# Signature Rewriting in Gröbner Basis Computation 

Christian Eder<br>joint work with Bjarke Hammersholt Roune<br>POLSYS Team, UPMC, Paris, France

June 29, 2013

6

Signature-based algorithms
The basic idea
Generic signature-based criteria

## Rewritable signature criterion in detail

## Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

## Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let $R^{m}$ be generated by $e_{1}, \ldots, e_{m}$, $\prec$ a well-ordering on the monomials of $R^{m}$, and let $\alpha \mapsto \bar{\alpha}: R^{m} \rightarrow R$ such that

$$
\bar{e}_{i}=f_{i} \text { for all } i .
$$

## Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let $R^{m}$ be generated by $e_{1}, \ldots, e_{m}$, $\prec$ a well-ordering on the monomials of $R^{m}$, and let $\alpha \mapsto \bar{\alpha}: R^{m} \rightarrow R$ such that

$$
\bar{e}_{i}=f_{i} \text { for all } i
$$

2. Each $p \in I$ can be represented by an

$$
\alpha=\sum_{i=1}^{m} h_{i} e_{i} \in R^{m} \text { such that } p=\bar{\alpha} .
$$

## Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let $R^{m}$ be generated by $e_{1}, \ldots, e_{m}$, $\prec$ a well-ordering on the monomials of $R^{m}$, and let $\alpha \mapsto \bar{\alpha}: R^{m} \rightarrow R$ such that

$$
\bar{e}_{i}=f_{i} \text { for all } i .
$$

2. Each $p \in I$ can be represented by an

$$
\alpha=\sum_{i=1}^{m} h_{i} e_{i} \in R^{m} \text { such that } p=\bar{\alpha} .
$$

3. A signature of $p$ is given by

$$
\mathfrak{s}(p)=\operatorname{lt}_{\prec}(\alpha) \text { with } p=\bar{\alpha} .
$$

## Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.
Idea: Give each $f \in I$ a bit more structure:

1. Let $R^{m}$ be generated by $e_{1}, \ldots, e_{m}$, $\prec$ a well-ordering on the monomials of $R^{m}$, and let $\alpha \mapsto \bar{\alpha}: R^{m} \rightarrow R$ such that

$$
\bar{e}_{i}=f_{i} \text { for all } i .
$$

2. Each $p \in I$ can be represented by an

$$
\alpha=\sum_{i=1}^{m} h_{i} e_{i} \in R^{m} \text { such that } p=\bar{\alpha} .
$$

3. A signature of $p$ is given by

$$
\mathfrak{s}(p)=\operatorname{lt}_{\prec}(\alpha) \text { with } p=\bar{\alpha} .
$$

4. A minimal signature of $p$ exists due to $\prec$.

## Notations concerning signatures

Let $\alpha \in R^{m}$, then $\alpha$ contains all data we need:

- The polynomial data is $\bar{\alpha}$, its leading term denoted by $\operatorname{lt}(\bar{\alpha})$.
- The signature is $\mathfrak{s}(\alpha)=\operatorname{lt}(\alpha)$.


## Notations concerning signatures

Let $\alpha \in R^{m}$, then $\alpha$ contains all data we need:

- The polynomial data is $\bar{\alpha}$, its leading term denoted by $\operatorname{lt}(\bar{\alpha})$.
- The signature is $\mathfrak{s}(\alpha)=\operatorname{lt}(\alpha)$.

Moreover, we agree on the following:

- For $\alpha, \beta \in R^{m}$, let $\alpha \simeq \beta$ if $\alpha=s \beta$ for some $s \in K$. In the same sense we define $\bar{\alpha} \simeq \bar{\beta}$ if $\bar{\alpha}=t \bar{\beta}$ for some $t \in K$.
- $\mathcal{G}$ always denotes a finite subset of $R^{m}$ such that for all $\alpha, \beta \in \mathcal{G}$ with $\mathfrak{s}(\alpha) \simeq \mathfrak{s}(\beta)$ it holds that $\alpha=\beta$.
- $\alpha \in R^{m}$ is called a syzygy if $\bar{\alpha}=0$.


## Reductions concerning signatures

Let $\alpha \in R^{m}$, and let $t$ be a term of $\bar{\alpha}$. We can $\mathfrak{s}$-reduce $t$ by $\beta \in R^{m}$ if
$\triangleright \exists$ a term $b$ such that $\operatorname{lt}(\overline{b \beta})=t$ and
$>\mathfrak{s}(b \beta) \preceq \mathfrak{s}(\alpha)$.

