Signature-based Gröbner basis computation

Christian Eder

POLSYS Team, UPMC, Paris, France

March 08, 2013

6

The basic problem

Generic signature-based algorithms
The basic idea
Generic signature-based Gröbner basis algorithm Signature-based criteriaImplementations and recent work
A good decade on signature-based algorithms Implementation in Singular

And what has really happened? Ongoing work

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x y}-\mathbf{z}^{2}$, $\mathbf{g}_{2}=\mathbf{y}^{2}-\mathbf{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x y}-\mathbf{z}^{2}$, $\mathbf{g}_{2}=\mathbf{y}^{2}-\mathbf{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2},
\end{aligned}
$$

so it reduces w.r.t. G to $g_{3}=x z^{2}-y^{2}$.

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x y}-\mathbf{z}^{2}$, $\mathrm{g}_{2}=\mathbf{y}^{2}-\mathbf{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2},
\end{aligned}
$$

so it reduces w.r.t. G to $\mathrm{g}_{3}=\mathrm{xz}^{2}-\mathrm{yz}^{2}$.

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=x y z^{2}-y^{2} z^{2}-x y z^{2}+z^{4}=-y^{2} z^{2}+z^{4} .
$$

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x} \mathbf{y}-\mathbf{z}^{2}$, $\mathrm{g}_{2}=\mathbf{y}^{\mathbf{2}}-\mathrm{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2},
\end{aligned}
$$

so it reduces w.r.t. G to $g_{3}=x z^{2}-y^{2}$.

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=x y z^{2}-y^{2} z^{2}-x y z^{2}+z^{4}=-y^{2} z^{2}+z^{4} .
$$

We can reduce even further with $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0
$$

How to predict zero reductions?

Example

Let $I=\left\langle g_{1}, g_{2}\right\rangle \in \mathbb{Q}[x, y, z]$ be given where $\mathbf{g}_{1}=\mathbf{x} \mathbf{y}-\mathbf{z}^{2}$, $\mathrm{g}_{2}=\mathbf{y}^{2}-\mathbf{z}^{2}$, and let $<$ be the graded reverse lexicographical ordering.

$$
\begin{aligned}
\operatorname{spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1}=x y^{2}-x z^{2}-x y^{2}+y z^{2} \\
& =-x z^{2}+y z^{2},
\end{aligned}
$$

so it reduces w.r.t. G to $g_{3}=x z^{2}-y^{2}$.

$$
\operatorname{spol}\left(g_{3}, g_{1}\right)=x y z^{2}-y^{2} z^{2}-x y z^{2}+z^{4}=-y^{2} z^{2}+z^{4} .
$$

We can reduce even further with $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0
$$

\Rightarrow How can we discard such zero reductions in advance?

The basic problem

Generic signature-based algorithms
The basic idea
Generic signature-based Gröbner basis algorithm Signature-based criteria

Implementations and recent work A good decade on signature-based algorithms Implementation in Singular

And what has really happened? Ongoing work

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m}, \prec a well-ordering on the monomials of R^{m}, and let $\pi: R^{m} \rightarrow R$ such that

$$
\pi\left(e_{i}\right)=f_{i} \text { for all } i \text {. }
$$

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m}, \prec a well-ordering on the monomials of R^{m}, and let $\pi: R^{m} \rightarrow R$ such that

$$
\pi\left(e_{i}\right)=f_{i} \text { for all } i
$$

2. Each $p \in I$ can be represented by an

$$
s=\sum_{i=1}^{m} h_{i} e_{i} \in R^{m} \text { such that } p=\pi(s)
$$

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m}, \prec a well-ordering on the monomials of R^{m}, and let $\pi: R^{m} \rightarrow R$ such that

