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What is this talk all about?

1 Efficient computations of Gröbner bases using Faugère’s F5
Algorithm and variants of it

2 Explanation of the F5 Algorithm, its criteria used to detect
useless pairs, and its points of inefficiency

3 Presentation of the variant F5C which reduces the stated
inefficiencies of F5

4 Comparison of the variants of F5 under several aspects
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What is this talk all about?

1 Efficient computations of Gröbner bases using Faugère’s F5
Algorithm and variants of it

2 Explanation of the F5 Algorithm, its criteria used to detect
useless pairs, and its points of inefficiency

3 Presentation of the variant F5C which reduces the stated
inefficiencies of F5

4 Comparison of the variants of F5 under several aspects

Remark
These ineffiencies are the computations of polynomials redundant

for the Gröbner basis G , i.e. polynomials whose head monomials
are multiples of head monomials of other elements already in G .
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The following section is about

1 Introducing Gröbner bases
Computation of Gröbner bases
Problem of zero reduction

2 The F5 Algorithm

3 Optimizations of F5

4 Comparison of the variants of F5
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Main property of Göbner bases

Lemma
Let G be a Gröbner basis of an ideal I . Then for all elements

gi , gj ∈ G it holds that

Spol(gi , gj )
G
−→ 0,

where

• Spol(gi , gj ) = hc(gj )uigi − hc(gi )ujgj and

• uk =
lcm(hm(gi ),hm(gj ))

hm(gk ) for k ∈ {i , j}.
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Computation of Gröbner bases
The standard Buchberger Algorithm to compute G follows easily
from the previous stated property of G :
Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

1 G = ∅

2 G := G ∪ {fi} for all i ∈ {1, . . . ,m}

3 Set P := {Spol(gi , gj ) | gi , gj ∈ G , i 6= j}

5 / 29



Computation of Gröbner bases
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2 G := G ∪ {fi} for all i ∈ {1, . . . ,m}

3 Set P := {Spol(gi , gj ) | gi , gj ∈ G , i 6= j}

4 Choose one element p ∈ P , P := P \ {p}

(a) If p
G
−→ 0 ⇒ no new information

Go on with the next element in P .
(b) If p

G
−→ h 6= 0 ⇒ new information

Add h to G .
Build new S-polynomials with h and add them to P .
Go on with the next element in P .

5 When there is no pair left we are done and G is a Gröbner
basis of I .
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An example of zero reduction

Example

Assume the ideal I = 〈g1, g2〉 � Q[x , y , z ] where g1 = xy − z2,
g2 = y2 − z2.
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Example

Assume the ideal I = 〈g1, g2〉 � Q[x , y , z ] where g1 = xy − z2,
g2 = y2 − z2.
Computing

Spol(g2, g1) = xy2 − xz2 − xy2 + yz2 = −xz2 + yz2,

we get a new element g3 = xz2 − yz2 for G .
Let us compute Spol(g3, g1) next:

Spol(g3, g1) = xyz2 − y2z2 − xyz2 + z4 = −y2z2 + z4.

Now we can reduce further with z2g2:

−y2z2 + z4 + y2z2 − z4 = 0.
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The following section is about

1 Introducing Gröbner bases

2 The F5 Algorithm
F5 basics
Computing Gröbner bases incrementally
The inefficiency of F5

3 Optimizations of F5

4 Comparison of the variants of F5
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Moreover, each element being newly computed in the algorithm
gets the signature of the S-polynomial it comes from.
In our example

g3 = Spol(g2, g1) = xg2 − yg1

⇒ S(g3) = xS(g2) = x(1, 2) := (x , 2).

It follows that Spol(g3, g1) = yg3 − zg1 has

S (Spol(g3, g1)) = yS(g3) = (xy , 2).

Now we see that S (Spol(g3, g1)) = (xy , 2) and hm(g1) = xy .
⇒ In F5 we know that Spol(g3, g1) will reduce to zero!
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How does this work?

To understand the criteria of F5 on which this knowledge of zero
reduction is based on we first need to give a general overview of a
slightly different approach of implementing a Gröbner basis
algorithm:

Computing Gröbner bases incrementally
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Incremental nature of the F5 Algorithm

Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I
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Incremental nature of the F5 Algorithm

Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

1 Compute Gröbner basis G1 of 〈f1〉.

2 Compute Gröbner basis G2 of 〈f1, f2〉.

3 . . .
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Incremental nature of the F5 Algorithm

Input: Ideal I = 〈f1, . . . , fm〉
Output: Gröbner basis G of I

1 Compute Gröbner basis G1 of 〈f1〉.

2 Compute Gröbner basis G2 of 〈f1, f2〉.

3 . . .

