Signature Rewriting in Gröbner Basis Computation

Christian Eder joint work with Bjarke Hammersholt Roune

POLSYS Team, UPMC, Paris, France

June 29, 2013

Signature-based algorithms

The basic idea Generic signature-based criteria

Rewritable signature criterion in detail

Let $I = \langle f_1, \dots, f_m \rangle$. Idea: Give each $f \in I$ a bit more structure:

Let $I = \langle f_1, \ldots, f_m \rangle$. Idea: Give each $f \in I$ a bit more structure:

1. Let R^m be generated by e_1, \ldots, e_m , \prec a well-ordering on the monomials of R^m , and let $\alpha \mapsto \overline{\alpha} : R^m \to R$ such that

 $\overline{e}_i = f_i$ for all *i*.

Let $I = \langle f_1, \ldots, f_m \rangle$. Idea: Give each $f \in I$ a bit more structure:

1. Let R^m be generated by e_1, \ldots, e_m, \prec a well-ordering on the monomials of R^m , and let $\alpha \mapsto \overline{\alpha} : R^m \to R$ such that

$$\overline{e}_i = f_i$$
 for all *i*.

2. Each $p \in I$ can be represented by an

$$lpha = \sum_{i=1}^m h_i e_i \in R^m$$
 such that $p = \overline{lpha}$.

Let $I = \langle f_1, \ldots, f_m \rangle$. Idea: Give each $f \in I$ a bit more structure:

1. Let R^m be generated by e_1, \ldots, e_m, \prec a well-ordering on the monomials of R^m , and let $\alpha \mapsto \overline{\alpha} : R^m \to R$ such that

$$\overline{e}_i = f_i$$
 for all *i*.

2. Each $p \in I$ can be represented by an

$$\alpha = \sum_{i=1}^m h_i e_i \in R^m \text{ such that } p = \overline{\alpha}.$$

3. A signature of *p* is given by

 $\mathfrak{s}(p) = \mathsf{lt}_{\prec}(\alpha) \text{ with } p = \overline{\alpha}.$

Let $I = \langle f_1, \ldots, f_m \rangle$. Idea: Give each $f \in I$ a bit more structure:

1. Let R^m be generated by e_1, \ldots, e_m, \prec a well-ordering on the monomials of R^m , and let $\alpha \mapsto \overline{\alpha} : R^m \to R$ such that

$$\overline{e}_i = f_i$$
 for all *i*.

2. Each $p \in I$ can be represented by an

$$\alpha = \sum_{i=1}^m h_i e_i \in R^m \text{ such that } p = \overline{\alpha}.$$

3. A signature of *p* is given by

$$\mathfrak{s}(p) = \mathsf{lt}_{\prec}(\alpha)$$
 with $p = \overline{\alpha}$.

4. A minimal signature of p exists due to \prec .

Notations concerning signatures

Let $\alpha \in R^m$, then α contains all data we need:

- ▶ The polynomial data is $\overline{\alpha}$, its leading term denoted by $lt(\overline{\alpha})$.
- The signature is $\mathfrak{s}(\alpha) = \mathsf{lt}(\alpha)$.

Notations concerning signatures

Let $\alpha \in R^m$, then α contains all data we need:

▶ The polynomial data is $\overline{\alpha}$, its leading term denoted by It ($\overline{\alpha}$).

• The signature is
$$\mathfrak{s}(\alpha) = \mathsf{lt}(\alpha)$$
.

Moreover, we agree on the following:

- ▶ For $\alpha, \beta \in \mathbb{R}^m$, let $\alpha \simeq \beta$ if $\alpha = s\beta$ for some $s \in K$. In the same sense we define $\overline{\alpha} \simeq \overline{\beta}$ if $\overline{\alpha} = t\overline{\beta}$ for some $t \in K$.
- G always denotes a finite subset of R^m such that for all α, β ∈ G with s(α) ≃ s(β) it holds that α = β.
- ▶ $\alpha \in R^m$ is called a syzygy if $\overline{\alpha} = 0$.