$$
\pi\left(e_{i}\right)=f_{i} \text { for all } i .
$$

2. Each $p \in I$ can be represented by an

$$
s=\sum_{i=1}^{m} h_{i} e_{i} \in R^{m} \text { such that } p=\pi(s)
$$

3. A signature of p is given by

$$
\operatorname{sig}(p)=\operatorname{Im}_{\prec}(s) \text { with } p=\pi(s)
$$

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let R^{m} be generated by e_{1}, \ldots, e_{m}, \prec a well-ordering on the monomials of R^{m}, and let $\pi: R^{m} \rightarrow R$ such that

$$
\pi\left(e_{i}\right)=f_{i} \text { for all } i .
$$

2. Each $p \in I$ can be represented by an

$$
s=\sum_{i=1}^{m} h_{i} e_{i} \in R^{m} \text { such that } p=\pi(s)
$$

3. A signature of p is given by

$$
\operatorname{sig}(p)=\operatorname{Im}_{\prec}(s) \text { with } p=\pi(s)
$$

4. A minimal signature of p exists due to \prec.

Our example - now with signatures and $\prec_{\text {pot }}$

We have already computed the following data:

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \operatorname{sig}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \operatorname{sig}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \operatorname{sig}\left(g_{3}\right) & =x \operatorname{sig}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

Our example - now with signatures and $\prec_{\text {pot }}$

We have already computed the following data:

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \operatorname{sig}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \operatorname{sig}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \operatorname{sig}\left(g_{3}\right) & =x \operatorname{sig}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

$\operatorname{spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}:$

$$
\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \operatorname{sig}\left(g_{3}\right)=x y e_{2} .
$$

Our example - now with signatures and $\prec_{\text {pot }}$

We have already computed the following data:

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \operatorname{sig}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \operatorname{sig}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \operatorname{sig}\left(g_{3}\right) & =x \operatorname{sig}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

$\operatorname{spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}:$

$$
\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \operatorname{sig}\left(g_{3}\right)=x y e_{2} .
$$

Note that $\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y e_{2}$ and $\operatorname{Im}\left(g_{1}\right)=x y$.

Our example - now with signatures and $\prec_{\text {pot }}$

We have already computed the following data:

$$
\begin{aligned}
g_{1} & =x y-z^{2}, \operatorname{sig}\left(g_{1}\right)=e_{1}, \\
g_{2} & =y^{2}-z^{2}, \operatorname{sig}\left(g_{2}\right)=e_{2}, \\
g_{3} & =\operatorname{spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \operatorname{sig}\left(g_{3}\right) & =x \operatorname{sig}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

$\operatorname{spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}:$

$$
\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=y \operatorname{sig}\left(g_{3}\right)=x y e_{2} .
$$

Note that $\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y e_{2}$ and $\operatorname{Im}\left(g_{1}\right)=x y$.
\Rightarrow We know that $\operatorname{spol}\left(g_{3}, g_{1}\right)$ will reduce to zero w.r.t. G.

Why do we know this?

The general idea is to check the signatures of the generated s-polynomials.

Why do we know this?

The general idea is to check the signatures of the generated s-polynomials.

If $\operatorname{sig}(\operatorname{spol}(f, g))$ is not minimal for $\operatorname{spol}(f, g)$ then
$\Rightarrow \operatorname{spol}(f, g)$ is discarded.

Why do we know this?

The general idea is to check the signatures of the generated s-polynomials.

If $\operatorname{sig}(\operatorname{spol}(f, g))$ is not minimal for $\operatorname{spol}(f, g)$ then
$\Rightarrow \operatorname{spol}(f, g)$ is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the algorithm computes a non-minimal signature.

Why do we know this?

The general idea is to check the signatures of the generated s-polynomials.

If $\operatorname{sig}(\operatorname{spol}(f, g))$ is not minimal for $\operatorname{spol}(f, g)$ then $\Rightarrow \operatorname{spol}(f, g)$ is discarded.

Our goal

Find and discard as many s-polynomials as possible for which the algorithm computes a non-minimal signature.

Our task

We need to take care of the correctness of the signatures throughout the computations.

