Signature-based algorithms to compute Gröbner bases

Christian Eder
(joint work with John Perry)
University of Kaiserslautern
June 09, 2011

What is this talk all about?

1. Efficient computations of Gröbner bases using so-called signature-based algorithms
2. Explanation of the criteria those algorithms are based on in comparison to Buchberger's criteria.
3. Explanation of termination issues and how they can be solved
4. Comparison between different attempts in the signature-based world

> Convention
> In this talk $R=K\left[x_{1}, \ldots, x_{n}\right]$, where K is a field. Moreover, $<$ is a well-order on R.

The following section is about

(1) Introducing Gröbner bases

Gröbner basics
Computation of Gröbner bases
Problem of zero reduction
(4) Experimental results

Preliminaries
Critical pairs \& zero reductions
Timings

Basic problem

1. Given a ring R and an ideal $I \triangleleft R$ we want to answer some question w.r.t. to $/$.
\Rightarrow We want to compute a Gröbner basis G of I.
2. G can be understood as a nice representation for l. Gröbner bases were discovered by Bruno Buchberger in 1965. Having computed G lots of difficult questions concerning I are easier to answer using G instead of I.
3. This is due to some nice properties of Gröbner bases. The following is very useful to understand how to compute a Gröbner basis.

Main properties of Göbner bases

Definition

$G=\left\{g_{1}, \ldots, g_{r}\right\}$ is a Gröbner basis of an ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ iff
$G \subset I$ and $\left\langle\operatorname{lm}\left(g_{1}\right), \ldots, \operatorname{lm}\left(g_{r}\right)\right\rangle=\langle\operatorname{lm}(f) \mid f \in I\rangle$.

Main properties of Göbner bases

Definition

$G=\left\{g_{1}, \ldots, g_{r}\right\}$ is a Gröbner basis of an ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$ iff $G \subset I$ and $\left\langle\operatorname{lm}\left(g_{1}\right), \ldots, \operatorname{lm}\left(g_{r}\right)\right\rangle=\langle\operatorname{lm}(f) \mid f \in I\rangle$.

Theorem (Buchberger's Criterion)

The following are equivalent:

1. G is a Gröbner basis of an ideal I.
2. For all $p, q \in G$ it holds that

$$
\operatorname{Spol}(p, q) \xrightarrow{G} 0
$$

where

$$
\begin{aligned}
& \triangleright \operatorname{Spol}(p, q)=\operatorname{lc}(q) u_{p} p-\operatorname{lc}(p) u_{q} q, \text { and } \\
& \triangleright u_{r}=\frac{\operatorname{cm}(\operatorname{l\operatorname {lm}(p),\operatorname {lm}(q))}}{\operatorname{lm}(r)} .
\end{aligned}
$$

A lovely example

Example

Assume the ideal $I=\left\langle g_{1}, g_{2}\right\rangle \triangleleft \mathbb{Q}[x, y, z]$ where $g_{1}=x y-z^{2}$, $g_{2}=y^{2}-z^{2} ;<$ degree reverse lexicographical order. Computing

$$
\begin{aligned}
\operatorname{Spol}\left(g_{2}, g_{1}\right) & =x g_{2}-y g_{1} \\
& =\mathbf{x} \mathbf{y}^{2}-x z^{2}-\mathbf{x} \mathbf{y}^{2}+y z^{2} \\
& =-x z^{2}+y z^{2},
\end{aligned}
$$

we get a new element $g_{3}=x z^{2}-y z^{2}$.

Computation of Gröbner bases

The usual Buchberger Algorithm to compute G follows easily from Buchberger's Criterion:
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I

1. $G=\emptyset$
2. $G:=G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. Set $P:=\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$

Computation of Gröbner bases

The usual Buchberger Algorithm to compute G follows easily from Buchberger's Criterion:
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I

1. $G=\emptyset$
2. $G:=G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. Set $P:=\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$
4. Choose $(p, q) \in P, P:=P \backslash\{p\}$
5. $r:=\operatorname{Spol}(p, q)$

Computation of Gröbner bases

The usual Buchberger Algorithm to compute G follows easily from Buchberger's Criterion:
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I

1. $G=\emptyset$
2. $G:=G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. Set $P:=\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$
4. Choose $(p, q) \in P, P:=P \backslash\{p\}$
5. $r:=\operatorname{Spol}(p, q)$
(a) If $r \xrightarrow{G} 0$

Go on with the next element in P.

