F5C: A variant of Faugère's F5 algorithm with reduced Gröbner bases

Christian Eder
(joint work with John Perry)
Technische Universität Kaiserslautern

June 16th, 2009

What is this talk all about?

(1) Efficient computations of Gröbner bases using Faugère's F5 Algorithm and variants of it
(2) Explanation of the F5 Algorithm, its criteria used to detect useless pairs, and its points of inefficiency
(3) Presentation of the variant F5C which reduces the stated inefficiencies of F5
(4) Comparison of the variants of F5 under several aspects

What is this talk all about?

(1) Efficient computations of Gröbner bases using Faugère's F5 Algorithm and variants of it
(2) Explanation of the F5 Algorithm, its criteria used to detect useless pairs, and its points of inefficiency
(3) Presentation of the variant F5C which reduces the stated inefficiencies of F5
(4) Comparison of the variants of F5 under several aspects

Remark

These ineffiencies are the computations of polynomials redundant for the Gröbner basis G, i.e. polynomials whose head monomials are multiples of head monomials of other elements already in G.

The following section is about

(1) Introducing Gröbner bases

Computation of Gröbner bases Problem of zero reduction
(2) The F5 Algorithm
(3) Optimizations of F5
(4) Comparison of the variants of F5

Main property of Göbner bases

Lemma

Let G be a Gröbner basis of an ideal I. Then for all elements $g_{i}, g_{j} \in G$ it holds that

$$
\operatorname{Spol}\left(g_{i}, g_{j}\right) \xrightarrow{G} 0
$$

where

- $\operatorname{Spol}\left(g_{i}, g_{j}\right)=\operatorname{hc}\left(g_{j}\right) u_{i} g_{i}-\operatorname{hc}\left(g_{i}\right) u_{j} g_{j}$ and
- $u_{k}=\frac{\operatorname{lcm}\left(\mathrm{hm}\left(g_{i}\right), \mathrm{hm}\left(g_{j}\right)\right)}{\operatorname{hm}\left(g_{k}\right)}$ for $k \in\{i, j\}$.

Computation of Gröbner bases

The standard Buchberger Algorithm to compute G follows easily from the previous stated property of G :
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I
(1) $G=\emptyset$
(2) $G:=G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
(3) Set $P:=\left\{\operatorname{Spol}\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i \neq j\right\}$

Computation of Gröbner bases

The standard Buchberger Algorithm to compute G follows easily from the previous stated property of G :
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I
(1) $G=\emptyset$
(2) $G:=G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
(3) Set $P:=\left\{\operatorname{Spol}\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i \neq j\right\}$
(4) Choose one element $p \in P, P:=P \backslash\{p\}$

Computation of Gröbner bases

The standard Buchberger Algorithm to compute G follows easily from the previous stated property of G :
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I
(1) $G=\emptyset$
(2) $G:=G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
(3) Set $P:=\left\{\operatorname{Spol}\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i \neq j\right\}$
(4) Choose one element $p \in P, P:=P \backslash\{p\}$
(a) If $p \xrightarrow{G} 0 \Rightarrow$ no new information Go on with the next element in P.

Computation of Gröbner bases

The standard Buchberger Algorithm to compute G follows easily from the previous stated property of G :
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I
(1) $G=\emptyset$
(2) $G:=G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
(3) Set $P:=\left\{\operatorname{Spol}\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i \neq j\right\}$
(4) Choose one element $p \in P, P:=P \backslash\{p\}$
(a) If $p \xrightarrow{G} 0 \Rightarrow$ no new information

Go on with the next element in P.
(b) If $p \xrightarrow{G} h \neq 0 \Rightarrow$ new information Add h to G.
Build new S-polynomials with h and add them to P. Go on with the next element in P.