Generic signature-based Gröbner basis algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis poly (G) for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{\left(e_{i}, f_{i}\right)\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$

Generic signature-based Gröbner basis algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis poly (G) for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{\left(e_{i}, f_{i}\right)\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$
4. While $P \neq \emptyset$
(a) Choose $(f, g) \in P$ such that $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal, $P \leftarrow P \backslash\{(f, g)\}$
(b) If $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal for $\operatorname{spol}(f, g)$:

Generic signature-based Gröbner basis algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis poly (G) for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{\left(e_{i}, f_{i}\right)\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$
4. While $P \neq \emptyset$
(a) Choose $(f, g) \in P$ such that $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal, $P \leftarrow P \backslash\{(f, g)\}$
(b) If $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal for $\operatorname{spol}(f, g)$:
(i) $h \leftarrow \operatorname{spol}(f, g)$
(ii) If poly $(h) \xrightarrow{G} 0$

Generic signature-based Gröbner basis algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis poly (G) for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{\left(e_{i}, f_{i}\right)\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$
4. While $P \neq \emptyset$
(a) Choose $(f, g) \in P$ such that $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal, $P \leftarrow P \backslash\{(f, g)\}$
(b) If sig $(\operatorname{spol}(f, g))$ minimal for $\operatorname{spol}(f, g)$:
(i) $h \leftarrow \operatorname{spol}(f, g)$
(ii) If poly $(h) \xrightarrow{G} 0$
(iii) If poly $(h) \xrightarrow{G} \operatorname{poly}(r) \neq 0$

$$
\begin{aligned}
& P \leftarrow P \cup\{(r, g) \mid g \in G\} \\
& G \leftarrow G \cup\{r\}
\end{aligned}
$$

5. Return poly (G).

Generic signature-based Gröbner basis algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner Basis poly (G) for I

1. $G \leftarrow \emptyset$
2. $G \leftarrow G \cup\left\{\left(e_{i}, f_{i}\right)\right\}$ for all $i \in\{1, \ldots, m\}$
3. $P \leftarrow\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$
4. While $P \neq \emptyset$
(a) Choose $(f, g) \in P$ such that $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal, $P \leftarrow P \backslash\{(f, g)\}$
(b) If $\operatorname{sig}(\operatorname{spol}(f, g))$ minimal for $\operatorname{spol}(f, g)$:
(i) $h \leftarrow \operatorname{spol}(f, g)$
(ii) If poly $(h) \xrightarrow{G} 0 \Leftarrow$ signature-safe
(iii) If poly $(h) \xrightarrow{G}$ poly $(r) \neq 0 \Leftarrow$ signature-safe
\& $\nexists g \in G$ such that $m \operatorname{sig}(g)=\operatorname{sig}(r)$ and
$m \operatorname{lm}(\operatorname{poly}(g))=\operatorname{Im}(\operatorname{poly}(r))$
$P \leftarrow P \cup\{(r, g) \mid g \in G\}$
$G \leftarrow G \cup\{r\}$
5. Return poly (G).

Signature-safe reductions

Let p and q in R be given such that $m \operatorname{Im}(q)=\operatorname{Im}(p), c=\frac{\mathrm{l}(p)}{\mathrm{lc}(q)}$. Assume

$$
p-c m q \text {. }
$$

Signature-safe reductions

Let p and q in R be given such that $m \operatorname{Im}(q)=\operatorname{Im}(p), c=\frac{\mathrm{l}(p)}{\mathrm{lc}(q)}$. Assume

$$
p-c m q \text {. }
$$

signature-safe: $\operatorname{sig}(p-c m q)=\operatorname{sig}(p)$

Signature-safe reductions

Let p and q in R be given such that $m \operatorname{Im}(q)=\operatorname{Im}(p), c=\frac{\operatorname{lc}(p)}{\operatorname{lc}(q)}$. Assume

$$
p-c m q \text {. }
$$

signature-safe: $\operatorname{sig}(p-c m q)=\operatorname{sig}(p)$
signature-increasing: $\operatorname{sig}(p-c m q)=m \operatorname{sig}(q)$

