
Parallel schedulers on dense matrices

Christian Eder
joint work with Jean-Charles Faugère

POLSYS Team, UPMC, Paris, France

June 11, 2013

1 / 23



1 Basics

2 Naive dense matrix multiplication

3 Naive dense Gaussian Eliminaton

4 Cache-oblivious dense Gaussian Elimination

5 Features of the library

2 / 23



Preconditions I

I Using dense matrices with unsigned int64 entries.

I Computing in Fp, p some prime < 216.

I We compared the following set of parallel schedulers:

1. pthread (or in other words, by hand),

2. OpenMP (sometimes together with pthread),

3. Intel TBB (using lambda expressions),

4. XKAAPI (in particular, the C interface KAAPIC),

Note

The implemented algorithms are not optimized in order to keep
the influence on the schedulers as low as possible.

3 / 23



Preconditions I

I Using dense matrices with unsigned int64 entries.

I Computing in Fp, p some prime < 216.

I We compared the following set of parallel schedulers:

1. pthread (or in other words, by hand),

2. OpenMP (sometimes together with pthread),

3. Intel TBB (using lambda expressions),

4. XKAAPI (in particular, the C interface KAAPIC),

Note

The implemented algorithms are not optimized in order to keep
the influence on the schedulers as low as possible.

3 / 23



Preconditions II

Results presented computed on the HPAC compute server

NUMA

with hyperthreading: 64 cores

Also tested on: 48-core (real cores) AMD Magny Cours NUMA,
4-core (8 with hyperthreading) Intel Sandy Bridge.

4 / 23



Preconditions II

Results presented computed on the HPAC compute server

NUMA I 8 Intel Xeon E5-4620 cores @ 2.20 GHz

I L1 cache: 32 KB

I L2 cache: 256 KB

I shared L3 cache: 16 MB

I 96 GB RAM

with hyperthreading: 64 cores

Also tested on: 48-core (real cores) AMD Magny Cours NUMA,
4-core (8 with hyperthreading) Intel Sandy Bridge.

4 / 23



Preconditions II

Results presented computed on the HPAC compute server

NUMA I 8 Intel Xeon E5-4620 cores @ 2.20 GHz

I L1 cache: 32 KB

I L2 cache: 256 KB

I shared L3 cache: 16 MB

I 96 GB RAM

with hyperthreading: 64 cores

Also tested on: 48-core (real cores) AMD Magny Cours NUMA,
4-core (8 with hyperthreading) Intel Sandy Bridge.

4 / 23



Tested algorithms

1. Naive Dense Matrix Multiplication

2. Dense Gaussian Elimination:
(a) Naive implementation (with and without pivoting)
(b) Cache-oblivious implementation (GEP by Chowdhury

and Ramachandran without pivoting)

5 / 23



1 Basics

2 Naive dense matrix multiplication

3 Naive dense Gaussian Eliminaton

4 Cache-oblivious dense Gaussian Elimination

5 Features of the library

6 / 23



Naive dense matrix multiplication

We compared several variants of parallelized for loops:

I 1-dimensional vs. 2-dimensional parallel loops

I For Intel TBB we compared the different integrated
schedulers:

� auto partitioner: Splitting work to balance load

� affine partitioner: Improves choice of CPU affinity

� simple partitioner: Recursively splits a range until it is no
longer divisible (grainsize is critical)

7 / 23



Naive dense matrix multiplication

We compared several variants of parallelized for loops:

I 1-dimensional vs. 2-dimensional parallel loops

I For Intel TBB we compared the different integrated
schedulers:

� auto partitioner: Splitting work to balance load

� affine partitioner: Improves choice of CPU affinity

� simple partitioner: Recursively splits a range until it is no
longer divisible (grainsize is critical)

7 / 23



Naive dense matrix multiplication

We compared several variants of parallelized for loops:

I 1-dimensional vs. 2-dimensional parallel loops

I For Intel TBB we compared the different integrated
schedulers:

� auto partitioner: Splitting work to balance load

� affine partitioner: Improves choice of CPU affinity

� simple partitioner: Recursively splits a range until it is no
longer divisible (grainsize is critical)

7 / 23



Timings

1 2 4 8 16 32 64
Number of threads

0

100

200

300

400

500

600

700

800

900
Re

al
 ti

m
e 

in
 s

ec
on

ds
Mat Mult uint64 Matrix dimensions: 6000 x 5000, 5000 x 7000

Raw sequential
pThread 1D
Open MP collapse(1) outer loop
Open MP collapse(1) inner loop
Open MP collapse(2)
KAAPIC 1D
KAAPIC 2D
Intel TBB 1D auto partitioner
Intel TBB 1D affinity partitioner
Intel TBB 1D simple partitioner
Intel TBB 2D auto partitioner
Intel TBB 2D affinity partitioner
Intel TBB 2D simple partitioner