## Reductions concerning signatures

Let $\alpha \in R^{m}$, and let $t$ be a term of $\bar{\alpha}$. We can $\mathfrak{s}$-reduce $t$ by $\beta \in R^{m}$ if
$\triangleright \exists$ a term $b$ such that $\operatorname{lt}(\overline{b \beta})=t$ and
$\vee \mathfrak{s}(b \beta) \preceq \mathfrak{s}(\alpha)$.

## Note

We distinguish 2 types of $\mathfrak{s}$-reduction:

## Reductions concerning signatures

Let $\alpha \in R^{m}$, and let $t$ be a term of $\bar{\alpha}$. We can $\mathfrak{s}$-reduce $t$ by $\beta \in R^{m}$ if
$\triangleright \exists$ a term $b$ such that $\operatorname{lt}(\overline{b \beta})=t$ and
$\vee \mathfrak{s}(b \beta) \preceq \mathfrak{s}(\alpha)$.

## Note

We distinguish 2 types of $\mathfrak{s}$-reduction:

1. If $\operatorname{It}(\overline{b \beta}) \simeq \operatorname{It}(\bar{\alpha}) \Longrightarrow$ top $\mathfrak{s}$-reduction step; otherwise $\quad \Longrightarrow$ tail $\mathfrak{s}$-reduction step.

## Reductions concerning signatures

Let $\alpha \in R^{m}$, and let $t$ be a term of $\bar{\alpha}$. We can $\mathfrak{s}$-reduce $t$ by $\beta \in R^{m}$ if
$\triangleright \exists$ a term $b$ such that $\operatorname{lt}(\overline{b \beta})=t$ and
$\vee \mathfrak{s}(b \beta) \preceq \mathfrak{s}(\alpha)$.

## Note

We distinguish 2 types of $\mathfrak{s}$-reduction:

1. If $\operatorname{It}(\overline{b \beta}) \simeq \operatorname{It}(\bar{\alpha}) \Longrightarrow$ top $\mathfrak{s}$-reduction step; otherwise $\quad \Longrightarrow$ tail $\mathfrak{s}$-reduction step.
2. If $\mathfrak{s}(b \beta) \simeq \mathfrak{s}(\alpha) \Longrightarrow$ singular $\mathfrak{s}$-reduction step; otherwise $\quad \Longrightarrow$ regular $\mathfrak{s}$-reduction step.

## Signature Gröbner bases

$>\mathfrak{s}$-reductions are always performed w.r.t. a finite basis $\mathcal{G} \subset R^{m}$.

- $\mathcal{G}$ is a signature Gröbner basis in signature $T$ if all $\alpha \in R^{m}$ with $\mathfrak{s}(\alpha)=T \mathfrak{s}$-reduce to zero w.r.t $\mathcal{G}$.
- $\mathcal{G}$ is a signature Gröbner basis if it is a signature Gröbner basis in all signatures.
- If $\mathcal{G}$ is a signature Gröbner basis, then $\{\bar{\alpha} \mid \alpha \in \mathcal{G}\}$ is a Gröbner basis for $\left\langle f_{1}, \ldots, f_{m}\right\rangle$.


## Note

In the following we do not need much of the details of signature-based Gröbner basis algorithms, just one property:

The pair set is ordered by increasing signatures.

## Generic signature-based criteria

## Non-minimal signature ( NM )

$\mathfrak{s}(\alpha)$ not minimal for $\alpha$ ? $\Rightarrow$ Remove $\alpha$.

## Generic signature-based criteria

## Non-minimal signature ( NM )

$\mathfrak{s}(\alpha)$ not minimal for $\alpha$ ? $\Rightarrow$ Remove $\alpha$.
Sketch of proof

1. There exists a syzygy $\beta \in R^{m}$ such that $\operatorname{lt}(\beta)=\mathfrak{s}(\alpha)$. $\Rightarrow$ We can represent $\bar{\alpha}$ with a lower signature.
2. Pairs are handled by increasing signatures. $\Rightarrow$ All relations of lower signature are already taken care of.

## Generic signature-based criteria

## Rewritable signature ( RW )

$\mathfrak{s}(\alpha)=\mathfrak{s}(\beta) ? \Rightarrow$ Remove either $\alpha$ or $\beta$.

