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Signatures of polynomials

Let I = (f,...,Tm).
Idea: Give each f € [ a bit more structure:

1. Let R™ be generated by ey, ..., em, < a well-ordering on the
monomials of R™, and let a — @ : R™ — R such that

€; = f; for all i.

2. Each p € I can be represented by an

m
= Z hie; € R™ such that p = a.
i=1

3. A signature of p is given by
s(p) = lt<(«) with p =a.

4. A minimal signature of p exists due to <.
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Notations concerning signatures

Let & € R™, then « contains all data we need:

» The polynomial data is @, its leading term denoted by It (@).

» The signature is s(a) = It ().

Moreover, we agree on the following:

» Fora,B € R™, let @ ~ B if « = s for some s € K. In the
same sense we define & ~ 3 if & = t3 for some t € K.

» G always denotes a finite subset of R™ such that for all
a, B € G with s(a) ~ s(/) it holds that a = S.

» o € R is called a syzygy if @ = 0.
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Reductions concerning signatures

Let « € R™, and let t be a term of &. We can s-reduce t by

B e RMif

» Jaterm b such that It (b3) = t and

> 5 (b5) < s(a).

Note

We distinguish 2 types of s-reduction:

1L If lt(bf) ~lt(a) =
otherwise

=
2. Ifs(bf)~s(a) =
otherwise —

top s-reduction step;
tail s-reduction step.

singular s-reduction step;
regular s-reduction step.
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Signature Grobner bases

» s-reductions are always performed w.r.t. a finite basis G C R™.

» G is a signature Grobner basis in signature T if all a € R™
with s (a) = T s-reduce to zero w.r.t G.

» G is a signature Grobner basis if it is a signature Grobner
basis in all signatures.

» If G is a signature Grobner basis, then {a | « € G} is a
Grobner basis for (fi,. .., fm).

Note

In the following we do not need much of the details of
signature-based Grobner basis algorithms, just one property:

The pair set is ordered by increasing signatures.
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Generic signature-based criteria

Non-minimal signature ( NM )

s(a) not minimal for a? = Remove a.

Sketch of proof

1. There exists a syzygy 5 € R™ such that It(8) = s(«).
= We can represent @ with a lower signature.

2. Pairs are handled by increasing signatures.
= All relations of lower signature are already taken care of.

O
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Generic signature-based criteria

Rewritable signature ( RW )

s(a) = s(8)? = Remove either « or .

8/14



@ Rewritable signature criterion in detail

14



The concept of rewrite bases

Rewriter and rewritable elements

10/14



The concept of rewrite bases

Rewriter and rewritable elements

» A rewrite order < is a total order on G such that
s(a) | s(8) = a <. (Exists due to s(a) ~ s(8) = a = (.)

10 /14



The concept of rewrite bases

Rewriter and rewritable elements

» A rewrite order < is a total order on G such that
s(a) | s(8) = a <. (Exists due to s(a) ~ s(8) = a = (.)

» An element « € G is a rewriter in signature T if s(«) | T.

10 /14



The concept of rewrite bases

Rewriter and rewritable elements

» A rewrite order < is a total order on G such that
s(a) | s(8) = a <. (Exists due to s(a) ~ s(8) = a = (.)

» An element « € G is a rewriter in signature T if s(«) | T.

» The <-maximal rewriter in signature T is the canonical
rewriter in T.

10 /14



The concept of rewrite bases

Rewriter and rewritable elements

» A rewrite order < is a total order on G such that
s(a) | s(8) = a <. (Exists due to s(a) ~ s(8) = a = (.)

» An element « € G is a rewriter in signature T if s(«) | T.

» The <-maximal rewriter in signature T is the canonical
rewriter in T.

» A multiple of a basis element t« is called rewritable if « is
not the canonical rewriter in s(ta).
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The concept of rewrite bases

Rewrite Bases

» G is a rewrite basis in signature T if the canonical rewriter
in T is not regular s-reducible or if T is a syzygy signature.

» G is a rewrite basis if it is a rewrite basis in all signatures.