Let $\alpha \in R^m$, and let t be a term of $\overline{\alpha}$. We can s-reduce t by $\beta \in R^m$ if

- ▶ \exists a term *b* such that It $(\overline{b\beta}) = t$ and
- ▶ $\mathfrak{s}(b\beta) \preceq \mathfrak{s}(\alpha).$

Let $\alpha \in R^m$, and let t be a term of $\overline{\alpha}$. We can \mathfrak{s} -reduce t by $\beta \in R^m$ if

- ▶ \exists a term *b* such that It $(\overline{b\beta}) = t$ and
- ▶ $\mathfrak{s}(b\beta) \preceq \mathfrak{s}(\alpha).$

Note

We distinguish 2 types of \mathfrak{s} -reduction:

Let $\alpha \in R^m$, and let t be a term of $\overline{\alpha}$. We can s-reduce t by $\beta \in R^m$ if

- ▶ \exists a term *b* such that It $(\overline{b\beta}) = t$ and
- ▶ $\mathfrak{s}(b\beta) \preceq \mathfrak{s}(\alpha).$

Note

We distinguish 2 types of s-reduction:

1. If $\operatorname{lt}(\overline{b\beta}) \simeq \operatorname{lt}(\overline{\alpha}) \implies \operatorname{top } \mathfrak{s}\operatorname{-reduction step}$; otherwise \implies tail $\mathfrak{s}\operatorname{-reduction step}$.

Let $\alpha \in R^m$, and let t be a term of $\overline{\alpha}$. We can s-reduce t by $\beta \in R^m$ if

- ▶ \exists a term *b* such that It $(\overline{b\beta}) = t$ and
- $\blacktriangleright \mathfrak{s}(b\beta) \preceq \mathfrak{s}(\alpha).$

Note

We distinguish 2 types of \mathfrak{s} -reduction:

- 1. If $\operatorname{lt}(\overline{b\beta}) \simeq \operatorname{lt}(\overline{\alpha}) \implies \operatorname{top} \mathfrak{s}$ -reduction step; otherwise \implies tail \mathfrak{s} -reduction step.
- 2. If $\mathfrak{s}(b\beta) \simeq \mathfrak{s}(\alpha) \implies$ singular \mathfrak{s} -reduction step; otherwise \implies regular \mathfrak{s} -reduction step.

Signature Gröbner bases

- ▶ s-reductions are always performed w.r.t. a finite basis $\mathcal{G} \subset \mathbb{R}^m$.
- ▶ \mathcal{G} is a signature Gröbner basis in signature T if all $\alpha \in \mathbb{R}^m$ with $\mathfrak{s}(\alpha) = T$ \mathfrak{s} -reduce to zero w.r.t \mathcal{G} .
- → G is a signature Gröbner basis if it is a signature Gröbner basis in all signatures.
- ▶ If \mathcal{G} is a signature Gröbner basis, then $\{\overline{\alpha} \mid \alpha \in \mathcal{G}\}$ is a Gröbner basis for $\langle f_1, \ldots, f_m \rangle$.

Note

In the following we do not need much of the details of signature-based Gröbner basis algorithms, just one property:

The pair set is ordered by increasing signatures.

Non-minimal signature (NM)

 $\mathfrak{s}(\alpha)$ not minimal for α ? \Rightarrow Remove α .

Non-minimal signature (NM)

 $\mathfrak{s}(\alpha)$ not minimal for $\alpha? \Rightarrow$ Remove α .

Sketch of proof

- **1.** There exists a syzygy $\beta \in R^m$ such that $lt(\beta) = \mathfrak{s}(\alpha)$. \Rightarrow We can represent $\overline{\alpha}$ with a lower signature.
- Pairs are handled by increasing signatures.
 ⇒ All relations of lower signature are already taken care of.

Rewritable signature (RW)

 $\mathfrak{s}(\alpha) = \mathfrak{s}(\beta)? \Rightarrow$ Remove either α or β .

Rewritable signature (RW)

 $\mathfrak{s}(\alpha) = \mathfrak{s}(\beta)? \Rightarrow$ Remove either α or β .

Sketch of proof

1. $\mathfrak{s}(\alpha - \beta) \prec \mathfrak{s}(\alpha), \mathfrak{s}(\beta).$

2. Pairs are handled by increasing signatures.

 \Rightarrow All necessary computations of lower signature have already taken place.

 \Rightarrow We can represent β by

 $\beta = \alpha +$ elements of lower signature.

Signature-based algorithms
 The basic idea
 Generic signature-based criteria

Rewritable signature criterion in detail

Rewriter and rewritable elements

▶ A rewrite order \triangleleft is a total order on \mathcal{G} such that $\mathfrak{s}(\alpha) \mid \mathfrak{s}(\beta) \Rightarrow \alpha \triangleleft \beta$. (Exists due to $\mathfrak{s}(\alpha) \simeq \mathfrak{s}(\beta) \Rightarrow \alpha = \beta$.)