## Generic signature-based criteria

## Rewritable signature ( RW )

$\mathfrak{s}(\alpha)=\mathfrak{s}(\beta) ? \Rightarrow$ Remove either $\alpha$ or $\beta$.
Sketch of proof

1. $\mathfrak{s}(\alpha-\beta) \prec \mathfrak{s}(\alpha), \mathfrak{s}(\beta)$.
2. Pairs are handled by increasing signatures.
$\Rightarrow$ All necessary computations of lower signature have already taken place.
$\Rightarrow$ We can represent $\beta$ by
$\beta=\alpha+$ elements of lower signature.

Signature-based algorithms The basic idea Generic signature-based criteria

Rewritable signature criterion in detail

## The concept of rewrite bases

Rewriter and rewritable elements

## The concept of rewrite bases

Rewriter and rewritable elements

- A rewrite order $\triangleleft$ is a total order on $\mathcal{G}$ such that

$$
\mathfrak{s}(\alpha) \mid \mathfrak{s}(\beta) \Rightarrow \alpha \triangleleft \beta \text {. (Exists due to } \mathfrak{s}(\alpha) \simeq \mathfrak{s}(\beta) \Rightarrow \alpha=\beta .)
$$

## The concept of rewrite bases

Rewriter and rewritable elements

- A rewrite order $\triangleleft$ is a total order on $\mathcal{G}$ such that $\mathfrak{s}(\alpha) \mid \mathfrak{s}(\beta) \Rightarrow \alpha \triangleleft \beta$. (Exists due to $\mathfrak{s}(\alpha) \simeq \mathfrak{s}(\beta) \Rightarrow \alpha=\beta$.)
- An element $\alpha \in \mathcal{G}$ is a rewriter in signature $T$ if $\mathfrak{s}(\alpha) \mid T$.


## The concept of rewrite bases

## Rewriter and rewritable elements

- A rewrite order $\triangleleft$ is a total order on $\mathcal{G}$ such that $\mathfrak{s}(\alpha) \mid \mathfrak{s}(\beta) \Rightarrow \alpha \triangleleft \beta$. (Exists due to $\mathfrak{s}(\alpha) \simeq \mathfrak{s}(\beta) \Rightarrow \alpha=\beta$.)
- An element $\alpha \in \mathcal{G}$ is a rewriter in signature $T$ if $\mathfrak{s}(\alpha) \mid T$.
- The $\triangleleft$-maximal rewriter in signature $T$ is the canonical rewriter in $T$.


## The concept of rewrite bases

## Rewriter and rewritable elements

- A rewrite order $\triangleleft$ is a total order on $\mathcal{G}$ such that $\mathfrak{s}(\alpha) \mid \mathfrak{s}(\beta) \Rightarrow \alpha \triangleleft \beta$. (Exists due to $\mathfrak{s}(\alpha) \simeq \mathfrak{s}(\beta) \Rightarrow \alpha=\beta$.)
- An element $\alpha \in \mathcal{G}$ is a rewriter in signature $T$ if $\mathfrak{s}(\alpha) \mid T$.
- The $\triangleleft$-maximal rewriter in signature $T$ is the canonical rewriter in $T$.
- A multiple of a basis element $t \alpha$ is called rewritable if $\alpha$ is not the canonical rewriter in $\mathfrak{s}(t \alpha)$.


# The concept of rewrite bases 

## Rewrite Bases

## The concept of rewrite bases

## Rewrite Bases

$-\mathcal{G}$ is a rewrite basis in signature $T$ if the canonical rewriter in $T$ is not regular $\mathfrak{s}$-reducible or if $T$ is a syzygy signature.

## The concept of rewrite bases

## Rewrite Bases

$-\mathcal{G}$ is a rewrite basis in signature $T$ if the canonical rewriter in $T$ is not regular $\mathfrak{s}$-reducible or if $T$ is a syzygy signature.
$\vee \mathcal{G}$ is a rewrite basis if it is a rewrite basis in all signatures.

## The concept of rewrite bases

## Rewrite Bases

$\checkmark \mathcal{G}$ is a rewrite basis in signature $T$ if the canonical rewriter in $T$ is not regular $\mathfrak{s}$-reducible or if $T$ is a syzygy signature.
$\vee \mathcal{G}$ is a rewrite basis if it is a rewrite basis in all signatures.

