Signature-based Gröbner basis computation

Christian Eder

POLSYS Team, UPMC, Paris, France

March 08, 2013

- The basic problem
- Generic signature-based algorithms

 The basic idea

 Generic signature-based Gröbner basis algorithm

 Signature-based criteria
- Implementations and recent work
 A good decade on signature-based algorithms
 Implementation in Singular
- And what has really happened?
 Ongoing work

Example

Let $I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g_1} = \mathbf{xy} - \mathbf{z^2}$, $\mathbf{g_2} = \mathbf{y^2} - \mathbf{z^2}$, and let < be the graded reverse lexicographical ordering.

Example

Let $I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g_1} = \mathbf{xy} - \mathbf{z^2}$, $\mathbf{g_2} = \mathbf{y^2} - \mathbf{z^2}$, and let < be the graded reverse lexicographical ordering.

spol
$$(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2$$

= $-xz^2 + yz^2$,

so it reduces w.r.t. G to $g_3 = xz^2 - yz^2$.

Example

Let $I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g_1} = \mathbf{xy} - \mathbf{z^2}$, $\mathbf{g_2} = \mathbf{y^2} - \mathbf{z^2}$, and let < be the graded reverse lexicographical ordering.

spol
$$(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2$$

= $-xz^2 + yz^2$,

so it reduces w.r.t. G to $g_3 = xz^2 - yz^2$.

$$spol(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$$

Example

Let $I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g_1} = \mathbf{xy} - \mathbf{z^2}$, $\mathbf{g_2} = \mathbf{y^2} - \mathbf{z^2}$, and let < be the graded reverse lexicographical ordering.

spol
$$(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2$$

= $-xz^2 + yz^2$,

so it reduces w.r.t. G to $g_3 = xz^2 - yz^2$.

$$spol(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$$

We can reduce even further with z^2g_2 :

$$-y^2z^2 + z^4 + y^2z^2 - z^4 = 0.$$

Example

Let $I = \langle g_1, g_2 \rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g_1} = \mathbf{xy} - \mathbf{z^2}$, $\mathbf{g_2} = \mathbf{y^2} - \mathbf{z^2}$, and let < be the graded reverse lexicographical ordering.

spol
$$(g_2, g_1) = xg_2 - yg_1 = xy^2 - xz^2 - xy^2 + yz^2$$

= $-xz^2 + yz^2$,

so it reduces w.r.t. G to $g_3 = xz^2 - yz^2$.

$$spol(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$$

We can reduce even further with z^2g_2 :

$$-y^2z^2 + z^4 + y^2z^2 - z^4 = 0.$$

⇒ How can we discard such zero reductions in advance?

- The basic problem
- Generic signature-based algorithms
 - The basic idea Generic signature-based Gröbner basis algorithm Signature-based criteria
- Implementations and recent work
 A good decade on signature-based algorithms

 Implementation in Singular
- And what has really happened?
 Ongoing work

Let $I = \langle f_1, \ldots, f_m \rangle$.

Idea: Give each $f \in I$ a bit more structure:

Let $I = \langle f_1, \ldots, f_m \rangle$.

Idea: Give each $f \in I$ a bit more structure:

1. Let R^m be generated by e_1, \ldots, e_m, \prec a well-ordering on the monomials of R^m , and let $\pi: R^m \to R$ such that

$$\pi(e_i) = f_i$$
 for all i .

Let
$$I = \langle f_1, \ldots, f_m \rangle$$
.

<u>Idea: Give each $f \in I$ a bit more structure:</u>

1. Let R^m be generated by e_1, \ldots, e_m, \prec a well-ordering on the monomials of R^m , and let $\pi: R^m \to R$ such that

$$\pi(e_i) = f_i$$
 for all i .

2. Each $p \in I$ can be represented by an

$$s = \sum_{i=1}^m h_i e_i \in R^m$$
 such that $p = \pi(s)$.

Let
$$I = \langle f_1, \ldots, f_m \rangle$$
.