Timings: bench-4a7a7e230bef0495ee882549092f0e33~

8 / 23



GFLOPS/sec

1 2 4 8 16 32 64
Number of threads

0

5

10

15

20

25

30
GF

LO
PS

 p
er

 s
ec

on
d

Mat Mult uint64 Matrix dimensions: 6000 x 5000, 5000 x 7000
Raw sequential
pThread 1D
Open MP collapse(1) outer loop
Open MP collapse(1) inner loop
Open MP collapse(2)
KAAPIC 1D
KAAPIC 2D
Intel TBB 1D auto partitioner
Intel TBB 1D affinity partitioner
Intel TBB 1D simple partitioner
Intel TBB 2D auto partitioner
Intel TBB 2D affinity partitioner
Intel TBB 2D simple partitioner

GFLOPS/sec: bench-4a7a7e230bef0495ee882549092f0e33~

9 / 23



1 Basics

2 Naive dense matrix multiplication

3 Naive dense Gaussian Eliminaton

4 Cache-oblivious dense Gaussian Elimination

5 Features of the library

10 / 23



Naive dense Gaussian Elimination

Compared to naive multiplication we saw a different behaviour:

I KAAPIC, Open MP and Intel TBB are in the same range.

I Open MP behaves a bit worse when it comes to
hyperthreading.

I pthread implementation slows down due to lack of real
scheduler.

11 / 23



Naive dense Gaussian Elimination

Compared to naive multiplication we saw a different behaviour:

I KAAPIC, Open MP and Intel TBB are in the same range.

I Open MP behaves a bit worse when it comes to
hyperthreading.

I pthread implementation slows down due to lack of real
scheduler.

11 / 23



Naive dense Gaussian Elimination

Compared to naive multiplication we saw a different behaviour:

I KAAPIC, Open MP and Intel TBB are in the same range.

I Open MP behaves a bit worse when it comes to
hyperthreading.

I pthread implementation slows down due to lack of real
scheduler.

11 / 23



Naive dense Gaussian Elimination

Compared to naive multiplication we saw a different behaviour:

I KAAPIC, Open MP and Intel TBB are in the same range.

I Open MP behaves a bit worse when it comes to
hyperthreading.

I pthread implementation slows down due to lack of real
scheduler.

11 / 23



Timings

1 2 4 8 16 32 64
Number of threads

0

100

200

300

400

500

600

700
Re

al
 ti

m
e 

in
 s

ec
on

ds
Naive GEP uint64 Matrix dimensions: 8192 x 8192

Raw sequential
pThread 1D
Open MP collapse(1) outer loop
KAAPIC 1D
Intel TBB 1D auto partitioner
Intel TBB 1D affinity partitioner
Intel TBB 1D simple partitioner

Timings: test-naive-gep-hpac-talk

12 / 23



GFLOPS/sec

1 2 4 8 16 32 64
Number of threads

0

2

4

6

8

10

12

14

16

18
GF

LO
PS

 p
er

 s
ec

on
d

Naive GEP uint64 Matrix dimensions: 8192 x 8192
Raw sequential
pThread 1D
Open MP collapse(1) outer loop
KAAPIC 1D
Intel TBB 1D auto partitioner
Intel TBB 1D affinity partitioner
Intel TBB 1D simple partitioner

GFLOPS/sec: test-naive-gep-hpac-talk

13 / 23



Speedup

1 2 4 8 16 32 64
Number of threads

0

1

2

3

4

5
Sp

ee
du

p
Naive GEP uint64 Matrix dimensions: 8192 x 8192

Raw sequential
pThread 1D
Open MP collapse(1) outer loop
KAAPIC 1D
Intel TBB 1D auto partitioner
Intel TBB 1D affinity partitioner
Intel TBB 1D simple partitioner

Speedup: test-naive-gep-hpac-talk

14 / 23



1 Basics

2 Naive dense matrix multiplication

3 Naive dense Gaussian Eliminaton

4 Cache-oblivious dense Gaussian Elimination

5 Features of the library

15 / 23



Cache-oblivious dense Gaussian Elimination

Implemented I-GEP from [CR10].

Basic ideas are:

I Assume matrix of dimensions 2k × 2k .

I Do not consider pivoting.

I Recursively split matrix in 4 same-sized parts.

2k−1

2k−1

I Stop recursion once parts fit in cache.