Computation of Gröbner bases

The standard Buchberger Algorithm to compute G follows easily from the previous stated property of G :
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I
(1) $G=\emptyset$
(2) $G:=G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
(3) Set $P:=\left\{\operatorname{Spol}\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i \neq j\right\}$
(4) Choose one element $p \in P, P:=P \backslash\{p\}$
(a) If $p \xrightarrow{G} 0 \Rightarrow$ no new information

Go on with the next element in P.
(b) If $p \xrightarrow{G} h \neq 0 \Rightarrow$ new information

Add h to G.
Build new S-polynomials with h and add them to P.
Go on with the next element in P.
(5) When there is no pair left we are done and G is a Gröbner basis of I.

An example of zero reduction

Example

Assume the ideal $I=\left\langle g_{1}, g_{2}\right\rangle \triangleleft \mathbb{Q}[x, y, z]$ where $g_{1}=x y-z^{2}$, $g_{2}=y^{2}-z^{2}$.

An example of zero reduction

Example

Assume the ideal $I=\left\langle g_{1}, g_{2}\right\rangle \triangleleft \mathbb{Q}[x, y, z]$ where $g_{1}=x y-z^{2}$, $g_{2}=y^{2}-z^{2}$.
Computing

$$
\operatorname{Spol}\left(g_{2}, g_{1}\right)=\mathbf{x y}^{2}-x z^{2}-\mathbf{x} \mathbf{y}^{2}+y z^{2}=-x z^{2}+y z^{2}
$$

we get a new element $g_{3}=x z^{2}-y z^{2}$ for G.

An example of zero reduction

Example
Assume the ideal $I=\left\langle g_{1}, g_{2}\right\rangle \triangleleft \mathbb{Q}[x, y, z]$ where $g_{1}=x y-z^{2}$, $g_{2}=y^{2}-z^{2}$.

Computing

$$
\operatorname{Spol}\left(g_{2}, g_{1}\right)=x y^{2}-x z^{2}-x y^{2}+y z^{2}=-x z^{2}+y z^{2}
$$

we get a new element $g_{3}=x z^{2}-y z^{2}$ for G.
Let us compute $\operatorname{Spol}\left(g_{3}, g_{1}\right)$ next:

An example of zero reduction

Example
Assume the ideal $I=\left\langle g_{1}, g_{2}\right\rangle \triangleleft \mathbb{Q}[x, y, z]$ where $g_{1}=x y-z^{2}$, $g_{2}=y^{2}-z^{2}$.

Computing

$$
\operatorname{Spol}\left(g_{2}, g_{1}\right)=\mathbf{x y}^{2}-x z^{2}-\mathbf{x y}^{2}+y z^{2}=-x z^{2}+y z^{2},
$$

we get a new element $g_{3}=x z^{2}-y z^{2}$ for G.
Let us compute $\operatorname{Spol}\left(g_{3}, g_{1}\right)$ next:

$$
\operatorname{Spol}\left(g_{3}, g_{1}\right)=\operatorname{xyz}^{2}-y^{2} z^{2}-\mathrm{xyz}^{2}+z^{4}=-y^{2} z^{2}+z^{4}
$$

An example of zero reduction

Example
Assume the ideal $I=\left\langle g_{1}, g_{2}\right\rangle \triangleleft \mathbb{Q}[x, y, z]$ where $g_{1}=x y-z^{2}$, $g_{2}=y^{2}-z^{2}$.

Computing

$$
\operatorname{Spol}\left(g_{2}, g_{1}\right)=\mathbf{x} \mathbf{y}^{2}-x z^{2}-\mathbf{x} \mathbf{y}^{2}+y z^{2}=-x z^{2}+y z^{2},
$$

we get a new element $g_{3}=x z^{2}-y z^{2}$ for G.
Let us compute $\operatorname{Spol}\left(g_{3}, g_{1}\right)$ next:

$$
\operatorname{Spol}\left(g_{3}, g_{1}\right)=\operatorname{xyz}^{2}-y^{2} z^{2}-x^{x} z^{2}+z^{4}=-y^{2} z^{2}+z^{4}
$$

Now we can reduce further with $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0
$$

The following section is about

(1) Introducing Gröbner bases
(2) The F5 Algorithm

F5 basics
Computing Gröbner bases incrementally
The inefficiency of F5
(3) Optimizations of F5
(4) Comparison of the variants of F5

Example revisited - with signatures

Faugère's idea is to give each generator f_{i} of the initial ideal the signature $\mathcal{S}\left(f_{i}\right)=(1, \mathrm{i})$.
Moreover, each element being newly computed in the algorithm gets the signature of the S-polynomial it comes from.

