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Preconditions I

I Using dense matrices with unsigned int64 entries.

I Computing in Fp, p some prime < 216.

I We compared the following set of parallel schedulers:

1. pthread (or in other words, by hand),

2. OpenMP (sometimes together with pthread),

3. Intel TBB (using lambda expressions),

4. XKAAPI (in particular, the C interface KAAPIC),

Note

The implemented algorithms are not optimized in order to keep
the influence on the schedulers as low as possible.
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Preconditions II

Results presented computed on the HPAC compute server

NUMA

with hyperthreading: 64 cores

Also tested on: 48-core (real cores) AMD Magny Cours NUMA,
4-core (8 with hyperthreading) Intel Sandy Bridge.
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Tested algorithms

1. Naive Dense Matrix Multiplication

2. Dense Gaussian Elimination:
(a) Naive implementation (with and without pivoting)
(b) Cache-oblivious implementation (GEP by Chowdhury

and Ramachandran without pivoting)
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Naive dense matrix multiplication

We compared several variants of parallelized for loops:

I 1-dimensional vs. 2-dimensional parallel loops

I For Intel TBB we compared the different integrated
schedulers:

� auto partitioner: Splitting work to balance load

� affine partitioner: Improves choice of CPU affinity

� simple partitioner: Recursively splits a range until it is no
longer divisible (grainsize is critical)
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Naive dense Gaussian Elimination

Compared to naive multiplication we saw a different behaviour:

I KAAPIC, Open MP and Intel TBB are in the same range.

I Open MP behaves a bit worse when it comes to
hyperthreading.

I pthread implementation slows down due to lack of real
scheduler.
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Speedup
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Cache-oblivious dense Gaussian Elimination

Implemented I-GEP from [CR10].

Basic ideas are:

I Assume matrix of dimensions 2k × 2k .

I Do not consider pivoting.

I Recursively split matrix in 4 same-sized parts.

2k−1

2k−1

I Stop recursion once parts fit in cache.

16 / 23



Cache-oblivious dense Gaussian Elimination

Implemented I-GEP from [CR10].
Basic ideas are:

I Assume matrix of dimensions 2k × 2k .

I Do not consider pivoting.

I Recursively split matrix in 4 same-sized parts.

2k−1

2k−1

I Stop recursion once parts fit in cache.

16 / 23



Cache-oblivious dense Gaussian Elimination

Implemented I-GEP from [CR10].
Basic ideas are:

I Assume matrix of dimensions 2k × 2k .

I Do not consider pivoting.

I Recursively split matrix in 4 same-sized parts.

2k−1

2k−1

I Stop recursion once parts fit in cache.

16 / 23



Cache-oblivious dense Gaussian Elimination

Implemented I-GEP from [CR10].
Basic ideas are:

I Assume matrix of dimensions 2k × 2k .

I Do not consider pivoting.

I Recursively split matrix in 4 same-sized parts.

2k−1

2k−1

I Stop recursion once parts fit in cache.

16 / 23



Cache-oblivious dense Gaussian Elimination

Implemented I-GEP from [CR10].
Basic ideas are:

I Assume matrix of dimensions 2k × 2k .

I Do not consider pivoting.

I Recursively split matrix in 4 same-sized parts.

2k−1

2k−1

I Stop recursion once parts fit in cache.

16 / 23



Cache-oblivious dense Gaussian Elimination

Needs a bit of globally bookkeeping (inverse pivots, etc.)
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Cache-oblivious dense Gaussian Elimination

Differences to the naive approach:

I The base cases are not parallelized.

I There are no parallel FOR loops.

I Instead we need to use a recursive task scheduling:

� pthread: no scheduling, left unbound.
� Open MP: parallel sections (real tasks should be

available in Open MP 4.0)
� KAAPIC: kaapic spawn
� Intel TBB: invoke
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GFLOPS/sec
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Speedup

1 2 4 8 16 32 64
Number of threads

0

2

4

6

8

10

12

14
Sp

ee
du

p
Cache-oblivious GEP uint64 Matrix dimensions: 8192 x 8192

Raw sequential
pThread 1D
Open MP parallel sections
KAAPIC Spawn
Intel TBB Invoke

Speedup: test-co-gep-hpac-talk

21 / 23



1 Basics

2 Naive dense matrix multiplication

3 Naive dense Gaussian Eliminaton

4 Cache-oblivious dense Gaussian Elimination

5 Features of the library

22 / 23



Features of the library

I Detection of available parallel schedulers

I Userfriendly interface to add new algorithms easily: For
example, one can easily drop in ATLAS, OpenBLAS,
PLASMA, etc.

Easy to use and highly customizable, Python-based
benchmarking tools including plotting functionality

Publicly available: https://github.com/ederc/F4RT
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