Idea: Give each $f \in I$ a bit more structure:

1. Let R^m be generated by e_1,\ldots,e_m,\prec a well-ordering on the monomials of R^m , and let $\pi:R^m\to R$ such that

$$\pi(e_i) = f_i$$
 for all i .

2. Each $p \in I$ can be represented by an

$$s = \sum_{i=1}^m h_i e_i \in R^m$$
 such that $p = \pi(s)$.

3. A signature of p is given by

$$sig(p) = Im_{\prec}(s)$$
 with $p = \pi(s)$.

Let $I = \langle f_1, \ldots, f_m \rangle$.

<u>Idea: Give each $f \in I$ a bit more structure:</u>

1. Let R^m be generated by e_1, \ldots, e_m, \prec a well-ordering on the monomials of R^m , and let $\pi: R^m \to R$ such that

$$\pi(e_i) = f_i$$
 for all i .

2. Each $p \in I$ can be represented by an

$$s = \sum_{i=1}^m h_i e_i \in R^m$$
 such that $p = \pi(s)$.

3. A signature of p is given by

$$sig(p) = Im_{\prec}(s)$$
 with $p = \pi(s)$.

4. A minimal signature of p exists due to \prec .

We have already computed the following data:

$$g_1 = xy - z^2$$
, $sig(g_1) = e_1$,
 $g_2 = y^2 - z^2$, $sig(g_2) = e_2$,
 $g_3 = spol(g_2, g_1) = xg_2 - yg_1$
 $\Rightarrow sig(g_3) = x sig(g_2) = xe_2$.

We have already computed the following data:

$$g_1 = xy - z^2$$
, $sig(g_1) = e_1$,
 $g_2 = y^2 - z^2$, $sig(g_2) = e_2$,
 $g_3 = spol(g_2, g_1) = xg_2 - yg_1$
 $\Rightarrow sig(g_3) = x sig(g_2) = xe_2$.
 $spol(g_3, g_1) = yg_3 - z^2g_1$:
 $sig(spol(g_3, g_1)) = y sig(g_3) = xye_2$.

We have already computed the following data:

$$g_1 = xy - z^2$$
, $\operatorname{sig}(g_1) = e_1$, $g_2 = y^2 - z^2$, $\operatorname{sig}(g_2) = e_2$, $g_3 = \operatorname{spol}(g_2, g_1) = xg_2 - yg_1$ $\Rightarrow \operatorname{sig}(g_3) = x \operatorname{sig}(g_2) = xe_2$. $\operatorname{spol}(g_3, g_1) = yg_3 - z^2g_1$:

 $sig(spol(g_3, g_1)) = v sig(g_3) = xve_2.$

Note that
$$sig(spol(g_3, g_1)) = xye_2$$
 and $Im(g_1) = xy$.

We have already computed the following data:

$$g_1 = xy - z^2$$
, $sig(g_1) = e_1$,
 $g_2 = y^2 - z^2$, $sig(g_2) = e_2$,
 $g_3 = spol(g_2, g_1) = xg_2 - yg_1$
 $\Rightarrow sig(g_3) = x sig(g_2) = xe_2$.

$$spol(g_3, g_1) = yg_3 - z^2g_1$$
:

$$\operatorname{sig}\left(\operatorname{spol}(g_3,g_1)\right)=y\operatorname{sig}(g_3)=xye_2.$$

Note that $sig(spol(g_3, g_1)) = xye_2$ and $Im(g_1) = xy$.

 \Rightarrow We know that spol (g_3, g_1) will reduce to zero w.r.t. G.

The general idea is to check the signatures of the generated s-polynomials.

The general idea is to check the signatures of the generated s-polynomials.

If sig(spol(f,g)) is not minimal for spol(f,g) then $\Rightarrow spol(f,g)$ is discarded.

The general idea is to check the signatures of the generated s-polynomials.

If sig(spol(f,g)) is not minimal for spol(f,g) then $\Rightarrow spol(f,g)$ is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the algorithm computes a non-minimal signature.

The general idea is to check the signatures of the generated s-polynomials.