Lemma
If $\mathcal{G}$ is a rewrite basis up to signature $T$ then $\mathcal{G}$ is also a signature Gröbner basis up to $T$.

Improving the rewritable signature criterion

RB (generic rewrite base algorithm)

Improving the rewritable signature criterion

RB (generic rewrite base algorithm)
(as presented in [Fa02])

Improving the rewritable signature criterion

RB (generic rewrite base algorithm)


Improving the rewritable signature criterion

RB (generic rewrite base algorithm)


Let $\alpha$ and $\beta \in \mathcal{G}$ such that $\mathfrak{s}(\alpha)=a e_{i}$ and $\mathfrak{s}(\beta)=b e_{j}$.

## Improving the rewritable signature criterion

## RB (generic rewrite base algorithm)



Let $\alpha$ and $\beta \in \mathcal{G}$ such that $\mathfrak{s}(\alpha)=a e_{i}$ and $\mathfrak{s}(\beta)=b e_{j}$.


Once an s-polynomial in a given signature $T$ is computed all others are rewritable.

## Improving the rewritable signature criterion

## RB (generic rewrite base algorithm)



Let $\alpha$ and $\beta \in \mathcal{G}$ such that $\mathfrak{s}(\alpha)=a e_{i}$ and $\mathfrak{s}(\beta)=b e_{j}$.


Once an s-polynomial in a given signature $T$ is computed all others are rewritable.

$$
\alpha \triangleleft \beta \Longleftrightarrow \frac{\mathfrak{s}(\alpha)}{\operatorname{lt}(\bar{\alpha})} \prec \frac{\mathfrak{s}(\beta)}{\operatorname{lt}(\bar{\beta})}
$$

For any signature $T$ define

$$
M_{T}=\{t \alpha \mid \alpha \in \mathcal{G}, \mathfrak{s}(t \alpha)=T\}
$$

Choose t $\alpha$ such that $\operatorname{lt}(\overline{t \alpha})$ is minimal.

## Improving the rewritable signature criterion

## RB (generic rewrite base algorithm)



Let $\alpha$ and $\beta \in \mathcal{G}$ such that $\mathfrak{s}(\alpha)=a e_{i}$ and $\mathfrak{s}(\beta)=$ be $_{j}$.


Once an s-polynomial in a given signature $T$ is computed all others are rewritable.

$$
\alpha \triangleleft \beta \Longleftrightarrow \frac{\mathfrak{s}(\alpha)}{\operatorname{lt}(\bar{\alpha})} \prec \frac{\mathfrak{s}(\beta)}{\operatorname{lt}(\bar{\beta})}
$$

For any signature $T$ define

$$
M_{T}=\{t \alpha \mid \alpha \in \mathcal{G}, \mathfrak{s}(t \alpha)=T\}
$$

Choose $t \alpha$ such that $\operatorname{lt}(\overline{t \alpha})$ is minimal.

Difference: There might be no such s-polynomial

## Example for differences in the rewritable signature criterion

Let $K$ be the finite field with 13 elements and let $R:=K[x, y, z, t]$. Let $<$ be the graded reverse lexicographic monomial ordering. Consider the three input elements

$$
\begin{aligned}
& g_{1}:=-2 y^{3}-x^{2} z-2 x^{2} t-3 y^{2} t, \quad g_{2}:=3 x y z+2 x y t \\
& g_{3}:=2 x y z-2 y z^{2}+2 z^{3}+4 y z t .
\end{aligned}
$$

## Example for differences in the rewritable signature criterion

Let $K$ be the finite field with 13 elements and let $R:=K[x, y, z, t]$. Let $<$ be the graded reverse lexicographic monomial ordering. Consider the three input elements

$$
\begin{aligned}
& g_{1}:=-2 y^{3}-x^{2} z-2 x^{2} t-3 y^{2} t, \quad g_{2}:=3 x y z+2 x y t \\
& g_{3}:=2 x y z-2 y z^{2}+2 z^{3}+4 y z t .
\end{aligned}
$$