Example revisited - with signatures

Faugère's idea is to give each generator f_{i} of the initial ideal the signature $\mathcal{S}\left(f_{i}\right)=(1, \mathrm{i})$.
Moreover, each element being newly computed in the algorithm gets the signature of the S-polynomial it comes from.
In our example

$$
\begin{aligned}
g_{3} & =\operatorname{Spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathcal{S}\left(g_{3}\right) & =x \mathcal{S}\left(g_{2}\right)=x(1,2):=(x, 2)
\end{aligned}
$$

Example revisited - with signatures

Faugère's idea is to give each generator f_{i} of the initial ideal the signature $\mathcal{S}\left(f_{i}\right)=(1, \mathrm{i})$.
Moreover, each element being newly computed in the algorithm gets the signature of the S-polynomial it comes from.
In our example

$$
\begin{aligned}
g_{3} & =\operatorname{Spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathcal{S}\left(g_{3}\right) & =x \mathcal{S}\left(g_{2}\right)=x(1,2):=(x, 2)
\end{aligned}
$$

It follows that $\operatorname{Spol}\left(g_{3}, g_{1}\right)=y g_{3}-z g_{1}$ has

$$
\mathcal{S}\left(\operatorname{Spol}\left(g_{3}, g_{1}\right)\right)=y \mathcal{S}\left(g_{3}\right)=(x y, 2)
$$

Example revisited - with signatures

Faugère's idea is to give each generator f_{i} of the initial ideal the signature $\mathcal{S}\left(f_{i}\right)=(1, \mathrm{i})$.
Moreover, each element being newly computed in the algorithm gets the signature of the S-polynomial it comes from.
In our example

$$
\begin{aligned}
g_{3} & =\operatorname{Spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathcal{S}\left(g_{3}\right) & =x \mathcal{S}\left(g_{2}\right)=x(1,2):=(x, 2)
\end{aligned}
$$

It follows that $\operatorname{Spol}\left(g_{3}, g_{1}\right)=y g_{3}-z g_{1}$ has

$$
\mathcal{S}\left(\operatorname{Spol}\left(g_{3}, g_{1}\right)\right)=y \mathcal{S}\left(g_{3}\right)=(x y, 2)
$$

Now we see that $\mathcal{S}\left(\operatorname{Spol}\left(g_{3}, g_{1}\right)\right)=(x y, 2)$ and $\operatorname{hm}\left(g_{1}\right)=x y$.

Example revisited - with signatures

Faugère's idea is to give each generator f_{i} of the initial ideal the signature $\mathcal{S}\left(f_{i}\right)=(1, \mathrm{i})$.
Moreover, each element being newly computed in the algorithm gets the signature of the S-polynomial it comes from.
In our example

$$
\begin{aligned}
g_{3} & =\operatorname{Spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathcal{S}\left(g_{3}\right) & =x \mathcal{S}\left(g_{2}\right)=x(1,2):=(x, 2)
\end{aligned}
$$

It follows that $\operatorname{Spol}\left(g_{3}, g_{1}\right)=y g_{3}-z g_{1}$ has

$$
\mathcal{S}\left(\operatorname{Spol}\left(g_{3}, g_{1}\right)\right)=y \mathcal{S}\left(g_{3}\right)=(x y, 2)
$$

Now we see that $\mathcal{S}\left(\operatorname{Spol}\left(g_{3}, g_{1}\right)\right)=(x y, 2)$ and $\operatorname{hm}\left(g_{1}\right)=x y$.
$\Rightarrow \operatorname{In} \mathrm{F} 5$ we know that $\operatorname{Spol}\left(g_{3}, g_{1}\right)$ will reduce to zero!