If sig(spol(f,g)) is not minimal for spol(f,g) then $\Rightarrow spol(f,g)$ is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures throughout the computations.

```
Input: Ideal I = \langle f_1, \dots, f_m \rangle
Output: Gröbner Basis poly(G) for I
1. G \leftarrow \emptyset
2. G \leftarrow G \cup \{(e_i, f_i)\} for all i \in \{1, \dots, m\}
3. P \leftarrow \{(g_i, g_i) \mid g_i, g_i \in G, i > j\}
```

```
Input: Ideal I = \langle f_1, \dots, f_m \rangle
Output: Gröbner Basis poly(G) for I

1. G \leftarrow \emptyset
2. G \leftarrow G \cup \{(e_i, f_i)\} for all i \in \{1, \dots, m\}
3. P \leftarrow \{(g_i, g_j) \mid g_i, g_j \in G, i > j\}
4. While P \neq \emptyset
(a) Choose (f, g) \in P such that sig (\operatorname{spol}(f, g)) minimal, P \leftarrow P \setminus \{(f, g)\}
(b) If sig (\operatorname{spol}(f, g)) minimal for \operatorname{spol}(f, g):
```

```
Input: Ideal I = \langle f_1, \ldots, f_m \rangle
Output: Gröbner Basis poly(G) for I
   1. G \leftarrow \emptyset
   2. G \leftarrow G \cup \{(e_i, f_i)\} for all i \in \{1, \dots, m\}
   3. P \leftarrow \{(g_i, g_i) \mid g_i, g_i \in G, i > i\}
   4. While P \neq \emptyset
         (a) Choose (f,g) \in P such that sig (spol(f,g)) minimal,
               P \leftarrow P \setminus \{(f,g)\}
         (b) If sig (spol(f,g)) minimal for spol(f,g):
                  (i) h \leftarrow \operatorname{spol}(f, g)
                 (ii) If poly(h) \xrightarrow{G} 0
```

Input: Ideal $I = \langle f_1, \dots, f_m \rangle$ Output: Gröbner Basis poly(G) for I

- 1. $G \leftarrow \emptyset$
- **2.** $G \leftarrow G \cup \{(e_i, f_i)\}$ for all $i \in \{1, \dots, m\}$
- **3.** $P \leftarrow \{(g_i, g_i) \mid g_i, g_i \in G, i > j\}$
- **4.** While $P \neq \emptyset$
 - (a) Choose $(f,g) \in P$ such that sig (spol(f,g)) minimal, $P \leftarrow P \setminus \{(f,g)\}$
 - (b) If sig(spol(f,g)) minimal for spol(f,g):
 - (i) $h \leftarrow \operatorname{spol}(f, g)$
 - (ii) If $poly(h) \xrightarrow{G} 0$
 - (iii) If $poly(h) \xrightarrow{G} poly(r) \neq 0$

$$P \leftarrow P \cup \{(r,g) \mid g \in G\}$$
$$G \leftarrow G \cup \{r\}$$

5. Return poly(G).

```
Input: Ideal I = \langle f_1, \ldots, f_m \rangle
Output: Gröbner Basis poly(G) for I
   1. G \leftarrow \emptyset
   2. G \leftarrow G \cup \{(e_i, f_i)\} for all i \in \{1, \dots, m\}
   3. P \leftarrow \overline{\{(g_i,g_i) \mid g_i,g_i \in G, i > i\}}
   4. While P \neq \emptyset
         (a) Choose (f,g) \in P such that sig (spol(f,g)) minimal,
                P \leftarrow P \setminus \{(f, g)\}
         (b) If sig (spol(f,g)) minimal for spol(f,g):
                   (i) h \leftarrow \operatorname{spol}(f,g)
                  (ii) If poly(h) \xrightarrow{G} 0 \Leftarrow signature-safe
                  (iii) If poly(h) \xrightarrow{G} poly(r) \neq 0 \Leftarrow signature-safe
                         & \nexists g \in G such that m \operatorname{sig}(g) = \operatorname{sig}(r) and
                         P \leftarrow P \cup \{(r,g) \mid g \in G\}
                         G \leftarrow G \cup \{r\}
```

5. Return poly(G).

Let p and q in R be given such that $m \operatorname{Im}(q) = \operatorname{Im}(p)$, $c = \frac{\operatorname{lc}(p)}{\operatorname{lc}(q)}$. Assume p - cmq.