Lemma

If G is a rewrite basis up to signature T then G is also a signature
Grébner basis up to T.
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Improving the rewritable signature criterion

@

RB (generic rewrite base algorithm) ‘

J

/ F5 \ GE
(as presented in [Fa02]) M\AP/GVW/SB/

<

Let « and 3 € G such that s(o) = ae; and s5(5) = be;.

a < p
A
(i<j)or(i=jand a<b)

Once an s-polynomial in a
given signature T is compu-
ted all others are rewritable.
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Improving the rewritable signature criterion

RB (generic rewrite base algorithm)

S k AP/GVW/SB

(as presented in [Fa02])

Let « and B € G such that s(a) = ae; and §(5) = be;.

5(cx) 5(8)
adp adf <= @) i(5)
<~
(i<j)or(i=jand a<b) For any signature T define

My ={ta|a € G,s(ta) =T}

Once an s-polynomial in a
given signature T is compu- Choose ta such that
ted all others are rewritable. lt(zer) is minimal.
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Improving the rewritable signature criterion

RB (generic rewrite base algorithm)

S k AP/GVW/SB

(as presented in [Fa02])

Let « and B € G such that s(a) = ae; and §(5) = be;.

5(cx) 5(8)
adp adf <= @) i(5)
<~
(i<j)or(i=jand a<b) For any signature T define

My ={ta|a € G,s(ta) =T}

Once an s-polynomial in a
given signature T is compu- Choose ta such that
ted all others are rewritable. lt(zer) is minimal.

Difference: There might be no such s-polynomial e



Example for differences in the rewritable signature criterion

Let K be the finite field with 13 elements and let R := K|[x, y, z, t]. Let < be
the graded reverse lexicographic monomial ordering. Consider the three input
elements

g1 = —2y° — X’z — 2x°t — 3y’t, g = 3xyz + 2xyt,
g3 = 2xyz — 2yz° + 22° + dyzt.
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Example for differences in the rewritable signature criterion

Let K be the finite field with 13 elements and let R := K|[x, y, z, t]. Let < be
the graded reverse lexicographic monomial ordering. Consider the three input

elements

g1 = —2y> — x°z — 2x°t — 3y’°t,
g3 = 2Xyz — 2yz2 R 4yzt.

ai €G

reduced from

8> = 3xyz + 2xyt,

It (a7)

s(ai)

(0541
12
13
14

e

(5]

V2o — xzap = S (a2, 1)
e3

xas — zap = S (aa, 2)
Yo, — 2’00 =S (as, 1)
yas — %00 = S (as, a2)
xas — ag = S (as, a)
xas — zaz = S (ae, a3)
yog — Baa=38 (cvg, ua)
oy — yaz = S (as, az)
Z11 — X3a2 = S(Cln, ag)
yai1o — X3Oél = S (CM107 a1)
xou2 — ag = S (a2, o)

y3

Xyz
X3 Z2
yz*
XZ3

x°z3

e

€2
y’es
e3
Xes
yes
Xyes
X2e3
xy2e3
x2ye3
x3e3
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Let K be the finite field with 13 elements and let R := K|[x,y, z, t]. Let < be
the graded reverse lexicographic monomial ordering. Consider the three input

elements

g = —2y> — X’z — 2x°t — 3y’°t,
g3 = 2Xxyz — 2yz2 R 4yzt.
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12
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Let K be the finite field with 13 elements and let R := K|[x,y, z, t]. Let < be
the graded reverse lexicographic monomial ordering. Consider the three input

elements

g = —2y> — X’z — 2x°t — 3y’°t,
g3 = 2Xxyz — 2yz2 R 4yzt.

ai €G

reduced from

8> = 3xyz + 2xyt,

It (o)

s(ai)

[e%:]
Qg9

Qi1
12

Q14

e

()]

V2o — xzap = S (a2, 1)
e3

xas — zap = S (aa, @2)
Yo, — 2’00 =S (as, 1)

xas — a5 = S (as, o)
xas — zaz = S (ae, a3)

oy — yaz = S (as, az)
Zol — X3a2 = S(Cln, ag)

X012 — lg = S(au, Oég)

%
Xyz

X3z

yz*

e

()]
y’e
e3
Xes
yes
X2e3
xy2e3

x3e3

X3ZE3

X4ZE3
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