Remark
Note that from this point on fi = gi is no longer true for all
i ∈ {1, . . . ,m}, due to possible intermediate computations of
S-polynomials.
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F5 and Rewritten Criterion

Theorem (F5 Criterion)

An S-polynomial Spol(gi , gj ) = uigi − ujgj does not need to be

computed, let alone reduced, if for k ∈ {i , j} and S(gk) = (tk , ℓk)
there exists an element g in Gℓk−1 such that

hm(g) | uktk .
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Theorem (Rewritten Criterion)

An S-polynomial Spol(gi , gj ) = uigi − ujgj does not need to be

computed, let alone reduced, if for k ∈ {i , j} and S(gk) = (tk , ℓk)
there exists an element gν with S(gν) = (tν , ℓk) in G such that

ν > k and tν | uktk .
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Complexity of top-reduction in F5

On the one hand adding signatures to polynomials makes it
possible to use these powerful criteria,
on the other hand we have to keep track of the signatures, i.e.
we must be very careful when reducing elements.
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on the other hand we have to keep track of the signatures, i.e.
we must be very careful when reducing elements.

Example

Assume the polynomial gi = xy2 − z3 with S(gi ) = (xy2, ℓ) and a
possible reducer gj = y2 − xz with S(gj ) = (tj , ℓ).
Note that the signatures of both polynomials have the same

index. In Buchberger-like implementations the top-reduction
would take place, i.e. we would compute gi − xgj .
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Complexity of top-reduction in F5

Example

In F5 the following can happen:

1 If xgj satisfies the F5 Criterion ⇒ no reduction!

2 If xgj satisfies the Rewritten Criterion ⇒ no reduction!

3 None of the above cases holds and xtj < xy2 ⇒ gi − xgj is
computed with the signature (xy2, ℓ).

4 None of the first two cases holds and xtj > xy2 ⇒ the
signature of the reducer is greater than the signature of
the to be reduced element, which leads to

(a) No reduction of gi , but searching for another possible reducer
of it.

(b) a new S-polynomial gnew := xgj − gi whereas
S(gnew) = (xtj , ℓ).
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Redundant polynomials

Example

Assume that there is no other reducer of gi .
⇒ In the first two cases gi is added to G but hm(gj) | hm(gi ).
⇒ gi is redundant for G .
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Redundant polynomials

Example

Assume that there is no other reducer of gi .
⇒ In the first two cases gi is added to G but hm(gj) | hm(gi ).
⇒ gi is redundant for G .

But. . .
For the F5 Algorithm itself and the criteria based on the signatures
gi could be necessary in this iteration step!
⇒ Disrespecting the way F5 top-reduces polynomials would harm
the correctness of F5 in this iteration step!
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Points of inefficiency

The complexity of top-reduction in F5 leads to an inefficiency,
namely we have way too many polynomials in the intermediate Gis

1 which are possible reducers,
⇒ more checks for divisibility and the criteria have to be done,

2 with which we compute newly S-polynomials.
⇒ more (for the resulting Gröbner basis redundant) data is
generated
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The complexity of top-reduction in F5 leads to an inefficiency,
namely we have way too many polynomials in the intermediate Gis

1 which are possible reducers,
⇒ more checks for divisibility and the criteria have to be done,

2 with which we compute newly S-polynomials.
⇒ more (for the resulting Gröbner basis redundant) data is
generated

Question
How can these two points be avoided as far as possible?
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The following section is about

1 Introducing Gröbner bases

2 The F5 Algorithm

3 Optimizations of F5
F5R: F5 Algorithm Reducing by reduced Gröbner bases
F5C: F5 Algorithm Computing with reduced Gröbner bases

4 Comparison of the variants of F5
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F5R: reduced GB reduction

An idea how to fix the first inefficiency, was given by Till Stegers in
2005. His slightly optimized F5 using reduced Gröbner bases for

reduction is called F5R in the following:

17 / 29



F5R: reduced GB reduction

An idea how to fix the first inefficiency, was given by Till Stegers in
2005. His slightly optimized F5 using reduced Gröbner bases for
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1 Compute a Gröbner basis Gi of 〈f1, . . . , fi〉.

2 Compute the reduced Gröbner basis Bi of Gi .
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1 Compute a Gröbner basis Gi of 〈f1, . . . , fi〉.

2 Compute the reduced Gröbner basis Bi of Gi .

3 Compute a Gröbner basis Gi+1 of 〈f1, . . . , fi+1〉 where

(a) Gi is used to build the new pairs with fi+1,
(b) Bi is used to reduce polynomials.

⇒ Fewer reductions in F5R but still the same number of pairs

considered and polynomials generated as in F5.
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Bi only for reduction?

Question
Why is Bi only used for reduction purposes, but not for new-pair
computations?
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Bi only for reduction?

Question
Why is Bi only used for reduction purposes, but not for new-pair
computations?