How does this work?

To understand the criteria of F5 on which this knowledge of zero reduction is based on we first need to give a general overview of a slightly different approach of implementing a Gröbner basis algorithm:

Computing Gröbner bases incrementally

Incremental nature of the F5 Algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I

Incremental nature of the F5 Algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I
(1) Compute Gröbner basis G_{1} of $\left\langle f_{1}\right\rangle$.
(2) Compute Gröbner basis G_{2} of $\left\langle f_{1}, f_{2}\right\rangle$.
(3)..

Incremental nature of the F5 Algorithm

Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I
(1) Compute Gröbner basis G_{1} of $\left\langle f_{1}\right\rangle$.
(2) Compute Gröbner basis G_{2} of $\left\langle f_{1}, f_{2}\right\rangle$.
(3)..

Remark

Note that from this point on $f_{i}=g_{i}$ is no longer true for all $i \in\{1, \ldots, m\}$, due to possible intermediate computations of S-polynomials.

F5 and Rewritten Criterion

Theorem (F5 Criterion)
An S-polynomial $\operatorname{Spol}\left(g_{i}, g_{j}\right)=u_{i} g_{i}-u_{j} g_{j}$ does not need to be computed, let alone reduced, if for $k \in\{i, j\}$ and $\mathcal{S}\left(g_{k}\right)=\left(t_{k}, \ell_{k}\right)$ there exists an element g in $G_{\ell_{k}-1}$ such that

$$
\operatorname{hm}(g) \mid u_{k} t_{k}
$$

F5 and Rewritten Criterion

Theorem (F5 Criterion)
An S-polynomial $\operatorname{Spol}\left(g_{i}, g_{j}\right)=u_{i} g_{i}-u_{j} g_{j}$ does not need to be computed, let alone reduced, if for $k \in\{i, j\}$ and $\mathcal{S}\left(g_{k}\right)=\left(t_{k}, \ell_{k}\right)$ there exists an element g in $G_{\ell_{k}-1}$ such that

$$
\operatorname{hm}(g) \mid u_{k} t_{k}
$$

Theorem (Rewritten Criterion)
An S-polynomial $\operatorname{Spol}\left(g_{i}, g_{j}\right)=u_{i} g_{i}-u_{j} g_{j}$ does not need to be computed, let alone reduced, if for $k \in\{i, j\}$ and $\mathcal{S}\left(g_{k}\right)=\left(t_{k}, \ell_{k}\right)$ there exists an element g_{ν} with $\mathcal{S}\left(g_{\nu}\right)=\left(t_{\nu}, \ell_{k}\right)$ in G such that

$$
\nu>k \quad \text { and } \quad t_{\nu} \mid u_{k} t_{k}
$$

Complexity of top-reduction in F5

On the one hand adding signatures to polynomials makes it possible to use these powerful criteria, on the other hand we have to keep track of the signatures, i.e. we must be very careful when reducing elements.

Complexity of top-reduction in F5

On the one hand adding signatures to polynomials makes it possible to use these powerful criteria, on the other hand we have to keep track of the signatures, i.e. we must be very careful when reducing elements.

Example
Assume the polynomial $g_{i}=x y^{2}-z^{3}$ with $\mathcal{S}\left(g_{i}\right)=\left(x y^{2}, \ell\right)$ and a possible reducer $g_{j}=y^{2}-x z$ with $\mathcal{S}\left(g_{j}\right)=\left(t_{j}, \ell\right)$.

Complexity of top-reduction in F5

On the one hand adding signatures to polynomials makes it possible to use these powerful criteria, on the other hand we have to keep track of the signatures, i.e. we must be very careful when reducing elements.