Signature-safe reductions

Let p and q in R be given such that $m \operatorname{Im}(q)=\operatorname{Im}(p), c=\frac{\mathrm{l}(p)}{\mathrm{lc}(q)}$. Assume

$$
p-c m q .
$$

signature-safe: $\operatorname{sig}(p-c m q)=\operatorname{sig}(p)$
signature-increasing: $\operatorname{sig}(p-c m q)=m \operatorname{sig}(q)$
signature-decreasing: $\operatorname{sig}(p-c m q) \prec \operatorname{sig}(p), m \operatorname{sig}(q)$

How does this work?

Termination

- If $\operatorname{sig}(r)=m \operatorname{sig}(g)$ and $\operatorname{Im}(\operatorname{poly}(r))=m \operatorname{Im}(\operatorname{poly}(g))$ is not added to G.
- Each new element in G enlarges $\langle(\operatorname{sig}(r), \operatorname{Im}(\operatorname{poly}(r)))\rangle$.

How does this work?

Termination

- If $\operatorname{sig}(r)=m \operatorname{sig}(g)$ and $\operatorname{Im}(\operatorname{poly}(r))=m \operatorname{Im}(\operatorname{poly}(g))$ is not added to G.
- Each new element in G enlarges $\langle(\operatorname{sig}(r), \operatorname{Im}(\operatorname{poly}(r)))\rangle$.

Correctness

- All possible s-polynomials are taken care of: signature-increasing reduction \Rightarrow new pair in the next step.
- All elements r with $\operatorname{poly}(r) \neq 0$ are added to G besides those fulfilling $\operatorname{sig}(r)=m \operatorname{sig}(g)$ and $\operatorname{Im}(\operatorname{poly}(r))=m \operatorname{lm}(\operatorname{poly}(g))$.

Signature-based criteria

Non-minimal signature (NM)

$\operatorname{sig}(h)$ not minimal for $h ? \Rightarrow$ Remove h.

Signature-based criteria

Non-minimal signature (NM)

$\operatorname{sig}(h)$ not minimal for $h ? \Rightarrow$ Remove h.

Sketch of proof

1. There exists a syzygy $s \in R^{m}$ such that $\operatorname{Im}(s)=\operatorname{sig}(h)$. \Rightarrow We can represent h with a lower signature.
2. Pairs are handled by increasing signatures.
\Rightarrow All relations of lower signature are already taken care of.

Signature-based criteria

Non-minimal signature (NM)

$\operatorname{sig}(h)$ not minimal for $h ? \Rightarrow$ Remove h.
Sketch of proof

1. There exists a syzygy $s \in R^{m}$ such that $\operatorname{Im}(s)=\operatorname{sig}(h)$. \Rightarrow We can represent h with a lower signature.
2. Pairs are handled by increasing signatures.
\Rightarrow All relations of lower signature are already taken care of.

Our example with $\prec_{\text {pot }}$ revisited
$\operatorname{sig}\left(\operatorname{spol}\left(g_{3}, g_{1}\right)\right)=x y e_{2}$
$\left.\begin{array}{l}g_{1}=x y-z^{2} \\ g_{2}=y^{2}-z^{2}\end{array}\right\} \Rightarrow \operatorname{psyz}\left(g_{2}, g_{1}\right)=g_{1} e_{2}-g_{2} e_{1}=x y e_{2}+\ldots$

Signature-based criteria

Rewritable signature (RW)

$\operatorname{sig}(g)=\operatorname{sig}(h) ? \Rightarrow$ Remove either g or h.