Let p and q in R be given such that $m \operatorname{Im}(q) = \overline{\operatorname{Im}(p)}$, $c = \frac{\operatorname{lc}(p)}{\operatorname{lc}(q)}$. Assume

$$p-cmq$$
.

signature-safe: sig(p - cmq) = sig(p)

Let p and q in R be given such that $m \operatorname{Im}(q) = \operatorname{Im}(p)$, $c = \frac{\operatorname{lc}(p)}{\operatorname{lc}(q)}$. Assume

$$p-cmq$$
.

signature-safe:
$$sig(p - cmq) = sig(p)$$

signature-increasing:
$$sig(p - cmq) = m sig(q)$$

Let p and q in R be given such that $m \operatorname{Im}(q) = \operatorname{Im}(p)$, $c = \frac{\operatorname{lc}(p)}{\operatorname{lc}(q)}$. Assume

$$p-cmq$$
.

$$signature-safe: sig(p - cmq) = sig(p)$$

signature-increasing: sig(p - cmq) = m sig(q)**signature-decreasing:** $sig(p - cmq) \prec sig(p), m sig(q)$

How does this work?

Termination

- ▶ If sig(r) = m sig(g) and Im(poly(r)) = m Im(poly(g)) is not added to G.
- ▶ Each new element in G enlarges $\langle (sig(r), Im(poly(r))) \rangle$.

How does this work?

Termination

- ▶ If sig(r) = m sig(g) and Im(poly(r)) = m Im(poly(g)) is not added to G.
- ▶ Each new element in G enlarges $\langle (\operatorname{sig}(r), \operatorname{Im}(\operatorname{poly}(r))) \rangle$.

Correctness

- ► All possible s-polynomials are taken care of: signature-increasing reduction ⇒ new pair in the next step.
- All elements \overline{r} with $\operatorname{poly}(r) \neq 0$ are added to \overline{G} besides those fulfilling $\operatorname{sig}(r) = m \operatorname{sig}(g)$ and $\operatorname{Im}(\operatorname{poly}(r)) = m \operatorname{Im}(\operatorname{poly}(g))$.

Non-minimal signature (NM)

sig(h) not minimal for $h? \Rightarrow Remove h$.

Non-minimal signature (NM)

sig(h) not minimal for $h? \Rightarrow Remove h$.

Sketch of proof

- 1. There exists a syzygy $s \in R^m$ such that Im(s) = sig(h).
 - \Rightarrow We can represent h with a lower signature.
- 2. Pairs are handled by increasing signatures.
 - \Rightarrow All relations of lower signature are already taken care of.

Non-minimal signature (NM)

sig(h) not minimal for $h? \Rightarrow Remove h$.

Sketch of proof

- 1. There exists a syzygy $s \in R^m$ such that Im(s) = sig(h).
 - \Rightarrow We can represent h with a lower signature.
- 2. Pairs are handled by increasing signatures.
 - ⇒ All relations of lower signature are already taken care of.

Our example with \prec_{pot} revisited

$$sig(spol(g_3, g_1)) = xye_2
g_1 = xy - z^2
g_2 = y^2 - z^2
\Rightarrow psyz(g_2, g_1) = g_1e_2 - g_2e_1 = xye_2 + \dots$$

Rewritable signature (RW)

$$sig(g) = sig(h)$$
? \Rightarrow Remove either g or h .