- ▶ A rewrite order \triangleleft is a total order on \mathcal{G} such that $\mathfrak{s}(\alpha) \mid \mathfrak{s}(\beta) \Rightarrow \alpha \triangleleft \beta$. (Exists due to $\mathfrak{s}(\alpha) \simeq \mathfrak{s}(\beta) \Rightarrow \alpha = \beta$.)
- ▶ An element $\alpha \in \mathcal{G}$ is a rewriter in signature T if $\mathfrak{s}(\alpha) \mid T$.

- ▶ A rewrite order \triangleleft is a total order on \mathcal{G} such that $\mathfrak{s}(\alpha) \mid \mathfrak{s}(\beta) \Rightarrow \alpha \triangleleft \beta$. (Exists due to $\mathfrak{s}(\alpha) \simeq \mathfrak{s}(\beta) \Rightarrow \alpha = \beta$.)
- ▶ An element $\alpha \in \mathcal{G}$ is a rewriter in signature T if $\mathfrak{s}(\alpha) \mid T$.
- ► The ⊲-maximal rewriter in signature T is the canonical rewriter in T.

- ▶ A rewrite order \triangleleft is a total order on \mathcal{G} such that $\mathfrak{s}(\alpha) \mid \mathfrak{s}(\beta) \Rightarrow \alpha \triangleleft \beta$. (Exists due to $\mathfrak{s}(\alpha) \simeq \mathfrak{s}(\beta) \Rightarrow \alpha = \beta$.)
- ▶ An element $\alpha \in \mathcal{G}$ is a rewriter in signature T if $\mathfrak{s}(\alpha) \mid T$.
- ► The <-maximal rewriter in signature T is the canonical rewriter in T.</p>
- A multiple of a basis element tα is called rewritable if α is not the canonical rewriter in s(tα).

Rewrite Bases

Rewrite Bases

 G is a rewrite basis in signature *T* if the canonical rewriter in *T* is not regular
 s-reducible or if *T* is a syzygy signature.

Rewrite Bases

- G is a rewrite basis in signature *T* if the canonical rewriter in *T* is not regular
 s-reducible or if *T* is a syzygy signature.
- \blacktriangleright \mathcal{G} is a **rewrite basis** if it is a rewrite basis in all signatures.

Rewrite Bases

 G is a rewrite basis in signature *T* if the canonical rewriter in *T* is not regular
 s-reducible or if *T* is a syzygy signature.

 \blacktriangleright \mathcal{G} is a rewrite basis if it is a rewrite basis in all signatures.

Lemma

If G is a rewrite basis up to signature T then G is also a signature Gröbner basis up to T.

RB (generic rewrite base algorithm)

Let α and $\beta \in \mathcal{G}$ such that $\mathfrak{s}(\alpha) = ae_i$ and $\mathfrak{s}(\beta) = be_j$.

Difference: There might be no such s-polynomial -

Let K be the finite field with 13 elements and let R := K[x, y, z, t]. Let < be the graded reverse lexicographic monomial ordering. Consider the three input elements

$$\begin{split} g_1 &:= -2y^3 - x^2z - 2x^2t - 3y^2t, \quad g_2 &:= 3xyz + 2xyt, \\ g_3 &:= 2xyz - 2yz^2 + 2z^3 + 4yzt. \end{split}$$

Let K be the finite field with 13 elements and let R := K[x, y, z, t]. Let < be the graded reverse lexicographic monomial ordering. Consider the three input elements