| $\alpha_{i} \in \mathcal{G}$ | reduced from | It $\left(\overline{\alpha_{i}}\right)$ | $\mathfrak{s}\left(\alpha_{i}\right)$ |
| ---: | ---: | ---: | ---: |
| $\alpha_{1}$ | $\mathbf{e}_{1}$ | $y^{3}$ | $\mathbf{e}_{1}$ |
| $\alpha_{2}$ | $\mathbf{e}_{2}$ | $x y z$ | $\mathbf{e}_{2}$ |
| $\alpha_{3}$ | $y^{2} \alpha_{2}-x z \alpha_{1}=\mathcal{S}\left(\alpha_{2}, \alpha_{1}\right)$ | $x^{3} z^{2}$ | $y^{2} \mathbf{e}_{2}$ |
| $\alpha_{4}$ | $\mathbf{e}_{3}$ | $y z^{2}$ | $\mathbf{e}_{3}$ |
| $\alpha_{5}$ | $x \alpha_{4}-z \alpha_{2}=\mathcal{S}\left(\alpha_{4}, \alpha_{2}\right)$ | $x z^{3}$ | $x \mathbf{e}_{3}$ |
| $\alpha_{6}$ | $y^{2} \alpha_{4}-z^{2} \alpha_{1}=\mathcal{S}\left(\alpha_{4}, \alpha_{1}\right)$ | $x^{2} z^{3}$ | $y^{2} \mathbf{e}_{3}$ |
| $\alpha_{7}$ | $y \alpha_{5}-z^{2} \alpha_{2}=\mathcal{S}\left(\alpha_{5}, \alpha_{2}\right)$ | $x^{2} y^{2} t$ | $x y \mathbf{e}_{3}$ |
| $\alpha_{8}$ | $x \alpha_{5}-\alpha_{6}=\mathcal{S}\left(\alpha_{5}, \alpha_{6}\right)$ | $z^{5}$ | $x^{2} \mathbf{e}_{3}$ |
| $\alpha_{9}$ | $x \alpha_{6}-z \alpha_{3}=\mathcal{S}\left(\alpha_{6}, \alpha_{3}\right)$ | $x^{4} z t$ | $x y^{2} \mathbf{e}_{3}$ |
| $\alpha_{10}$ | $y \alpha_{8}-z^{3} \alpha_{4}=\mathcal{S}\left(\alpha_{8}, \alpha_{4}\right)$ | $x^{3} y^{2} t$ | $x^{2} y \mathbf{e}_{3}$ |
| $\alpha_{11}$ | $x^{3} \alpha_{4}-y \alpha_{3}=\mathcal{S}\left(\alpha_{4}, \alpha_{3}\right)$ | $x^{4} y t$ | $x^{3} \mathbf{e}_{3}$ |
| $\alpha_{12}$ | $z \alpha_{11}-x^{3} \alpha_{2}=\mathcal{S}\left(\alpha_{11}, \alpha_{2}\right)$ | $x^{3} z t^{3}$ | $x^{3} z \mathbf{e}_{3}$ |
| $\alpha_{13}$ | $y \alpha_{10}-x^{3} \alpha_{1}=\mathcal{S}\left(\alpha_{10}, \alpha_{1}\right)$ | $x^{5} z t$ | $x^{2} y^{2} \mathbf{e}_{3}$ |
| $\alpha_{14}$ | $x \alpha_{12}-\alpha_{9}=\mathcal{S}\left(\alpha_{12}, \alpha_{9}\right)$ | $x^{4} t^{4}$ | $x^{4} z \mathbf{e}_{3}$ |

## Example for differences in the rewritable signature criterion

Let $K$ be the finite field with 13 elements and let $R:=K[x, y, z, t]$. Let $<$ be the graded reverse lexicographic monomial ordering. Consider the three input elements

$$
\begin{aligned}
& g_{1}:=-2 y^{3}-x^{2} z-2 x^{2} t-3 y^{2} t, \quad g_{2}:=3 x y z+2 x y t \\
& g_{3}:=2 x y z-2 y z^{2}+2 z^{3}+4 y z t .
\end{aligned}
$$