Signature-based criteria

Rewritable signature (RW)

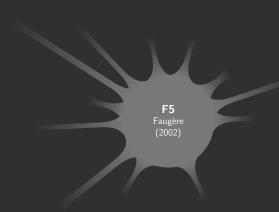
 $sig(g) = sig(h)? \Rightarrow Remove either g or h.$

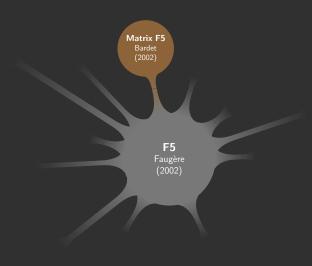
Sketch of proof

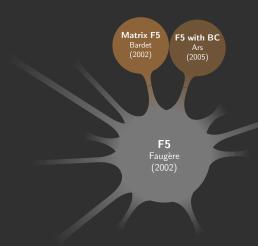
- **1.** $sig(g h) \prec sig(g), sig(h)$.
- 2. Pairs are handled by increasing signatures.
 - \Rightarrow All necessary computations of lower signature have already taken place.
 - \Rightarrow We can represent h by

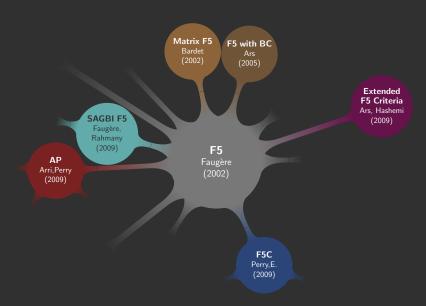
h = g + elements of lower signature.

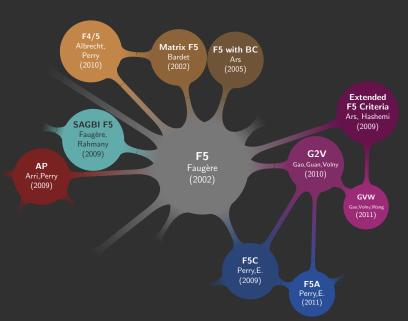
- The basic problem
- Generic signature-based algorithms
 The basic idea
 Generic signature-based Gröbner basis algorithm
 Signature-based criteria
- Implementations and recent work
 A good decade on signature-based algorithms
 Implementation in Singular
- And what has really happened?
 Ongoing work

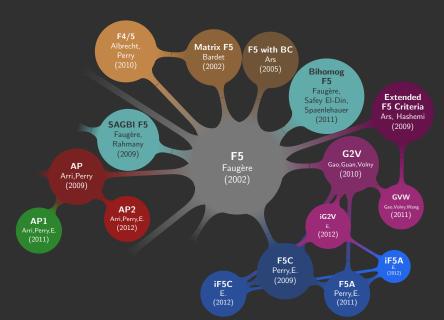


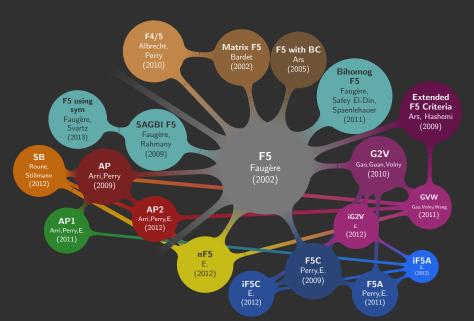


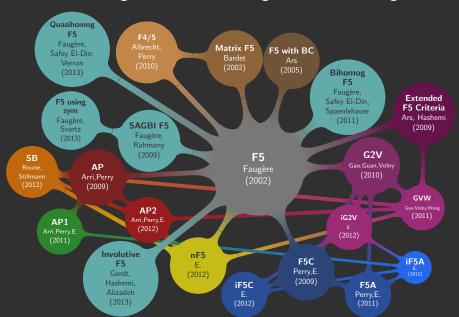






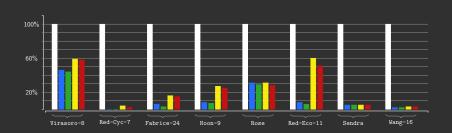




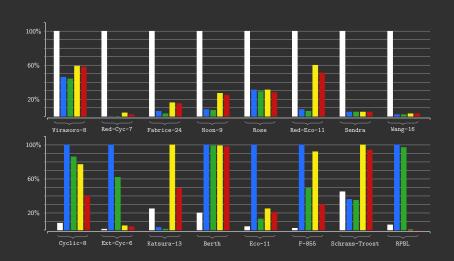


Implemented in Singular

Implementation in Singular



Implementation in Singular



- The basic problem
- Generic signature-based algorithms

 The basic idea

 Generic signature-based Gröbner basis algorithm

 Signature-based criteria
- Implementations and recent work
 A good decade on signature-based algorithms
 Implementation in Singular
- And what has really happened?
 Ongoing work

And what has really happened?