Example

Assume the polynomial $g_{i}=x y^{2}-z^{3}$ with $\mathcal{S}\left(g_{i}\right)=\left(x y^{2}, \ell\right)$ and a possible reducer $g_{j}=y^{2}-x z$ with $\mathcal{S}\left(g_{j}\right)=\left(t_{j}, \ell\right)$.
Note that the signatures of both polynomials have the same index.

Complexity of top-reduction in F5

On the one hand adding signatures to polynomials makes it possible to use these powerful criteria, on the other hand we have to keep track of the signatures, i.e. we must be very careful when reducing elements.

Example

Assume the polynomial $g_{i}=x y^{2}-z^{3}$ with $\mathcal{S}\left(g_{i}\right)=\left(x y^{2}, \ell\right)$ and a possible reducer $g_{j}=y^{2}-x z$ with $\mathcal{S}\left(g_{j}\right)=\left(t_{j}, \ell\right)$. Note that the signatures of both polynomials have the same index. In Buchberger-like implementations the top-reduction would take place, i.e. we would compute $g_{i}-x g_{j}$.

Complexity of top-reduction in F5

Example

In F5 the following can happen:
(1) If $x g_{j}$ satisfies the F5 Criterion \Rightarrow no reduction!

Complexity of top-reduction in F5

Example

In F5 the following can happen:
(1) If $x g_{j}$ satisfies the F5 Criterion \Rightarrow no reduction!
(2) If $x g_{j}$ satisfies the Rewritten Criterion \Rightarrow no reduction!

Complexity of top-reduction in F5

Example

In F5 the following can happen:
(1) If $x g_{j}$ satisfies the F5 Criterion \Rightarrow no reduction!
(2) If $x g_{j}$ satisfies the Rewritten Criterion \Rightarrow no reduction!
(3) None of the above cases holds and $x t_{j}<x y^{2} \Rightarrow g_{i}-x g_{j}$ is computed with the signature $\left(x y^{2}, \ell\right)$.

Complexity of top-reduction in F5

Example

In F5 the following can happen:
(1) If $x g_{j}$ satisfies the F5 Criterion \Rightarrow no reduction!
(2) If $x g_{j}$ satisfies the Rewritten Criterion \Rightarrow no reduction!
(3) None of the above cases holds and $x t_{j}<x y^{2} \Rightarrow g_{i}-x g_{j}$ is computed with the signature $\left(x y^{2}, \ell\right)$.
(4) None of the first two cases holds and $x t_{j}>x y^{2} \Rightarrow$ the signature of the reducer is greater than the signature of the to be reduced element, which leads to

Complexity of top-reduction in F5

Example

In F5 the following can happen:
(1) If $x g_{j}$ satisfies the F5 Criterion \Rightarrow no reduction!
(2) If $x g_{j}$ satisfies the Rewritten Criterion \Rightarrow no reduction!
(3) None of the above cases holds and $x t_{j}<x y^{2} \Rightarrow g_{i}-x g_{j}$ is computed with the signature $\left(x y^{2}, \ell\right)$.
(4) None of the first two cases holds and $x t_{j}>x y^{2} \Rightarrow$ the signature of the reducer is greater than the signature of the to be reduced element, which leads to
(a) No reduction of g_{i}, but searching for another possible reducer of it.

Complexity of top-reduction in F5

Example

In F5 the following can happen:
(1) If $x g_{j}$ satisfies the F5 Criterion \Rightarrow no reduction!
(2) If $x g_{j}$ satisfies the Rewritten Criterion \Rightarrow no reduction!
(3) None of the above cases holds and $x t_{j}<x y^{2} \Rightarrow g_{i}-x g_{j}$ is computed with the signature $\left(x y^{2}, \ell\right)$.
(4) None of the first two cases holds and $x t_{j}>x y^{2} \Rightarrow$ the signature of the reducer is greater than the signature of the to be reduced element, which leads to
(a) No reduction of g_{i}, but searching for another possible reducer of it.
(b) a new S-polynomial $g_{\text {new }}:=x g_{j}-g_{i}$ whereas

$$
\mathcal{S}\left(g_{\text {new }}\right)=\left(x t_{j}, \ell\right)
$$

Redundant polynomials

Example

Assume that there is no other reducer of g_{i}.
\Rightarrow In the first two cases g_{i} is added to G but $\mathrm{hm}\left(g_{j}\right) \mid \mathrm{hm}\left(g_{i}\right)$.
$\Rightarrow g_{i}$ is redundant for G.