Signature-based criteria

Rewritable signature (RW)

$\operatorname{sig}(g)=\operatorname{sig}(h) ? \Rightarrow$ Remove either g or h.
Sketch of proof

1. $\operatorname{sig}(g-h) \prec \operatorname{sig}(g), \operatorname{sig}(h)$.
2. Pairs are handled by increasing signatures.
\Rightarrow All necessary computations of lower signature have already taken place.
\Rightarrow We can represent h by

$$
h=g+\text { elements of lower signature. }
$$

The basic problem

Generic signature-based algorithms
The basic idea
Generic signature-based Gröbner basis algorithm Signature-based criteria

Implementations and recent work
A good decade on signature-based algorithms Implementation in Singular

And what has really happened? Ongoing work

A good decade on signature-based algorithms

A good decade on signature-based algorithms

```
Matrix F5
```

Bardet
(2002)

Faugère
(2002)

A good decade on signature-based algorithms

```
Matrix F5 F5 with BC
Bardet
(2002)

F5
Faugère
(2002)

\title{
A good decade on signature-based algorithms
}


\title{
A good decade on signature-based algorithms
}


A good decade on signature-based algorithms

\(14 / 22\)

A good decade on signature-based algorithms

\(14 / 22\)

\section*{A good decade on signature-based algorithms}


A good decade on signature-based algorithms


\section*{Implemented in Singular}

(2012)

\section*{Implementation in Singular}


\section*{Implementation in Singular}



\section*{The basic problem}

Generic signature-based algorithms
The basic idea
Generic signature-based Gröbner basis algorithm Signature-based criteria

Implementations and recent work
A good decade on signature-based algorithms Implementation in Singular

And what has really happened?
Ongoing work

\section*{And what has really happened?}

\section*{Rather boring}
- We have (hopefully) understood the criteria.
- We have proven termination of F5 et al.
- We have implemented signature-based Buchberger-style Gröbner basis algorithms quite a lot.

\section*{And what has really happened?}

\section*{Rather boring}
- We have (hopefully) understood the criteria.
- We have proven termination of F5 et al.
- We have implemented signature-based Buchberger-style Gröbner basis algorithms quite a lot.

\section*{At least some new ideas}
- We use different module monomial orderings on the signatures to allow non-incremental computations.
- We have improved the incremental variants a bit (reduced intermediate bases)
- There are some slight improvements on the signature-based criteria.

\title{
Improving the non-minimal signature criterion
}


Improving the non-minimal signature criterion
```