Rather boring

- ▶ We have (hopefully) understood the criteria.
- ▶ We have proven termination of F5 et al.
- ▶ We have implemented signature-based Buchberger-style Gröbner basis algorithms quite a lot.

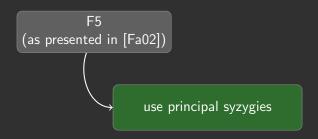
And what has really happened?

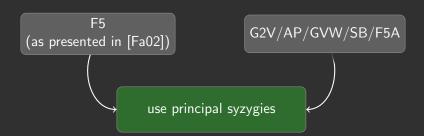
Rather boring

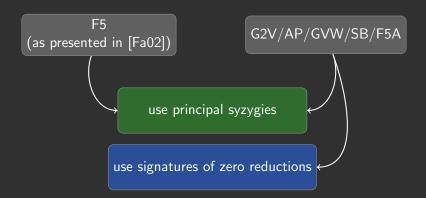
- ▶ We have (hopefully) understood the criteria.
- ▶ We have proven termination of F5 et al.
- ▶ We have implemented signature-based Buchberger-style Gröbner basis algorithms quite a lot.

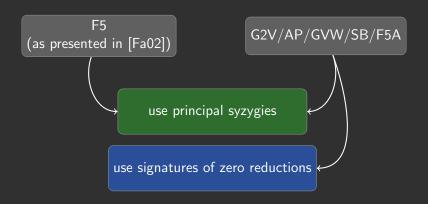
At least some new ideas

- ▶ We use different module monomial orderings on the signatures to allow non-incremental computations.
- ▶ We have improved the incremental variants a bit (reduced intermediate bases)
- ► There are some slight improvements on the signature-based criteria.









Remark

This helps only if the input sequence is not regular.

Improving the rewritable signature criterion

F5 (as presented in [Fa02])

Fix a total ordering \triangleleft on G.

A basis element $g \in G$ is a rewriter in signature T if $sig(g) \mid T$.

The <-maximal rewriter in *T* is the canonical rewriter.

An element mg is rewritable if g is not the canonical rewriter in sig(mg).

Improving the rewritable signature criterion

F5 (as presented in [Fa02])

Fix a total ordering \triangleleft on G.

A basis element $g \in G$ is a rewriter in signature T if $sig(g) \mid T$.

The <-maximal rewriter in *T* is the canonical rewriter.

An element mg is rewritable if g is not the canonical rewriter in sig(mg).

AP/GVW/SB

For any signature T define $M_T = \{mg \mid g \in G, sig(mg) = T\}$

Choose mg such that $m \operatorname{Im} (\operatorname{poly}(g))$ is minimal.

Compute the corresponding s-polynomial with mg.

Improving the rewritable signature criterion

F5 (as presented in [Fa02])

Fix a total ordering \triangleleft on G.

A basis element $g \in G$ is a rewriter in signature T if $sig(g) \mid T$.

The <-maximal rewriter in *T* is the canonical rewriter.

An element mg is rewritable if g is not the canonical rewriter in sig(mg).

AP/GVW/SB

For any signature T define $M_T = \{mg \mid g \in G, sig(mg) = T\}$

Choose mg such that $m \operatorname{Im} (\operatorname{poly}(g))$ is minimal.

Compute the corresponding *s*-polynomial with *mg*.