Computation of Gröbner bases

The usual Buchberger Algorithm to compute G follows easily from Buchberger's Criterion:
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I

1. $G=\emptyset$
2. $G:=G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. Set $P:=\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$
4. Choose $(p, q) \in P, P:=P \backslash\{p\}$
5. $r:=\operatorname{Spol}(p, q)$
(a) If $r \xrightarrow{G} 0$

Go on with the next element in P.
(b) If $r \xrightarrow{G} h \neq 0$

Add h to G.
Build new s-polynomials with h and add them to P.
Go on with the next element in P.
6. When $P=\emptyset$ we are done and G is a Gröbner basis of I.

Computation of Gröbner bases

The usual Buchberger Algorithm to compute G follows easily from Buchberger's Criterion:
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I

1. $G=\emptyset$
2. $G:=G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. Set $P:=\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$
4. Choose $(p, q) \in P, P:=P \backslash\{p\}$
5. $r:=\operatorname{Spol}(p, q)$
(a) If $r \xrightarrow{G} 0 \Rightarrow$ no new information

Go on with the next element in P.
(b) If $r \xrightarrow{G} h \neq 0$

Add h to G.
Build new s-polynomials with h and add them to P.
Go on with the next element in P.
6. When $P=\emptyset$ we are done and G is a Gröbner basis of I.

Computation of Gröbner bases

The usual Buchberger Algorithm to compute G follows easily from Buchberger's Criterion:
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I

1. $G=\emptyset$
2. $G:=G \cup\left\{f_{i}\right\}$ for all $i \in\{1, \ldots, m\}$
3. Set $P:=\left\{\left(g_{i}, g_{j}\right) \mid g_{i}, g_{j} \in G, i>j\right\}$
4. Choose $(p, q) \in P, P:=P \backslash\{p\}$
5. $r:=\operatorname{Spol}(p, q)$
(a) If $r \xrightarrow{G} 0 \Rightarrow$ no new information

Go on with the next element in P.
(b) If $r \xrightarrow{G} h \neq 0 \Rightarrow$ new information

Add h to G.
Build new s-polynomials with h and add them to P.
Go on with the next element in P.
6. When $P=\emptyset$ we are done and G is a Gröbner basis of I.

Computing Gröbner bases incrementally

A slightly variant of this algorithm is the following computing the Gröbner basis incrementally:

Computing Gröbner bases incrementally

A slightly variant of this algorithm is the following computing the Gröbner basis incrementally:
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I

Computing Gröbner bases incrementally

A slightly variant of this algorithm is the following computing the Gröbner basis incrementally:
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I

1. Compute Gröbner basis G_{1} of $\left\langle f_{1}\right\rangle$.

Computing Gröbner bases incrementally

A slightly variant of this algorithm is the following computing the Gröbner basis incrementally:
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I

1. Compute Gröbner basis G_{1} of $\left\langle f_{1}\right\rangle$.
2. Compute Gröbner basis G_{2} of $\left\langle f_{1}, f_{2}\right\rangle$ by
(a) $G_{2}=G_{1} \cup\left\{f_{2}\right\}$,
(b) computing s-polynomials of f_{2} with elements of G_{1}
(c) reducing all s-polynomials w.r.t. G_{2} and possibly add new elements to G_{2}

Computing Gröbner bases incrementally

A slightly variant of this algorithm is the following computing the Gröbner basis incrementally:
Input: Ideal $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$
Output: Gröbner basis G of I

1. Compute Gröbner basis G_{1} of $\left\langle f_{1}\right\rangle$.
2. Compute Gröbner basis G_{2} of $\left\langle f_{1}, f_{2}\right\rangle$ by
(a) $G_{2}=G_{1} \cup\left\{f_{2}\right\}$,
(b) computing s-polynomials of f_{2} with elements of G_{1}
(c) reducing all s-polynomials w.r.t. G_{2} and possibly add new elements to G_{2}
3. ...
4. $G:=G_{m}$ is the Gröbner basis of I

Problem of zero reduction

Lots of useless computations

It is very time-consuming to compute G such that $\operatorname{Spol}(p, q)$ reduces to zero w.r.t. G for all $p, q \in G$.