F5

```

G2V/AP/GVW/SB/F5A


\section*{Improving the non-minimal signature criterion}


\section*{Improving the non-minimal signature criterion}

\section*{F5
(as presented in [Fa02])}


\section*{Remark}

This helps only if the input sequence is not regular.

\section*{Improving the rewritable signature criterion}

\section*{F5 \\ (as presented in [Fa02])}

Fix a total ordering \(\triangleleft\) on \(G\).
A basis element \(g \in G\) is a rewriter in signature \(T\) if \(\operatorname{sig}(g) \mid T\).

The \(\triangleleft\)-maximal rewriter in
\(T\) is the canonical rewriter.
An element \(m g\) is rewritable if \(g\) is not the canonical rewriter in \(\operatorname{sig}(\mathrm{mg})\).

\section*{Improving the rewritable signature criterion}

\section*{F5 \\ (as presented in [Fa02])}

Fix a total ordering \(\triangleleft\) on \(G\).
A basis element \(g \in G\) is a rewriter in signature \(T\) if \(\operatorname{sig}(g) \mid T\).

The \(\triangleleft\)-maximal rewriter in \(T\) is the canonical rewriter.

An element \(m g\) is rewritable if \(g\) is not the canonical rewriter in \(\operatorname{sig}(\mathrm{mg})\).

\section*{AP/GVW/SB}

For any signature \(T\) define \(M_{T}=\) \(\{m g \mid g \in G, \operatorname{sig}(m g)=T\}\)

Choose mg such that \(m \operatorname{lm}(\operatorname{poly}(g))\) is minimal.

Compute the corresponding \(s\)-polynomial with \(m g\).

\section*{Improving the rewritable signature criterion}

\section*{F5 \\ (as presented in [Fa02])}

\section*{AP/GVW/SB}

Fix a total ordering \(\triangleleft\) on \(G\).
A basis element \(g \in G\) is a rewriter in signature \(T\) if \(\operatorname{sig}(g) \mid T\).

The \(\triangleleft\)-maximal rewriter in \(T\) is the canonical rewriter.

An element \(m g\) is rewritable if \(g\) is not the canonical rewriter in \(\operatorname{sig}(\mathrm{mg})\).

For any signature \(T\) define \(M_{T}=\) \(\{m g \mid g \in G, \operatorname{sig}(m g)=T\}\)

Choose mg such that \(m \operatorname{lm}(\operatorname{poly}(g))\) is minimal.

Compute the corresponding \(s\)-polynomial with \(m g\).

Difference: There might be no such s-polynomial

\section*{Example for differences in the rewritable signature criterion}

Let \(K\) be the finite field with 13 elements and let \(R:=K[x, y, z, t]\). Let \(<\) be the graded reverse lexicographic monomial ordering. Consider the three input elements
\[
\begin{aligned}
& g_{1}:=-2 y^{3}-x^{2} z-2 x^{2} t-3 y^{2} t, \quad g_{2}:=3 x y z+2 x y t \\
& g_{3}:=2 x y z-2 y z^{2}+2 z^{3}+4 y z t .
\end{aligned}
\]

\section*{Example for differences in the rewritable signature criterion}

Let \(K\) be the finite field with 13 elements and let \(R:=K[x, y, z, t]\). Let \(<\) be the graded reverse lexicographic monomial ordering. Consider the three input elements
\begin{tabular}{|c|c|c|c|}
\hline \(g_{i} \in G\) & reduced from & \(\operatorname{Im}\left(\operatorname{poly}\left(g_{i}\right)\right)\) & \(\operatorname{sig}\left(g_{i}\right)\) \\
\hline \(g_{1}\) & \(\mathrm{e}_{1}\) & \(y^{3}\) & \(\mathrm{e}_{1}\) \\
\hline \(g_{2}\) & \(\mathrm{e}_{2}\) & \(x y z\) & \(\mathrm{e}_{2}\) \\