$g_1 :=$	$= -2y^3 - x^2z - 2x^2t - 3y^2t,$	$g_2 := 3$	xyz + 2xyt,	
g3 :	$= 2xyz - 2yz^2 + 2z^3 + 4yzt.$			
$\alpha_i \in \mathcal{G}$	reduced from	$lt(\overline{\alpha_i})$	$\mathfrak{s}(lpha_i)$	
α_1	e 1	y^3	\mathbf{e}_1	
α_2	e ₂	xyz	e ₂	
$lpha_3$	$y^{2}\alpha_{2} - xz\alpha_{1} = \mathcal{S}(\alpha_{2}, \alpha_{1})$	x^3z^2	$y^2 \mathbf{e}_2$	
$lpha_4$	e ₃	yz ²	e 3	
α_5	$x\alpha_4 - z\alpha_2 = \mathcal{S}(\alpha_4, \alpha_2)$	xz^3	xe ₃	
$lpha_{6}$	$y^2 \alpha_4 - z^2 \alpha_1 = \mathcal{S}(\alpha_4, \alpha_1)$	x^2z^3	$y^2 \mathbf{e}_3$	
α_7	$y\alpha_5 - z^2\alpha_2 = \mathcal{S}(\alpha_5, \alpha_2)$	x^2y^2t	<i>xy</i> e ₃	
$lpha_{8}$	$xlpha_{5}-lpha_{6}=\mathcal{S}\left(lpha_{5},lpha_{6} ight)$	z^5	$x^2 \mathbf{e}_3$	
lpha9	$xlpha_{6}-zlpha_{3}=\mathcal{S}\left(lpha_{6},lpha_{3} ight)$	x ⁴ zt	$xy^2\mathbf{e}_3$	
α_{10}	$y\alpha_8 - z^3\alpha_4 = \mathcal{S}(\alpha_8, \alpha_4)$	x^3y^2t	$x^2 y \mathbf{e}_3$	
α_{11}	$x^{3}\alpha_{4} - y\alpha_{3} = \mathcal{S}(\alpha_{4}, \alpha_{3})$	x ⁴ yt	$x^3 \mathbf{e}_3$	
α_{12}	$z\alpha_{11} - x^3\alpha_2 = \mathcal{S}(\alpha_{11}, \alpha_2)$	$x^3 z t^3$	$x^3 z \mathbf{e}_3$	
α_{13}	$y\alpha_{10} - x^3\alpha_1 = \mathcal{S}(\alpha_{10}, \alpha_1)$	x ⁵ zt	$x^2y^2\mathbf{e}_3$	
α_{14}	$x\alpha_{12}-\alpha_9=\mathcal{S}(\alpha_{12},\alpha_9)$	$x^4 t^4$	$x^4 z \mathbf{e}_3$	

Let K be the finite field with 13 elements and let R := K[x, y, z, t]. Let < be the graded reverse lexicographic monomial ordering. Consider the three input elements

$g_1 :=$	$= -2y^3 - x^2z - 2x^2t - 3y^2t,$	$g_2 := 3$	xyz + 2xy	rt,
<i>g</i> ₃ ::	$= 2xyz - 2yz^2 + 2z^3 + 4yzt.$			
$\alpha_i \in \mathcal{G}$	reduced from	$lt(\overline{\alpha_i})$	$\mathfrak{s}(lpha_i)$	
α_1	\mathbf{e}_1	y^3	\mathbf{e}_1	
α_2	e ₂	xyz	e ₂	
$lpha_3$	$y^{2}\alpha_{2} - xz\alpha_{1} = \mathcal{S}(\alpha_{2}, \alpha_{1})$	$x^3 z^2$	$y^2 \mathbf{e}_2$	
$lpha_{4}$	e ₃	yz ²	e ₃	
α_5	$x lpha_4 - z lpha_2 = \mathcal{S}(lpha_4, lpha_2)$	xz^3	xe ₃	
$lpha_{6}$	$y^2 \alpha_4 - z^2 \alpha_1 = \mathcal{S}\left(\alpha_4, \alpha_1\right)$	x^2z^3	$y^2 \mathbf{e}_3$	
α_7	$y\alpha_5 - z^2\alpha_2 = \mathcal{S}\left(\alpha_5, \alpha_2 ight)$	x^2y^2t	xye ₃	\leftarrow
$lpha_{8}$	$xlpha_{5}-lpha_{6}=\mathcal{S}\left(lpha_{5},lpha_{6} ight)$	z^5	$x^2 \mathbf{e}_3$	
lpha9	$xlpha_{6}-zlpha_{3}=\mathcal{S}\left(lpha_{6},lpha_{3} ight)$	$x^4 zt$	$xy^2\mathbf{e}_3$	
α_{10}	$y lpha_8 - z^3 lpha_4 = \mathcal{S}\left(lpha_8, lpha_4 ight)$	x^3y^2t	$x^2 y \mathbf{e}_3$	\leftarrow
α_{11}	$x^{3}\alpha_{4}-y\alpha_{3}=\mathcal{S}\left(\alpha_{4},\alpha_{3}\right)$	x ⁴ yt	$x^3 \mathbf{e}_3$	
α_{12}	$z\alpha_{11}-x^3\alpha_2=\mathcal{S}\left(\alpha_{11},\alpha_2\right)$	$x^3 z t^3$	$x^3 z \mathbf{e}_3$	
α_{13}	$y\alpha_{10} - x^3\alpha_1 = \mathcal{S}(\alpha_{10}, \alpha_1)$	x ⁵ zt	$x^2y^2\mathbf{e}_3$	\leftarrow
α_{14}	$xlpha_{12}-lpha_9=\mathcal{S}\left(lpha_{12},lpha_9 ight)$	$x^4 t^4$	$x^4 z \mathbf{e}_3$	

