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Example

Let | = (g1,8) € Q[x,y, 2] be given where g1 = xy — 22,

g2 = y2 — 22, and let < be the graded reverse lexicographical
ordering.

spol(g2, 81) = xg2 — yg1 = xy? — xz% — xy? + yz°

= —xz>+ yzz,
so it reduces w.r.t. G to g3 = xz% — yz2.

spol(g3, g1) = xyz? — y?2% — xyz? + z* = — %% + 2*.
We can reduce even further with z%g>:

—y2 22+ 4y =0



How to predict zero reductions?

Example

Let | = (g1,8) € Q[x,y, 2] be given where g1 = xy — 22,

g2 = y2 — 22, and let < be the graded reverse lexicographical
ordering.

spol(g2, 81) = xg2 — yg1 = xy? — xz% — xy? + yz°

= —xz>+ yzz,
so it reduces w.r.t. G to g3 = xz% — yz2.
spol(g3, g1) = xyz? — y?2% — xyz? + z* = — %% + 2*.
We can reduce even further with z%g>:
—y222 42t y?2 - =

= How can we discard such zero reductions in advance?



@ Generic signature-based algorithms
The basic idea
Generic signature-based Grobner basis algorithm
Signature-based criteria
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Signatures of polynomials

Let I = (f,...,Tm).
Idea: Give each f € [ a bit more structure:

1. Let R™ be generated by ey, ..., em, < a well-ordering on the
monomials of R™, and let 7 : R™ — R such that

m(e) = f; for all i.

2. Each p € I can be represented by an

s= Z hiej € R™ such that p = 7(s).
i=1

3. A signature of p is given by
sig(p) = Im<(s) with p = 7(s).

4. A minimal signature of p exists due to <.



Our example — now with signatures and <t

We have already computed the following data:

g1=Xy—Z sig(g1) = e,

g =y — 2%, sig(g) = e,

g = spol(gz,gl) = Xg2 — yg1
= sig(g3) = xsig(g) =
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Our example — now with signatures and <t

We have already computed the following data:

g1=Xy—Z sig(g1) = e,

g =y — 2%, sig(g) = e,

g = spol(gz,gl) = Xg2 — yg1
= sig(g3) = xsig(g) =

spol(gs, g1) = ygs — z°g1:

sig (spol(gs, 1)) = y sig(g3) = xyes.

Note that sig (spol(g3, g1)) = xye2 and Im(g1) = xy.

= We know that spol(g3, g1) will reduce to zero w.r.t. G.

6
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= spol(f, g) is discarded.
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Why do we know this?

The general idea is to check the signatures of the generated
s-polynomials.

If sig (spol(f,g)) is not minimal for spol(f, g) then
= spol(f, g) is discarded.
Our goal

Find and discard as many s-polynomials as possible for which the
algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures
throughout the computations.
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Generic signature-based Grobner basis algorithm

Input: Ideal | = (fi,..., fn)
Output: Grébner Basis poly(G) for /

1.
2. G+ GU{(e,fi)} forallie{l,...,
3.

4. While P 0

G+ 0

P+ {(si.&) | g & € G,i > j}

m}

(a) Choose (f,g) € P such that sig (spol(f, g)) minimal,

P« P\{(f, &)}

(b) If sig (spol(f, g)) minimal for spol(f, g):
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Generic signature-based Grobner basis algorithm

Input: Ideal | = (fi,..., fn)
Output: Grébner Basis poly(G) for /

1.
2. G+ GU{(e,fi)} forallie{l,...,
3.

4. While P 0

5.

G+ 0

P+ {(si.&) | g & € G,i > j}

m}

(a) Choose (f, g) € P such that sig (spol(f, g)) minimal,

P« P\{(f, &)}

(b) If sig (spol(f, g)) minimal for spol(f, g):

(i) h <+ spol(f,g)
(i) If poly(h) =0
(iii) If poly(h) <>

P+ PU{(r,g)| g€ G}

G+ GU{r}
Return poly(G).

poly(r) # 0

22



Generic signature-based Grobner basis algorithm

Input: Ideal | = (f1,..., fm)
Output: Grébner Basis poly(G) for /

1.

5.