\hline \(g_{3}\) & \(y^{2} g_{2}-x z g_{1}=\operatorname{spol}\left(g_{2}, g_{1}\right)\) & \(x^{3} z^{2}\) & \(y^{2} \mathbf{e}_{2}\) \\
\hline \(g_{4}\) & \(\mathrm{e}_{3}\) & \(y z^{2}\) & \(e_{3}\) \\
\hline \(g_{5}\) & \(x g_{3}-z g_{2}=\operatorname{spol}\left(g_{3}, g_{2}\right)\) & \(x z^{3}\) & \(x e_{3}\) \\
\hline \(g_{6}\) & \(y^{2} g_{3}-z^{2} g_{1}=\operatorname{spol}\left(g_{3}, g_{1}\right)\) & \(x^{2} z^{3}\) & \(y^{2} \mathbf{e}_{3}\) \\
\hline \(g_{7}\) & \(y g_{5}-z^{2} g_{2}=\operatorname{spol}\left(g_{5}, g_{2}\right)\) & \(x^{2} y^{2} t\) & \[
x y \mathbf{e}_{3}
\] \\
\hline \(g_{8}\) & \(x g_{5}-g_{6}=\operatorname{spol}\left(g_{5}, g_{6}\right)\) & \(z^{5}\) & \[
x^{2} e_{3}
\] \\
\hline \(g_{9}\) & \(x g_{6}-z g_{3}=\operatorname{spol}\left(g_{6}, g_{3}\right)\) & \[
x^{4} z t
\] & \[
x y^{2} \mathbf{e}_{3}
\] \\
\hline \(g_{10}\) & \(y g_{8}-z^{3} g_{4}=\operatorname{spol}\left(g_{8}, g_{4}\right)\) & \[
x^{3} y^{2} t
\] & \[
x^{2} y e_{3}
\] \\
\hline \(g_{11}\) & \(x^{3} g_{4}-y g_{3}=\operatorname{spol}\left(g_{4}, g_{3}\right)\) & \[
x^{4} y t
\] & \(x^{3} \mathrm{e}_{3}\) \\
\hline \(g_{12}\) & \[
z g_{11}-x^{3} g_{2}=\operatorname{spol}\left(g_{11}, g_{2}\right)
\] & \[
x^{3} z t^{3}
\] & \[
x^{3} z \mathrm{e}_{3}
\] \\
\hline \(g_{13}\) & \(y g_{10}-x^{3} g_{1}=\operatorname{spol}\left(g_{10}, g_{1}\right)\) & \(x^{5} z t\) & \(x^{2} y^{2} e_{3}\) \\
\hline \(g_{14}\) & \(x g_{12}-g_{9}=\operatorname{spol}\left(g_{12}, g_{9}\right)\) & \(x^{4} t^{4}\) & \(x^{4} z \mathbf{e}_{3}\) \\
\hline
\end{tabular}

\section*{Example for differences in the rewritable signature criterion}

Let \(K\) be the finite field with 13 elements and let \(R:=K[x, y, z, t]\). Let \(<\) be the graded reverse lexicographic monomial ordering. Consider the three input elements
\begin{tabular}{rrrr}
\(g_{1}:=-2 y^{3}-x^{2} z-2 x^{2} t-3 y^{2} t\), & \(g_{2}:=3 x y z+2 x y t\), \\
\(g_{i} \in G\) & \(g_{3}:=2 x y z-2 y z^{2}+2 z^{3}+4 y z t\). \\
reduced from & \(\operatorname{lm}\left(\right.\) poly \(\left.\left(g_{i}\right)\right)\) & \(\operatorname{sig}\left(g_{i}\right)\) \\
\hline\(g_{1}\) & \(\mathbf{e}_{1}\) & \(y^{3}\) & \(\mathbf{e}_{1}\) \\
\(g_{2}\) & \(\mathbf{e}_{2}\) & \(x y z\) & \(\mathbf{e}_{2}\) \\
\(g_{3}\) & \(y^{2} g_{2}-x z g_{1}=\operatorname{spol}\left(g_{2}, g_{1}\right)\) & \(x^{3} z^{2}\) & \(y^{2} \mathbf{e}_{2}\) \\
\(g_{4}\) & \(\mathbf{e}_{3}\) & \(y z^{2}\) & \(\mathbf{e}_{3}\) \\
\(g_{5}\) & \(x g_{3}-z g_{2}=\operatorname{spol}\left(g_{3}, g_{2}\right)\) & \(x z^{3}\) & \(x \mathbf{e}_{3}\) \\
\(g_{6}\) & \(y^{2} g_{3}-z^{2} g_{1}=\operatorname{spol}\left(g_{3}, g_{1}\right)\) & \(x^{2} z^{3}\) & \(y^{2} \mathbf{e}_{3}\) \\
\(g_{7}\) & \(y g_{5}-z^{2} g_{2}=\operatorname{spol}\left(g_{5}, g_{2}\right)\) & \(x^{2} y^{2} t\) & \(x y \mathbf{e}_{3}\) \\
\(g_{8}\) & \(x g_{5}-g_{6}=\operatorname{spol}\left(g_{5}, g_{6}\right)\) & \(z^{5}\) & \(x^{2} \mathbf{e}_{3}\) \\
\(g_{9}\) & \(x g_{6}-z g_{3}=\operatorname{spol}\left(g_{6}, g_{3}\right)\) & \(x^{4} z t\) & \(x y^{2} \mathbf{e}_{3}\) \\
\(g_{10}\) & \(y g_{8}-z^{3} g_{4}=\operatorname{spol}\left(g_{8}, g_{4}\right)\) & \(x^{3} y^{2} t\) & \(x^{2} y \mathbf{e}_{3}\) \\