Redundant polynomials

Example

Assume that there is no other reducer of g_{i}.
\Rightarrow In the first two cases g_{i} is added to G but $\mathrm{hm}\left(g_{j}\right) \mid \mathrm{hm}\left(g_{i}\right)$.
$\Rightarrow g_{i}$ is redundant for G.
But. . .
For the F5 Algorithm itself and the criteria based on the signatures g_{i} could be necessary in this iteration step!
\Rightarrow Disrespecting the way F5 top-reduces polynomials would harm the correctness of F5 in this iteration step!

Points of inefficiency

The complexity of top-reduction in F5 leads to an inefficiency, namely we have way too many polynomials in the intermediate $G_{i} \mathrm{~S}$
(1) which are possible reducers, \Rightarrow more checks for divisibility and the criteria have to be done,
(2) with which we compute newly S-polynomials. \Rightarrow more (for the resulting Gröbner basis redundant) data is generated

Points of inefficiency

The complexity of top-reduction in F5 leads to an inefficiency, namely we have way too many polynomials in the intermediate $G_{i} \mathrm{~S}$
(1) which are possible reducers, \Rightarrow more checks for divisibility and the criteria have to be done,
(2) with which we compute newly S-polynomials.
\Rightarrow more (for the resulting Gröbner basis redundant) data is generated

Question
How can these two points be avoided as far as possible?

The following section is about

(1) Introducing Gröbner bases
(2) The F5 Algorithm
(3) Optimizations of F5

F5R: F5 Algorithm Reducing by reduced Gröbner bases F5C: F5 Algorithm Computing with reduced Gröbner bases
(4) Comparison of the variants of F5

F5R: reduced GB reduction

An idea how to fix the first inefficiency, was given by Till Stegers in 2005. His slightly optimized F5 using reduced Gröbner bases for reduction is called F5R in the following:

F5R: reduced GB reduction

An idea how to fix the first inefficiency, was given by Till Stegers in 2005. His slightly optimized F5 using reduced Gröbner bases for

reduction is called $\mathbf{F 5 R}$ in the following:

(1) Compute a Gröbner basis G_{i} of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$.
(2) Compute the reduced Gröbner basis B_{i} of G_{i}.
(3) Compute a Gröbner basis G_{i+1} of $\left\langle f_{1}, \ldots, f_{i+1}\right\rangle$ where
(a) G_{i} is used to build the new pairs with f_{i+1},
(b) B_{i} is used to reduce polynomials.

F5R: reduced GB reduction

An idea how to fix the first inefficiency, was given by Till Stegers in 2005. His slightly optimized F5 using reduced Gröbner bases for

reduction is called $\mathbf{F 5 R}$ in the following:

(1) Compute a Gröbner basis G_{i} of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$.
(2) Compute the reduced Gröbner basis B_{i} of G_{i}.
(3) Compute a Gröbner basis G_{i+1} of $\left\langle f_{1}, \ldots, f_{i+1}\right\rangle$ where
(a) G_{i} is used to build the new pairs with f_{i+1},
(b) B_{i} is used to reduce polynomials.
\Rightarrow Fewer reductions in F5R but still the same number of pairs considered and polynomials generated as in F5.

B_{i} only for reduction?

Question

Why is B_{i} only used for reduction purposes, but not for new-pair computations?

B_{i} only for reduction?

Question

Why is B_{i} only used for reduction purposes, but not for new-pair computations?

Answer
Interreducing G_{i} to $B_{i} \leftrightarrow$ reduction steps rejected by F5

B_{i} only for reduction?

Question

Why is B_{i} only used for reduction purposes, but not for new-pair computations?