Difference: There might be no such *s*-polynomial

Example for differences in the rewritable signature criterion

Let K be the finite field with 13 elements and let R := K[x,y,z,t]. Let < be the graded reverse lexicographic monomial ordering. Consider the three input elements

$$g_1 := -2y^3 - x^2z - 2x^2t - 3y^2t, \quad g_2 := 3xyz + 2xyt,$$

 $g_3 := 2xyz - 2yz^2 + 2z^3 + 4yzt.$

Example for differences in the rewritable signature criterion

Let K be the finite field with 13 elements and let R := K[x,y,z,t]. Let < be the graded reverse lexicographic monomial ordering. Consider the three input elements

$$g_1 := -2y^3 - x^2z - 2x^2t - 3y^2t$$
, $g_2 := 3xyz + 2xyt$, $g_3 := 2xyz - 2yz^2 + 2z^3 + 4yzt$.

$g_i \in G$	reduced from	$Im\left(poly(g_i)\right)$	$sig(g_i)$
g ₁	\mathbf{e}_1	y^3	\mathbf{e}_1
g ₂	\mathbf{e}_2	xyz	\mathbf{e}_2
g 3	$y^2g_2-xzg_1=\mathrm{spol}\left(g_2,g_1\right)$	x^3z^2	$y^2\mathbf{e}_2$
g ₄	e ₃	yz^2	e ₃
g_5	$xg_3-zg_2=\mathrm{spol}(g_3,g_2)$	xz^3	xe ₃
g 6	$y^2g_3 - z^2g_1 = \text{spol}(g_3, g_1)$	x^2z^3	$y^2\mathbf{e}_3$
g ₇	$yg_5-z^2g_2=\mathrm{spol}(g_5,g_2)$	x^2y^2t	$xy\mathbf{e}_3$
g 8	$x g_5 - g_6 = \mathrm{spol}\left(g_5, g_6\right)$	z^5	$x^2\mathbf{e}_3$
g 9	$xg_6-zg_3=\mathrm{spol}(g_6,g_3)$	x^4zt	$xy^2\mathbf{e}_3$
g 10	$yg_8 - z^3g_4 = \operatorname{spol}(g_8, g_4)$	x^3y^2t	$x^2y\mathbf{e}_3$
g 11	$x^3g_4 - yg_3 = \operatorname{spol}(g_4, g_3)$	x^4yt	x^{3} e ₃
g 12	$zg_{11} - x^3g_2 = \mathrm{spol}(g_{11}, g_2)$	$x^3 z t^3$	$x^3z\mathbf{e}_3$
g 13	$yg_{10} - x^3g_1 = \text{spol}(g_{10}, g_1)$	x^5zt	$x^2y^2\mathbf{e}_3$
g 14	$xg_{12}-g_9=\mathrm{spol}(g_{12},g_9)$	x^4t^4	$x^4z\mathbf{e}_3$

20 / 22

Example for differences in the rewritable signature criterion

Let K be the finite field with 13 elements and let R := K[x, y, z, t]. Let K be the graded reverse lexicographic monomial ordering. Consider the three input elements

$$g_1 := -2y^3 - x^2z - 2x^2t - 3y^2t, \quad g_2 := 3xyz + 2xyt,$$

 $g_3 := 2xyz - 2yz^2 + 2z^3 + 4yzt.$

$g_i \in G$	reduced from	$Im\left(poly(g_i)\right)$	$sig(g_i)$
g_1	\mathbf{e}_1	y^3	\mathbf{e}_1
g_2	\mathbf{e}_2	xyz	\mathbf{e}_2
g 3	$y^2g_2-xzg_1=\mathrm{spol}\left(g_2,g_1\right)$	x^3z^2	y^2 e ₂
g 4	e ₃	yz^2	e 3
g 5	$xg_3-zg_2=\mathrm{spol}(g_3,g_2)$	xz^3	xe ₃
g_6	$y^2g_3-z^2g_1={ m spol}(g_3,g_1)$	x^2z^3	y^2 e ₃
g 7	$yg_5-z^2g_2=\mathrm{spol}(g_5,g_2)$	$x^2y^2\underline{t}$	$xy\mathbf{e}_3$
g 8	$xg_5-g_6=\mathrm{spol}\left(g_5,g_6\right)$	z^5	$x^2\mathbf{e}_3$
g 9	$xg_6-zg_3=\mathrm{spol}\left(g_6,g_3\right)$	x^4zt	$xy^2\mathbf{e}_3$
g 10	$yg_8-z^3g_4=\mathrm{spol}(g_8,g_4)$		$x^2y\mathbf{e}_3$
g 11	$x^3g_4 - yg_3 = \operatorname{spol}(g_4, g_3)$	x^4yt	x^3 e ₃
g_{12}	$zg_{11} - x^3g_2 = \mathrm{spol}(g_{11}, g_2)$	x^3zt^3	$x^3z\mathbf{e}_3$
g 13	$yg_{10} - x^3g_1 = \mathrm{spol}(g_{10}, g_1)$		
g 14	$xg_{12}-g_9=\mathrm{spol}(g_{12},g_9)$	x^4t^4	$x^4z\mathbf{e}_3$