| $\alpha_{i} \in \mathcal{G}$ | reduced from | It $\left(\overline{\alpha_{i}}\right)$ | $\mathfrak{s}\left(\alpha_{i}\right)$ |  |
| ---: | ---: | ---: | ---: | :--- |
| $\alpha_{1}$ | $\mathbf{e}_{1}$ | $y^{3}$ | $\mathbf{e}_{1}$ |  |
| $\alpha_{2}$ | $\mathbf{e}_{2}$ | $x y z$ | $\mathbf{e}_{2}$ |  |
| $\alpha_{3}$ | $y^{2} \alpha_{2}-x z \alpha_{1}=\mathcal{S}\left(\alpha_{2}, \alpha_{1}\right)$ | $x^{3} z^{2}$ | $y^{2} \mathbf{e}_{2}$ |  |
| $\alpha_{4}$ | $\mathbf{e}_{3}$ | $y z^{2}$ | $\mathbf{e}_{3}$ |  |
| $\alpha_{5}$ | $x \alpha_{4}-z \alpha_{2}=\mathcal{S}\left(\alpha_{4}, \alpha_{2}\right)$ | $x z^{3}$ | $x \mathbf{e}_{3}$ |  |
| $\alpha_{6}$ | $y^{2} \alpha_{4}-z^{2} \alpha_{1}=\mathcal{S}\left(\alpha_{4}, \alpha_{1}\right)$ | $x^{2} z^{3}$ | $y^{2} \mathbf{e}_{3}$ |  |
| $\alpha_{7}$ | $y \alpha_{5}-z^{2} \alpha_{2}=\mathcal{S}\left(\alpha_{5}, \alpha_{2}\right)$ | $x^{2} y^{2} t$ | $x y \mathbf{e}_{3}$ | $\longleftarrow$ |
| $\alpha_{8}$ | $x \alpha_{5}-\alpha_{6}=\mathcal{S}\left(\alpha_{5}, \alpha_{6}\right)$ | $z^{5}$ | $x^{2} \mathbf{e}_{3}$ |  |
| $\alpha_{9}$ | $x \alpha_{6}-z \alpha_{3}=\mathcal{S}\left(\alpha_{6}, \alpha_{3}\right)$ | $x^{4} z t$ | $x y^{2} \mathbf{e}_{3}$ |  |
| $\alpha_{10}$ | $y \alpha_{8}-z^{3} \alpha_{4}=\mathcal{S}\left(\alpha_{8}, \alpha_{4}\right)$ | $x^{3} y^{2} t$ | $x^{2} y \mathbf{e}_{3}$ | $\longleftarrow$ |
| $\alpha_{11}$ | $x^{3} \alpha_{4}-y \alpha_{3}=\mathcal{S}\left(\alpha_{4}, \alpha_{3}\right)$ | $x^{4} y t$ | $x^{3} \mathbf{e}_{3}$ |  |
| $\alpha_{12}$ | $z \alpha_{11}-x^{3} \alpha_{2}=\mathcal{S}\left(\alpha_{11}, \alpha_{2}\right)$ | $x^{3} z t^{3}$ | $x^{3} z \mathbf{e}_{3}$ |  |
| $\alpha_{13}$ | $y \alpha_{10}-x^{3} \alpha_{1}=\mathcal{S}\left(\alpha_{10}, \alpha_{1}\right)$ | $x^{5} z t$ | $x^{2} y^{2} \mathbf{e}_{3}$ | $\longleftarrow$ |
| $\alpha_{14}$ | $x \alpha_{12}-\alpha_{9}=\mathcal{S}\left(\alpha_{12}, \alpha_{9}\right)$ | $x^{4} t^{4}$ | $x^{4} z \mathbf{e}_{3}$ |  |

## Example for differences in the rewritable signature criterion

Let $K$ be the finite field with 13 elements and let $R:=K[x, y, z, t]$. Let $<$ be the graded reverse lexicographic monomial ordering. Consider the three input elements

$$
\begin{aligned}
& g_{1}:=-2 y^{3}-x^{2} z-2 x^{2} t-3 y^{2} t, \quad g_{2}:=3 x y z+2 x y t \\
& g_{3}:=2 x y z-2 y z^{2}+2 z^{3}+4 y z t .
\end{aligned}
$$