\(g_{11}\) & \(x^{3} g_{4}-y g_{3}=\operatorname{spol}\left(g_{4}, g_{3}\right)\) & \(x^{4} y t\) & \(x^{3} \mathbf{e}_{3}\) \\
\(g_{12}\) & \(z g_{11}-x^{3} g_{2}=\operatorname{spol}\left(g_{11}, g_{2}\right)\) & \(x^{3} z t^{3}\) & \(x^{3} z \mathbf{e}_{3}\) \\
\(g_{13}\) & \(y g_{10}-x^{3} g_{1}=\operatorname{spol}\left(g_{10}, g_{1}\right)\) & \(x^{5} z t\) & \(x^{2} y^{2} \mathbf{e}_{3}\) \\
\(g_{14}\) & \(x g_{12}-g_{9}=\operatorname{spol}\left(g_{12}, g_{9}\right)\) & \(x^{4} t^{4}\) & \(x^{4} z \mathbf{e}_{3}\)
\end{tabular}
- F4:
linear algebra for reduction purposes
- Heuristics:
orderings on signatures; orderings for critical pairs (sugar degree), reducers
- Parallelisation:
modular methods, parallel criteria checks
- Computation of syzygies: implementation
- Generalization of signature-based criteria: more terms per signature, relaxing criteria for combination with Buchberger's criteria
M. Albrecht und J. Perry. F4/5
G. Ars. Applications des bases de Groeobner a la cryptographie
[AP11] A. Arri und J. Perry. The F5 Criterion revised
[E12a] C. Eder. Improving incremental signature-based Gröbner bases algorithms
[E12b] C. Eder. Sweetening the sour taste of inhomogeneous signature-based Gröbner basis computations
[EGP11] C. Eder, J. Gash and J. Perry. Modifying Faugère's F5 Algorithm to ensure termination
[EP10] C. Eder and J. Perry. F5C: A variant of Faugère's F5 Algorithm with reduced Gröbner bases
[EP11] C. Eder and J. Perry. Signature-based algorithms to compute Gröbner bases
[ER13] C. Eder and B. H. Roune. Signature Rewriting in Gröbner Basis Computation
[Fa02] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero \(F_{5}\)
[FR09] J.-C. Faugère and S. Rahmany. Solving systems of polynomial equations with symmetries using SAGBI-Gröbner bases
[FSS11] J.-C. Faugère, M. Safey El-Din and P.-J. Spaenlehauer. Gröbner Bases of Bihomogeneous Ideals Generated by Polynomials of Bidegree \((1,1)\)
[FSV13] J.-C. Faugère, M. Safey El-Din and T. Verron. Computing Gröbner bases for quasi-homogeneous systems
[FS12] J.-C. Faugère and J. Svartz. Solving Polynomial Systems Globally Invariant Under an Action of the Symmetric Group and Application to the Equilibria of N vortices in the Plane
[Ga12a] V. Galkin. Termination of original \(F_{5}\)
[Ga12b] V. Galkin. Simple signature-based Groebner basis algorithm
[GGV10] S. Gao, Y. Guan and F. Volny IV. A New Incremental Algorithm for Computing Gröbner Bases
[GHA13] V. Gerdt, A. Hashemi and B. M.-Alizadeh. Involutive Bases Algorithm Incorporating F5 Criterion
[GVW11] S. Gao, F. Volny IV and M. Wang. A New Algorithm For Computing Grobner Bases
[MSWZ12] X. Ma, Y. Sun, D. Wang, and Y. Zhang. A Signature-Based Algorithm for Computing Groebner Bases in Solvable Polynomial Algebras
[PHW13] S. Pan, Y. Hu and B. Wang. The Termination of Algorithms for Computing Gröbner Bases
[RS12] B. H. Roune and M. Stillman. Practical Gröbner Basis Computation
[SW10] Y. Sun und D. Wang. A new proof of the F5 Algorithm
Y. Sun and D. Wang. A Generalized Criterion for Signature Related Gröbner Basis Algorithms```