Answer
Interreducing G_{i} to $B_{i} \leftrightarrow$ reduction steps rejected by F5
\Rightarrow Reducing G_{i} to B_{i} renders the data saved in the signatures of the polynomials useless!

F5C: Computations with reduced GB

In 2008 John Perry \& Christian Eder have implemented a new variant of the F5 Algorithm, called F5C.

F5C: Computations with reduced GB

In 2008 John Perry \& Christian Eder have implemented a new variant of the F5 Algorithm, called F5C. F5C uses the reduced Gröbner basis not only for reduction purposes, but also for the generation of new pairs:

F5C: Computations with reduced GB

In 2008 John Perry \& Christian Eder have implemented a new
variant of the F5 Algorithm, called F5C.
F5C uses the reduced Gröbner basis not only for reduction
purposes, but also for the generation of new pairs:
(1) Compute a Gröbner basis G_{i} of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$.
(2) Compute the reduced Gröbner basis B_{i} of G_{i}.
(3) Compute a Gröbner basis G_{i+1} of $\left\langle f_{1}, \ldots, f_{i+1}\right\rangle$ where
(a) B_{i} is used to build new pairs with f_{i+1},
(b) B_{i} is used to reduce polynomials.

F5C: Computations with reduced GB

In 2008 John Perry \& Christian Eder have implemented a new
variant of the F5 Algorithm, called F5C.
F5C uses the reduced Gröbner basis not only for reduction
purposes, but also for the generation of new pairs:
(1) Compute a Gröbner basis G_{i} of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$.
(2) Compute the reduced Gröbner basis B_{i} of G_{i}.
(3) Compute a Gröbner basis G_{i+1} of $\left\langle f_{1}, \ldots, f_{i+1}\right\rangle$ where (a) B_{i} is used to build new pairs with f_{i+1},
(b) B_{i} is used to reduce polynomials.
\Rightarrow Fewer reductions than F5 \& F5R and fewer polynomials generated and considered during the algorithm

How to use B_{i} for computations?

We have seen that if we interreduce G_{i} then the current signatures are useless in the following.

How to use B_{i} for computations?

We have seen that if we interreduce G_{i} then the current signatures are useless in the following.
\Rightarrow If the current signatures are useless, then throw them away and compute new useful ones!

How to use B_{i} for computations?

We have seen that if we interreduce G_{i} then the current signatures are useless in the following.
\Rightarrow If the current signatures are useless, then throw them away and compute new useful ones!

Recomputation of signatures

How to use B_{i} for computations?

We have seen that if we interreduce G_{i} then the current signatures are useless in the following.
\Rightarrow If the current signatures are useless, then throw them away
and compute new useful ones!
Recomputation of signatures
(1) Delete all signatures.
(2) Interreduce G_{i} to B_{i}.
(3) For each element $g_{k} \in B_{i}$ set $\mathcal{S}\left(g_{k}\right)=(1, \mathrm{k})$.
(4) For all elements $g_{j}, g_{k} \in B_{i}$ recompute signatures for $\operatorname{Spol}\left(g_{j}, g_{k}\right)$.
(5) Start the next iteration step with f_{i+1} by computing all pairs with elements from B_{i}.

Re-doing stuff is never nice

Recomputing the signatures of the S-polynomials in B_{i} is the only part of the optimization which seems to be annoying.

Re-doing stuff is never nice

Recomputing the signatures of the S-polynomials in B_{i} is the only part of the optimization which seems to be annoying.

Further improvement
In 2009 Perry \& Eder have shown that in F5C it is not necessary to recompute the signatures of $\operatorname{Spol}\left(g_{j}, g_{k}\right)$ for $g_{j}, g_{k} \in B_{i}$.

Re-doing stuff is never nice

Recomputing the signatures of the S-polynomials in B_{i} is the only part of the optimization which seems to be annoying.