G+ 0

2. G+ GU{(ej,fi)} forall i e{1,...,m}
3.
4. While P 0

P+ {(si.&) | g & € G,i > j}

(a) Choose (f, g) € P such that sig (spol(f, g)) minimal,
P« P\{(f, &)}
(b) If sig (spol(f, g)) minimal for spol(f, g):
(i) h <+ spol(f,g)
(i) If poly(h) £, 0 < signature-safe
(iii) If poly(h) <, poly(r) # 0 < signature-safe
& Pg € G such that msig(g) = sig(r) and

mIm(poly(g)) = Im(poly(r))
P« PuU{(r,g) g€ G}
G+ GU{r}

Return poly(G).
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Signature-safe reductions

Let p and g in R be given such that mIm(q) =

Assume
p — cmq.
sig(p — cmq) =
sig(p — cmq) =

sig(p — cmq) <

_ le(p)

Im(p), c = EOR

sig(p)

msig(q)
sig(p), msig(q)



How does this work?

Termination

» If sig(r) = msig(g) and Im (poly(r)) = mIm (poly(g)) is not
added to G.

» Each new element in G enlarges ((sig(r), Im(poly(r)))).
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How does this work?

Termination

If sig(r) = msig(g) and Im (poly(r)) = mIm (poly(g)) is not
added to G.

Each new element in G enlarges ((sig(r), Im(poly(r)))).

Correctness

All possible s-polynomials are taken care of:
signature-increasing reduction =- new pair in the next step.
All elements r with poly(r) # 0 are added to G besides those
fulfilling sig(r) = msig(g) and Im (poly(r)) = mIm (poly(g)).

10/22



Signature-based criteria

Non-minimal signature ( NM )

sig(h) not minimal for h? = Remove h.
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Signature-based criteria

Non-minimal signature ( NM )

sig(h) not minimal for h? = Remove h.

Sketch of proof

1. There exists a syzygy s € R™ such that Im(s) = sig(h).
= We can represent h with a lower signature.

2. Pairs are handled by increasing signatures.
= All relations of lower signature are already taken care of.

O

Our example with <. revisited

sig (spol(g3, &1)) = xye

2
=Xy —z
2 :y}z/_zz }:> psyz(g2,81) = g1€&2 — gae1 = xyes + ...



Signature-based criteria

Rewritable signature ( RW )

sig(g) = sig(h)? = Remove either g or h.
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Implementation in Singular
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A good decade on signature-based algorithms

F5 with BC
Ars
(2005)

Extended
F5 Criteria

Ars, Hashemi
SAGBI F5 (2009)

Faugere,
Rahmany
(2009)
AP
Arri,Perry
(2009)

F5C

Perry,E.
(2009)
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(2009)
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(2010)
GVW
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(2011)
F5A
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(2011)
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Quasihomog
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Faugere, .
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Implemented in Singular

AP2
AP1 Arri,Perry,E.
Arri,Perry,E. (2012)
(2011)

iF5A
E.

(2012)
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Implementation in Singular
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Ongoing work
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And what has really happened?

Rather boring

» We have (hopefully) understood the criteria.
» We have proven termination of F5 et al.

» We have implemented signature-based Buchberger-style
Grébner basis algorithms quite a lot.
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And what has really happened?

Rather boring

We have (hopefully) understood the criteria.

We have proven termination of F5 et al.

We have implemented signature-based Buchberger-style
Grébner basis algorithms quite a lot.

At least some new ideas

We use different module monomial orderings on the signatures
to allow non-incremental computations.

We have improved the incremental variants a bit (reduced
intermediate bases)

There are some slight improvements on the signature-based
criteria.

17 /22



Improving the non-minimal signature criterion

F5
(as presented in [Fa02])

use principal syzygies
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Improving the non-minimal signature criterion

F5

(as presented in [Fa02]) G2V/AP/GVW/SB/F5A

use principal syzygies

use signatures of zero reductions

Remark
This helps only if the input sequence is not regular.



Improving the rewritable signature criterion

-~

F5
(as presented in [Fa02])

Fix a total ordering < on G.

A basis element g € G is a rewri-
ter in signature T if sig(g) | T.

The <-maximal rewriter in
T is the canonical rewriter.

An element mg is rewrita-
ble if g is not the cano-
nical rewriter in sig(mg).
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Fix a total ordering < on G.