16 / 23



Cache-oblivious dense Gaussian Elimination

Implemented I-GEP from [CR10].
Basic ideas are:

I Assume matrix of dimensions 2k × 2k .

I Do not consider pivoting.

I Recursively split matrix in 4 same-sized parts.

2k−1

2k−1

I Stop recursion once parts fit in cache.

16 / 23



Cache-oblivious dense Gaussian Elimination

Implemented I-GEP from [CR10].
Basic ideas are:

I Assume matrix of dimensions 2k × 2k .

I Do not consider pivoting.

I Recursively split matrix in 4 same-sized parts.

2k−1

2k−1

I Stop recursion once parts fit in cache.

16 / 23



Cache-oblivious dense Gaussian Elimination

Implemented I-GEP from [CR10].
Basic ideas are:

I Assume matrix of dimensions 2k × 2k .

I Do not consider pivoting.

I Recursively split matrix in 4 same-sized parts.

2k−1

2k−1

I Stop recursion once parts fit in cache.

16 / 23



Cache-oblivious dense Gaussian Elimination

Implemented I-GEP from [CR10].
Basic ideas are:

I Assume matrix of dimensions 2k × 2k .

I Do not consider pivoting.

I Recursively split matrix in 4 same-sized parts.

2k−1

2k−1

I Stop recursion once parts fit in cache.

16 / 23



Cache-oblivious dense Gaussian Elimination

Needs a bit of globally bookkeeping (inverse pivots, etc.)

17 / 23



Cache-oblivious dense Gaussian Elimination

Needs a bit of globally bookkeeping (inverse pivots, etc.)

17 / 23



Cache-oblivious dense Gaussian Elimination

Needs a bit of globally bookkeeping (inverse pivots, etc.)

17 / 23



Cache-oblivious dense Gaussian Elimination

Needs a bit of globally bookkeeping (inverse pivots, etc.)

17 / 23



Cache-oblivious dense Gaussian Elimination

Needs a bit of globally bookkeeping (inverse pivots, etc.)

17 / 23



Cache-oblivious dense Gaussian Elimination

Differences to the naive approach:

I The base cases are not parallelized.

I There are no parallel FOR loops.

I Instead we need to use a recursive task scheduling:

� pthread: no scheduling, left unbound.
� Open MP: parallel sections (real tasks should be

available in Open MP 4.0)
� KAAPIC: kaapic spawn
� Intel TBB: invoke

18 / 23



Cache-oblivious dense Gaussian Elimination

Differences to the naive approach:

I The base cases are not parallelized.

I There are no parallel FOR loops.

I Instead we need to use a recursive task scheduling:

� pthread: no scheduling, left unbound.
� Open MP: parallel sections (real tasks should be

available in Open MP 4.0)
� KAAPIC: kaapic spawn
� Intel TBB: invoke

18 / 23



Cache-oblivious dense Gaussian Elimination

Differences to the naive approach:

I The base cases are not parallelized.

I There are no parallel FOR loops.

I Instead we need to use a recursive task scheduling:

� pthread: no scheduling, left unbound.
� Open MP: parallel sections (real tasks should be

available in Open MP 4.0)
� KAAPIC: kaapic spawn
� Intel TBB: invoke

18 / 23



Cache-oblivious dense Gaussian Elimination

Differences to the naive approach:

I The base cases are not parallelized.

I There are no parallel FOR loops.

I Instead we need to use a recursive task scheduling:

� pthread: no scheduling, left unbound.
� Open MP: parallel sections (real tasks should be

available in Open MP 4.0)
� KAAPIC: kaapic spawn
� Intel TBB: invoke

18 / 23



Timings

1 2 4 8 16 32 64
Number of threads

0

50

100

150

200

250

300

350

400
Re

al
 ti

m
e 

in
 s

ec
on

ds
Cache-oblivious GEP uint64 Matrix dimensions: 8192 x 8192

Raw sequential
pThread 1D
Open MP parallel sections
KAAPIC Spawn
Intel TBB Invoke

Timings: test-co-gep-hpac-talk

19 / 23



GFLOPS/sec

1 2 4 8 16 32 64
Number of threads

0

10

20

30

40

50

60

70

80
GF

LO
PS

 p
er

 s
ec

on
d

Cache-oblivious GEP uint64 Matrix dimensions: 8192 x 8192
Raw sequential
pThread 1D
Open MP parallel sections
KAAPIC Spawn
Intel TBB Invoke

GFLOPS/sec: test-co-gep-hpac-talk

20 / 23



Speedup

1 2 4 8 16 32 64
Number of threads

0

2

4

6

8

10

12

14
Sp

ee
du

p
Cache-oblivious GEP uint64 Matrix dimensions: 8192 x 8192

Raw sequential
pThread 1D
Open MP parallel sections
KAAPIC Spawn
Intel TBB Invoke

Speedup: test-co-gep-hpac-talk

21 / 23



1 Basics

2 Naive dense matrix multiplication

3 Naive dense Gaussian Eliminaton

4 Cache-oblivious dense Gaussian Elimination

5 Features of the library

22 / 23



Features of the library

I Detection of available parallel schedulers

I Userfriendly interface to add new algorithms easily: For
example, one can easily drop in ATLAS, OpenBLAS,
PLASMA, etc.

