.

HFE Decryption

Simply put: Take C and apply T^{-1}, p^{-1} and S^{-1}.

- Computing S^{-1} and T^{-1} is easy.
- Finding solutions for $p\left(x^{\prime}\right)=y^{\prime}$ is crucial:
$\triangleright \operatorname{deg}(p)=d \Longrightarrow$ at most d different solutions for one y^{\prime} (p not nec. one-to-one).
\triangleright Redundancy r is added to message M to get a unique solution.

HFE Decryption

Simply put: Take C and apply T^{-1}, p^{-1} and S^{-1}.

- Computing S^{-1} and T^{-1} is easy.
- Finding solutions for $p\left(x^{\prime}\right)=y^{\prime}$ is crucial:
$\triangleright \operatorname{deg}(p)=d \Longrightarrow$ at most d different solutions for one y^{\prime} (p not nec. one-to-one).
\triangleright Redundancy r is added to message M to get a unique solution.

How to break the system ?

HFE Decryption

Simply put: Take C and apply T^{-1}, p^{-1} and S^{-1}.

- Computing S^{-1} and T^{-1} is easy.
- Finding solutions for $p\left(x^{\prime}\right)=y^{\prime}$ is crucial:
$\triangleright \operatorname{deg}(p)=d \Longrightarrow$ at most d different solutions for one y^{\prime} (p not nec. one-to-one).
\triangleright Redundancy r is added to message M to get a unique solution.

How to break the system ?

Solve a system of multivariate quadratic polynomials over F_{q} :

$$
\begin{array}{ccc}
p_{1}\left(x_{1}, \ldots, x_{n}\right) & = & y_{1} \\
\vdots & \vdots & \vdots \\
p_{n}\left(x_{1}, \ldots, x_{n}\right) & = & y_{n}
\end{array}
$$

Patarin defined the so-called HFE Challenge 1 by

- $d=96$,
- $q=2$,
> $n=80$.

HFE Challenge 1

Patarin defined the so-called HFE Challenge 1 by
> $d=96$,

- $q=2$,
- $n=80$.

Faugère broke this system computing a Gröbner basis of the corresponding system of quadratic multivariate polynomials over F_{2} in 2002 using a specialized F5 Algorithm:

HFE Challenge 1

Patarin defined the so-called HFE Challenge 1 by

- $d=96$,
- $q=2$,
- $n=80$.

Faugère broke this system computing a Gröbner basis of the corresponding system of quadratic multivariate polynomials over F_{2} in 2002 using a specialized F5 Algorithm:

96 hours of CPU time on an HP workstation with an alpha EV68 processor at 1 GHz and 4 GB RAM
(Whole computation approx. 7.65 GB.)

Bibliography

[AP10] M. Albrecht und J. Perry. F4/5
[AP11] A. Arri und J. Perry. The F5 Criterion revised
[EGP11] C. Eder, J. Gash and J. Perry. Modifying Faugère's F5 Algorithm to ensure termination
[EP10] C. Eder and J. Perry. F5C: A variant of Faugère's F5 Algorithm with reduced Gröbner bases
[EP11] C. Eder and J. Perry. Signature-based algorithms to compute Gröbner bases
[ER13] C. Eder and B. H. Roune. Signature Rewriting in Gröbner Basis Computation
[F99] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases (F4)
[F02] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero F_{5}
[FJ03] J.-C. Faugère and A. Joux. Algebraic Cryptanalysis of Hidden Field Equation (HFE) Cryptosystems Using Gröbner Bases
[FL10] J.-C. Faugère and S. Lachartre. Parallel Gaussian Elimination for Gröbner bases computations in finite fields
[GGV10] S. Gao, Y. Guan and F. Volny IV. A New Incremental Algorithm for Computing Gröbner Bases
[GVW11] S. Gao, F. Volny IV and M. Wang. A New Algorithm For Computing Grobner Bases
[P96] J. Patarin. Hidden Field Equations (HFE) and Isomorphic Polynomial (IP): two new families of asymmetric algorithm
[RS12] B. H. Roune and M. Stillman. Practical Gröbner Basis Computation