A basis element g € G is a rewri-
ter in signature T if sig(g) | T.

The <-maximal rewriter in
T is the canonical rewriter.

An element mg is rewrita-
ble if g is not the cano-
nical rewriter in sig(mg).

AP/GVW/SB

For any signature T define My =
{mg | g € G,sig(mg) =T}

Choose mg such that
mIm (poly(g)) is minimal.

Compute the correspon-
ding s-polynomial with mg.
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Improving the rewritable signature criterion

F5
(as presented in [Fa02]) AP/GVW/SB

Fix a total ordering < on G.

For any signature T define My =

A basis element g € G is a rewri- :
€ {mg | g € G,sig(mg) = T}

ter in signature T if sig(g) | T.

Choose mg such that
mIm (poly(g)) is minimal.

The <-maximal rewriter in
T is the canonical rewriter.

Compute the correspon-

An element mg is rewrita- . . ;
ding s-polynomial with mg.

ble if g is not the cano-
nical rewriter in sig(mg).

Difference: There might be no such s-polynomial

19 /22



Example for differences in the rewritable signature criterion

Let K be the finite field with 13 elements and let R := K|[x, y, z, t]. Let < be
the graded reverse lexicographic monomial ordering. Consider the three input
elements

g1 = —2y° — X’z — 2x°t — 3y’t, g = 3xyz + 2xyt,
g3 = 2xyz — 2yz° + 22° + dyzt.



Example for differences in the rewritable signature criterion

Let K be the finite field with 13 elements and let R := K|[x, y, z, t]. Let < be
the graded reverse lexicographic monomial ordering. Consider the three input

elements
81 ‘= _2_)/3 — X22 — 2X2t — 3_)/2t'7 & = 3Xyz + 2)(_}/{'7
83 = 2Xyz — 2yz2 R 4yzt.

&§EG reduced from Im (poly(gi)) sig(gi)
& er % e
82 e Xyz e
g y’& — xzg1 = spol (g, &1) 2 yle
84 e3 y22 e3
& xg3 — zg» = spol (g3, g2) xz° xes
g y’gs—z°g1 =spol(gs, &) x*z° yes
&7 vgs — z°g» = spol (gs, &2) X2yt xyes
88 xgs — 86 = spol (gs, &) 25 x%e;
89 xg6 — 2g3 = spol (gs, &3) x*zt  xy’es
810 ygs — 2’gy = spol (gs, g4) x3y’t  x’yes
81 g — yg3 = spol (g4, g3) xtyt x3e;
g2 zgn—x° &= spol (g11, &82) x3zt2 xzes
g3 ygo — x’g1 = spol (g, g1) x5zt x’y’es
814 xg12 — g9 = spol (gi2, &) x4t x4ze3



Example for differences in the rewritable signature criterion

Let K be the finite field with 13 elements and let R := K|[x,y, z, t]. Let < be
the graded reverse lexicographic monomial ordering. Consider the three input

elements
g1 = —2y3 — X’z —2x%t — 3y2t, 8> = 3xyz + 2xyt,
g3 = 2Xxyz — 2yz2 R 4yzt.
g €G reduced from Im (poly(gi)) sig(gi)
81 e y3 (=31
82 (=] Xyz e
g y’& — xzg1 = spol (g, &1) 2 yYe
84 e3 )/22 es3
&5 xg3 — zg» = spol (g3, 82) xz° xes
g y’gs—z°g1 =spol(gs, &) x*z° yes
vgs — 2°g = spol (gs, &)
88 xgs — g6 = spol (g5, &) 25 x’e3
2o xg6 — zg3 = spol (gs, &3) x*zt xy’es
gn  xX’gs— ygs = spol (g, g3) Xyt Xes
g2 zgu — x°g = spol (gu1, 82) zt2  xzes
&8s xg12 — go = spol (g12, 89) Xt xizes



Why am | here?

F4.:
linear algebra for reduction purposes

Heuristics:
orderings on signatures; orderings for critical pairs (sugar
degree), reducers

Parallelisation:
modular methods, parallel criteria checks

Computation of syzygies:
implementation

Generalization of signature-based criteria:
more terms per signature, relaxing criteria for combination
with Buchberger's criteria
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