Further improvement
In 2009 Perry \& Eder have shown that in F5C it is not necessary to recompute the signatures of $\operatorname{Spol}\left(g_{j}, g_{k}\right)$ for $g_{j}, g_{k} \in B_{i}$.
Thus as a last summary what we have to do after an intermediate Gröbner basis G_{i} is computed by F5:

Re-doing stuff is never nice

Recomputing the signatures of the S-polynomials in B_{i} is the only part of the optimization which seems to be annoying.

Further improvement
In 2009 Perry \& Eder have shown that in F5C it is not necessary to recompute the signatures of $\operatorname{Spol}\left(g_{j}, g_{k}\right)$ for $g_{j}, g_{k} \in B_{i}$.
Thus as a last summary what we have to do after an intermediate Gröbner basis G_{i} is computed by F5:
(1) Delete all signatures.
(2) Interreduce G_{i} to B_{i}.
(3) For each $g_{k} \in B_{i}$ set $\mathcal{S}\left(g_{k}\right)=(1, k)$.
(4) Start the next iteration step with f_{i+1}.

The following section is about

(1) Introducing Gröbner bases
(2) The F5 Algorithm
(3) Optimizations of F5

4 Comparison of the variants of F5
Implementations
Comparison of the variants
Comparison of F5, F5R \& F5C

Implementations

Three free available implementations:
(1) F5, F5R \& F5C as a Singular library (Perry \& Eder)

2 F5, F5R \& F5C implemented in Python for Sage (Perry \& Albrecht): F4-ish reduction possible.
(3) F5, F5R \& F5C implementation in the Singular kernel: under development

Preliminaries

We are comparing the three variants of F5 in the way that we use the same implementation of the core algorithm for all variants.

Preliminaries

We are comparing the three variants of F5 in the way that we use the same implementation of the core algorithm for all variants.

Moreover we do not only compare
(1) timings, but also
(2) the number of reductions, and
(3) the number of polynomials generated.

Timings

Instead of the timings themselves we present the ratios of the timings comparing the three variants.

Timings

Instead of the timings themselves we present the ratios of the timings comparing the three variants.

system	F5R / F5	F5C / F5R	F5C / F5
Katsura 7	1.13	0.94	1.06
Katsura 8	1.09	0.75	0.83
Katsura 9	1.14	0.54	0.62
Schrans-Troost	1.01	0.70	0.71
Cyclic 6	0.60	1.00	0.60
Cyclic 7	0.80	0.61	0.49
Cyclic 8	0.93	0.66	0.62

Number of reductions

system	\# red in F5	\# red in F5R	\# red in F5C
Katsura 4	774	289	222
Katsura 5	14,597	5,355	3,985
Katsura 6	$9,506,808$	77,756	58,082
Cyclic 5	512	506	446
Cyclic 6	41,333	23,780	14,167

Number of polynomials generated

In the following we present internal data from the computation of Katsura 9.

i	$\# G_{i}$ in F5	$\# G_{i}$ in F5C	$\max \# P$ in F5	$\max \# P$ in F5C
2	2	2	none	none
3	4	4	1	1
4	8	8	2	2
5	16	15	4	4
6	32	29	8	6
7	60	51	17	12
8	132	109	29	29
9	524	472	89	71
10	1,165	778	276	89

Conclusions

F5C
 is way faster, is more efficient, computes fewer data, computes fewer reductions

than F5 and F5R.

References

目 B．Buchberger．
Ein Algorithmus zum Auffinden der Basiselement des
Restklassenrings nach einem nulldimensionalen Polynomideal
圊 J．－C．Faugère．
A new efficient algorithm for computing Gröbner bases without reduction to zero F_{5}

R．Gebauer and H．M．Möller．
On an Installation of Buchberger＇s Algorithm
© G．－M．Greuel，G．Pfister and H．Schönemann．
Singular 3－1－0．A computer algebra system for polynomial computations，TU Kaiserslautern，2009， http：／／www．singular．uni－kl．de．

围 T．Stegers．
Faugère＇s F5 Algorithm Revisited