Easy to use and highly customizable, Python-based
benchmarking tools including plotting functionality

Publicly available: https://github.com/ederc/F4RT

23 / 23

https://github.com/ederc/F4RT


Features of the library

I Detection of available parallel schedulers

I Userfriendly interface to add new algorithms easily: For
example, one can easily drop in ATLAS, OpenBLAS,
PLASMA, etc.

Easy to use and highly customizable, Python-based
benchmarking tools including plotting functionality

Publicly available: https://github.com/ederc/F4RT

23 / 23

https://github.com/ederc/F4RT


Features of the library

1 2 4 8 16 32 64
Number of threads

0

20

40

60

80

100

120

140

160
GF

LO
PS

 p
er

 s
ec

on
d

Tiled GEP double Matrix dimensions: 32768 x 32768
OpenBLAS / GotoBLAS

GFLOPS/sec: bench-35adccead66ea99653a407c5a66039e3

23 / 23



Features of the library

0 1 2 3 4 5
Number of increasing steps

0

20

40

60

80

100

120

140
GF

LO
PS

 p
er

 s
ec

on
d

Tiled GEP double Matrix dimensions: 1024 x 1024 with dimensions doubled in each step using 32 threads

OpenBLAS / GotoBLAS

GFLOPS/sec: bench-5f898c444ab6510f97b907dfe30ec69b

23 / 23



Features of the library

1 2 4 8 16 32 64
Number of threads

0

5

10

15

20

25

30
GF

LO
PS

 p
er

 s
ec

on
d

Tiled GEP double Matrix dimensions: 32768 x 32768
PLASMA

GFLOPS/sec: bench-5ce3357af4f8f3b6cf377a6eabd0f2db

23 / 23



Features of the library

0 1 2 3 4 5
Number of increasing steps

0

2

4

6

8

10

12

14

16
GF

LO
PS

 p
er

 s
ec

on
d

Tiled GEP double Matrix dimensions: 1024 x 1024 with dimensions doubled in each step using 32 threads

PLASMA

GFLOPS/sec: bench-f0ee92bdc4b86593fa79cffc9c29099c

23 / 23



Features of the library

I Detection of available parallel schedulers

I Userfriendly interface to add new algorithms easily: For
example, one can easily drop in ATLAS, OpenBLAS,
PLASMA, etc.

I Easy to use and highly customizable, Python-based
benchmarking tools including plotting functionality

I Publicly available:
https://github.com/ederc/LA-BENCHER

23 / 23

https://github.com/ederc/LA-BENCHER


Features of the library

I Detection of available parallel schedulers

I Userfriendly interface to add new algorithms easily: For
example, one can easily drop in ATLAS, OpenBLAS,
PLASMA, etc.

I Easy to use and highly customizable, Python-based
benchmarking tools including plotting functionality

I Publicly available:
https://github.com/ederc/LA-BENCHER

22 / 23

https://github.com/ederc/LA-BENCHER


Bibliography

[PL13] E. Agullo et al. PLASMA Users’ Guide: Parallel Linear Algebra Software for Multicore Architectures,
Version 2.0

[OB13] Z. Xianyi, W. Quian and Z. Chothia. OpenBLAS, http://xianyi.github.com/OpenBLAS

[CR10] R. A. Chowdhury and V. Ramachandran. The Cache-Oblivious Gaussian Elimination Paradigm:
Theoretical Framework, Parallelization and Experimental Evaluation

[WP04] R. C. Whaley and A. Petitet Minimizing development and maintenance costs in supporting
persistently optimized BLAS

[WPD01] R. C. Whaley, A. Petitet and J. J. Dongarra Automated Empirical Optimization of Software and the
ATLAS Project

[WD99] R. C. Whaley and J. J. Dongarra Automatically Tuned Linear Algebra Software

23 / 23

http://xianyi.github.com/OpenBLAS

	Basics
	Naive dense matrix multiplication
	Naive dense Gaussian Eliminaton
	Cache-oblivious dense Gaussian Elimination
	Features of the library