| $\alpha_{i} \in \mathcal{G}$ | reduced from | It $\left(\overline{\alpha_{i}}\right)$ | $\mathfrak{s}\left(\alpha_{i}\right)$ |  |
| ---: | ---: | ---: | ---: | :--- |
| $\alpha_{1}$ | $\mathbf{e}_{1}$ | $y^{3}$ | $\mathbf{e}_{1}$ |  |
| $\alpha_{2}$ | $\mathbf{e}_{2}$ | $x y z$ | $\mathbf{e}_{2}$ |  |
| $\alpha_{3}$ | $y^{2} \alpha_{2}-x z \alpha_{1}=\mathcal{S}\left(\alpha_{2}, \alpha_{1}\right)$ | $x^{3} z^{2}$ | $y^{2} \mathbf{e}_{2}$ |  |
| $\alpha_{4}$ | $\mathbf{e}_{3}$ | $y z^{2}$ | $\mathbf{e}_{3}$ |  |
| $\alpha_{5}$ | $x \alpha_{4}-z \alpha_{2}=\mathcal{S}\left(\alpha_{4}, \alpha_{2}\right)$ | $x z^{3}$ | $x \mathbf{e}_{3}$ |  |
| $\alpha_{6}$ | $y^{2} \alpha_{4}-z^{2} \alpha_{1}=\mathcal{S}\left(\alpha_{4}, \alpha_{1}\right)$ | $x^{2} z^{3}$ | $y^{2} \mathbf{e}_{3}$ |  |
| $\alpha_{7}$ | $y \alpha_{5}-z^{2} \alpha_{2}=\mathcal{S}\left(\alpha_{5}, \alpha_{2}\right)$ | $x^{2} y^{2} t$ | $x y \mathbf{e}_{3}$ | $\longleftarrow$ |
| $\alpha_{8}$ | $x \alpha_{5}-\alpha_{6}=\mathcal{S}\left(\alpha_{5}, \alpha_{6}\right)$ | $z^{5}$ | $x^{2} \mathbf{e}_{3}$ |  |
| $\alpha_{9}$ | $x \alpha_{6}-z \alpha_{3}=\mathcal{S}\left(\alpha_{6}, \alpha_{3}\right)$ | $x^{4} z t$ | $x y^{2} \mathbf{e}_{3}$ |  |
| $\alpha_{10}$ | $y \alpha_{8}-z^{3} \alpha_{4}=\mathcal{S}\left(\alpha_{8}, \alpha_{4}\right)$ | $x^{3} y^{2} t$ | $x^{2} y \mathbf{e}_{3}$ | $\longleftarrow$ |
| $\alpha_{11}$ | $x^{3} \alpha_{4}-y \alpha_{3}=\mathcal{S}\left(\alpha_{4}, \alpha_{3}\right)$ | $x^{4} y t$ | $x^{3} \mathbf{e}_{3}$ |  |
| $\alpha_{12}$ | $z \alpha_{11}-x^{3} \alpha_{2}=\mathcal{S}\left(\alpha_{11}, \alpha_{2}\right)$ | $x^{3} z t^{3}$ | $x^{3} z \mathbf{e}_{3}$ |  |
| $\alpha_{13}$ | $y \alpha_{10}-x^{3} \alpha_{1}=\mathcal{S}\left(\alpha_{10}, \alpha_{1}\right)$ | $x^{5} z t$ | $x^{2} y^{2} \mathbf{e}_{3}$ | $\longleftarrow$ |
| $\alpha_{14}$ | $x \alpha_{12}-\alpha_{9}=\mathcal{S}\left(\alpha_{12}, \alpha_{9}\right)$ | $x^{4} t^{4}$ | $x^{4} z \mathbf{e}_{3}$ |  |

## Bibliography

[AP11] A. Arri und J. Perry. The F5 Criterion revised
[EP10] C. Eder and J. Perry. F5C: A variant of Faugère's F5 Algorithm with reduced Gröbner bases
[EP11] C. Eder and J. Perry. Signature-based algorithms to compute Gröbner bases
[ER13] C. Eder and B. H. Roune. Signature Rewriting in Gröbner Basis Computation
[Fa02] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero $F_{5}$
[Ga12b] V. Galkin. Simple signature-based Groebner basis algorithm
[GGV10] S. Gao, Y. Guan and F. Volny IV. A New Incremental Algorithm for Computing Gröbner Bases
[GVW11] S. Gao, F. Volny IV and M. Wang. A New Algorithm For Computing Grobner Bases
[MSWZ12] X. Ma, Y. Sun, D. Wang, and Y. Zhang. A Signature-Based Algorithm for Computing Groebner Bases in Solvable Polynomial Algebras
[RS12] B. H. Roune and M. Stillman. Practical Gröbner Basis Computation
[SW11] Y. Sun and D. Wang. A Generalized Criterion for Signature Related Gröbner Basis Algorithms
[V11] F. Volny IV. New Algorithms for Computing Gröbner Bases