Answer

Interreducing Gi to Bi ↔ reduction steps rejected by F5

⇒ Reducing Gi to Bi renders the data saved in the signatures of
the polynomials useless!
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F5C: Computations with reduced GB

In 2008 John Perry & Christian Eder have implemented a new
variant of the F5 Algorithm, called F5C.
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F5C uses the reduced Gröbner basis not only for reduction
purposes, but also for the generation of new pairs:

1 Compute a Gröbner basis Gi of 〈f1, . . . , fi〉.

2 Compute the reduced Gröbner basis Bi of Gi .

3 Compute a Gröbner basis Gi+1 of 〈f1, . . . , fi+1〉 where

(a) Bi is used to build new pairs with fi+1,
(b) Bi is used to reduce polynomials.

⇒ Fewer reductions than F5 & F5R and fewer polynomials

generated and considered during the algorithm
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How to use Bi for computations?

We have seen that if we interreduce Gi then the current

signatures are useless in the following.
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How to use Bi for computations?

We have seen that if we interreduce Gi then the current

signatures are useless in the following.
⇒ If the current signatures are useless, then throw them away

and compute new useful ones!

Recomputation of signatures

1 Delete all signatures.

2 Interreduce Gi to Bi .

3 For each element gk ∈ Bi set S(gk) = (1, k).

4 For all elements gj , gk ∈ Bi recompute signatures for
Spol(gj , gk).

5 Start the next iteration step with fi+1 by computing all pairs
with elements from Bi .
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Re-doing stuff is never nice

Recomputing the signatures of the S-polynomials in Bi is the
only part of the optimization which seems to be annoying.
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The following section is about

1 Introducing Gröbner bases

2 The F5 Algorithm

3 Optimizations of F5

4 Comparison of the variants of F5
Implementations
Comparison of the variants
Comparison of F5, F5R & F5C
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Implementations

Three free available implementations:

1 F5, F5R & F5C as a Singular library (Perry & Eder)

2 F5, F5R & F5C implemented in Python for Sage (Perry &
Albrecht): F4-ish reduction possible.

3 F5, F5R & F5C implementation in the Singular kernel:
under development
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Preliminaries

We are comparing the three variants of F5 in the way that we use
the same implementation of the core algorithm for all variants.
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Preliminaries

We are comparing the three variants of F5 in the way that we use
the same implementation of the core algorithm for all variants.

Moreover we do not only compare

1 timings, but also

2 the number of reductions, and

3 the number of polynomials generated.
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Timings

Instead of the timings themselves we present the ratios of the
timings comparing the three variants.
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Timings

Instead of the timings themselves we present the ratios of the
timings comparing the three variants.

system F5R / F5 F5C / F5R F5C / F5

Katsura 7 1.13 0.94 1.06

Katsura 8 1.09 0.75 0.83

Katsura 9 1.14 0.54 0.62

Schrans-Troost 1.01 0.70 0.71

Cyclic 6 0.60 1.00 0.60

Cyclic 7 0.80 0.61 0.49

Cyclic 8 0.93 0.66 0.62
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Number of reductions

system # red in F5 # red in F5R # red in F5C

Katsura 4 774 289 222

Katsura 5 14,597 5,355 3,985

Katsura 6 9,506,808 77,756 58,082

Cyclic 5 512 506 446

Cyclic 6 41,333 23,780 14,167
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Number of polynomials generated

In the following we present internal data from the computation of
Katsura 9.

i # Gi in F5 # Gi in F5C max #P in F5 max #P in F5C

2 2 2 none none

3 4 4 1 1

4 8 8 2 2

5 16 15 4 4

6 32 29 8 6

7 60 51 17 12

8 132 109 29 29

9 524 472 89 71

10 1,165 778 276 89
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Conclusions

F5C

is way faster,
is more efficient,

computes fewer data,
computes fewer reductions

than F5 and F5R.
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On an Installation of Buchberger’s Algorithm

G.-M. Greuel, G. Pfister and H. Schönemann.
Singular 3-1-0. A computer algebra system for polynomial

computations, TU Kaiserslautern, 2009,
http://www.singular.uni-kl.de.

T. Stegers.
Faugère’s F5 Algorithm Revisited

29 / 29


	What is this talk about?
	Introducing Gröbner bases
	Computation of Gröbner bases
	Problem of zero reduction

	The F5 Algorithm
	F5 basics
	Computing Gröbner bases incrementally
	The inefficiency of F5

	Optimizations of F5
	F5R: F5 Algorithm Reducing by reduced Gröbner bases
	F5C: F5 Algorithm Computing with reduced Gröbner bases

	Comparison of the variants of F5
	Implementations
	Comparison of the variants
	Comparison of F5, F5R & F5C