20 / 22

Why am I here?

► **F4:** linear algebra for reduction purposes

► Heuristics: orderings on signatures; orderings for critical pairs (sugar degree), reducers

► Parallelisation: modular methods, parallel criteria checks

► Computation of syzygies: implementation

► Generalization of signature-based criteria: more terms per signature, relaxing criteria for combination with Buchberger's criteria

NP10]	M. Albrecht und J. Perry. F4/5	S
NO5]	G. Ars. Applications des bases de Groeobner a la cryptographie	Bibliograp
NH09]	G. Ars und A. Hashemi. Extended F5 Criteria	Ο.
NP11]	A. Arri und J. Perry. The F5 Criterion revised	
[12a]	C. Eder. Improving incremental signature-based Gröbner bases algorithms	
12Ь]	C. Eder. Sweetening the sour taste of inhomogeneous signature-based Gröbner basis computations	
GP11]	C. Eder, J. Gash and J. Perry. Modifying Faugère's F5 Algorithm to ensure termination	
P10]	C. Eder and J. Perry. F5C: A variant of Faugère's F5 Algorithm with reduced Gröbner bases	
P11]	C. Eder and J. Perry. Signature-based algorithms to compute Gröbner bases	
R13]	C. Eder and B. H. Roune. Signature Rewriting in Gröbner Basis Computation	
a02]	JC. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero F_5	
R09]	JC. Faugère and S. Rahmany. Solving systems of polynomial equations with symmetries using SAGB	l-Gröbner bases
SS11]	JC. Faugère, M. Safey El-Din and PJ. Spaenlehauer. Gröbner Bases of Bihomogeneous Ideals General Bidegree $(1,1)$	rated by Polynomials of
SV13]	JC. Faugère, M. Safey El-Din and T. Verron. Computing Gröbner bases for quasi-homogeneous system	ms
S12]	$ JC.\ Faugère\ and\ J.\ Svartz.\ Solving\ Polynomial\ Systems\ Globally\ Invariant\ Under\ an\ Action\ of\ the\ Syapplication\ to\ the\ Equilibria\ of\ N\ vortices\ in\ the\ Plane$	mmetric Group and
Ga12a]	V. Galkin. Termination of original F_5	
Ga12b]	V. Galkin. Simple signature-based Groebner basis algorithm	
GV10]	S. Gao, Y. Guan and F. Volny IV. A New Incremental Algorithm for Computing Gröbner Bases	
HA13]	V. Gerdt, A. Hashemi and B. MAlizadeh. Involutive Bases Algorithm Incorporating F5 Criterion	
VW11]	S. Gao, F. Volny IV and M. Wang. A New Algorithm For Computing Grobner Bases	
//SWZ12]	$X.\ Ma,\ Y.\ Sun,\ D.\ Wang,\ and\ Y.\ Zhang.\ A\ Signature-Based\ Algorithm\ for\ Computing\ Groebner\ Bas\ Polynomial\ Algebras$	es in Solvable
PHW13]	S. Pan, Y. Hu and B. Wang. The Termination of Algorithms for Computing Gröbner Bases	
RS12]	B. H. Roune and M. Stillman. Practical Gröbner Basis Computation	
W10]	Y. Sun und D. Wang. A new proof of the F5 Algorithm	
W11]	Y. Sun and D. Wang. A Generalized Criterion for Signature Related Gröbner Basis Algorithms	