13/14

Let K be the finite field with 13 elements and let R := K[x, y, z, t]. Let < be the graded reverse lexicographic monomial ordering. Consider the three input elements

$g_1 :=$	$= -2y^3 - x^2z - 2x^2t - 3y^2t,$	$g_2 := 3$	xyz + 2xy	rt,
<i>g</i> ₃ ::	$= 2xyz - 2yz^2 + 2z^3 + 4yzt.$			
$\alpha_i \in \mathcal{G}$	reduced from	$lt(\overline{\alpha_i})$	$\mathfrak{s}(lpha_i)$	
α_1	e ₁	y^3	\mathbf{e}_1	
α_2	e ₂	xyz	e ₂	
$lpha_3$	$y^{2}\alpha_{2} - xz\alpha_{1} = \mathcal{S}(\alpha_{2}, \alpha_{1})$	x^3z^2	$y^2 \mathbf{e}_2$	
$lpha_4$	e ₃	yz ²	e ₃	
$lpha_{5}$	$xlpha_4 - zlpha_2 = \mathcal{S}\left(lpha_4, lpha_2 ight)$	xz^3	xe ₃	
$lpha_{6}$	$y^2 \alpha_4 - z^2 \alpha_1 = \mathcal{S}(\alpha_4, \alpha_1)$	x^2z^3	$y^2 \mathbf{e}_3$	
	$y lpha_5 - z^2 lpha_2 = \mathcal{S}(lpha_5, lpha_2)$		<i>xy</i> e ₃	\leftarrow
$lpha_{8}$	$xlpha_{5}-lpha_{6}=\mathcal{S}\left(lpha_{5},lpha_{6} ight)$	z^5	$x^2 \mathbf{e}_3$	
lpha9	$xlpha_{6}-zlpha_{3}=\mathcal{S}\left(lpha_{6},lpha_{3} ight)$	$x^4 zt$	$xy^2\mathbf{e}_3$	
α_{10}	$ylpha_8-z^3lpha_4=\mathcal{S}\left(lpha_8,lpha_4 ight)$	x^3y^2t	$x^2 y \mathbf{e}_3$	\leftarrow
α_{11}	$x^{3}\alpha_{4}-y\alpha_{3}=\mathcal{S}\left(\alpha_{4},\alpha_{3}\right)$	x ⁴ yt	$x^3 \mathbf{e}_3$	
α_{12}	$z\alpha_{11}-x^3\alpha_2=\mathcal{S}\left(\alpha_{11},\alpha_2\right)$	$x^3 z t^3$	$x^3 z \mathbf{e}_3$	
α_{13}	$y\alpha_{10} - x^3\alpha_1 = \mathcal{S}(\alpha_{10}, \alpha_1)$	x ⁵ zt	$x^2y^2\mathbf{e}_3$	\leftarrow
α_{14}	$xlpha_{12}-lpha_{9}=\mathcal{S}\left(lpha_{12},lpha_{9} ight)$	$x^4 t^4$	$x^4 z \mathbf{e}_3$	

Bibliography

- [AP11] A. Arri und J. Perry. The F5 Criterion revised
- [EP10] C. Eder and J. Perry. F5C: A variant of Faugère's F5 Algorithm with reduced Gröbner bases
- [EP11] C. Eder and J. Perry. Signature-based algorithms to compute Gröbner bases
- [ER13] C. Eder and B. H. Roune. Signature Rewriting in Gröbner Basis Computation
- [Fa02] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero F_5
- [Ga12b] V. Galkin. Simple signature-based Groebner basis algorithm
- [GGV10] S. Gao, Y. Guan and F. Volny IV. A New Incremental Algorithm for Computing Gröbner Bases
- [GVW11] S. Gao, F. Volny IV and M. Wang. A New Algorithm For Computing Grobner Bases
- [MSWZ12] X. Ma, Y. Sun, D. Wang, and Y. Zhang. A Signature-Based Algorithm for Computing Groebner Bases in Solvable Polynomial Algebras
- [RS12] B. H. Roune and M. Stillman. Practical Gröbner Basis Computation
- [SW11] Y. Sun and D. Wang. A Generalized Criterion for Signature Related Gröbner Basis Algorithms
- [V11] F. Volny IV. New Algorithms for Computing Gröbner Bases