Problem of zero reduction

Lots of useless computations

It is very time-consuming to compute G such that $\operatorname{Spol}(p, q)$ reduces to zero w.r.t. G for all $p, q \in G$. When such an s-polynomial reduces to an element $h \neq 0$ w.r.t. G then we get new information for the structure of G, namely adding h to G.

Problem of zero reduction

Lots of useless computations

It is very time-consuming to compute G such that $\operatorname{Spol}(p, q)$ reduces to zero w.r.t. G for all $p, q \in G$.
When such an s-polynomial reduces to an element $h \neq 0$ w.r.t. G then we get new information for the structure of G, namely adding h to G.
But most of the s-polynomials considered during the algorithm reduce to zero w.r.t. G.
\Rightarrow No new information from zero reductions

Problem of zero reduction

Lots of useless computations

It is very time-consuming to compute G such that $\operatorname{Spol}(p, q)$ reduces to zero w.r.t. G for all $p, q \in G$.
When such an s-polynomial reduces to an element $h \neq 0$ w.r.t. G then we get new information for the structure of G, namely adding h to G.
But most of the s-polynomials considered during the algorithm reduce to zero w.r.t. G.
\Rightarrow No new information from zero reductions
Let's have a look at the example again:

An example of zero reduction

Example

Given $g_{1}=x y-z^{2}, g_{2}=y^{2}-z^{2}$, we have computed

$$
\operatorname{Spol}\left(g_{2}, g_{1}\right)=\mathbf{x y}^{2}-x z^{2}-\mathbf{x} \mathbf{y}^{2}+y z^{2}=-x z^{2}+y z^{2}
$$

An example of zero reduction

Example

Given $g_{1}=x y-z^{2}, g_{2}=y^{2}-z^{2}$, we have computed

$$
\operatorname{Spol}\left(g_{2}, g_{1}\right)=\mathbf{x} \mathbf{y}^{2}-x z^{2}-\mathbf{x} \mathbf{y}^{2}+y z^{2}=-x z^{2}+y z^{2}
$$

We get a new element $g_{3}=x z^{2}-y z^{2}$ for G.

An example of zero reduction

Example

$$
g_{1}=x y-z^{2}, g_{2}=y^{2}-z^{2}
$$

$$
g_{3}=x z^{2}-y z^{2}
$$

Let us compute $\operatorname{Spol}\left(g_{3}, g_{1}\right)$ next:

An example of zero reduction

Example

$$
g_{1}=x y-z^{2}, g_{2}=y^{2}-z^{2},
$$

$$
g_{3}=x z^{2}-y z^{2}
$$

Let us compute $\operatorname{Spol}\left(g_{3}, g_{1}\right)$ next:

$$
\operatorname{Spol}\left(g_{3}, g_{1}\right)=\mathbf{x y z}^{2}-y^{2} z^{2}-\mathbf{x y z}^{2}+z^{4}=-y^{2} z^{2}+z^{4}
$$

An example of zero reduction

Example

$$
\begin{gathered}
g_{1}=x y-z^{2}, g_{2}=y^{2}-z^{2} \\
g_{3}=x z^{2}-y z^{2}
\end{gathered}
$$

Let us compute $\operatorname{Spol}\left(g_{3}, g_{1}\right)$ next:

$$
\operatorname{Spol}\left(g_{3}, g_{1}\right)=x y z^{2}-y^{2} z^{2}-x_{x z}^{2}+z^{4}=-y^{2} z^{2}+z^{4}
$$

Now we can reduce further with $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0
$$

An example of zero reduction

Example

$$
\begin{gathered}
g_{1}=x y-z^{2}, g_{2}=y^{2}-z^{2} \\
g_{3}=x z^{2}-y z^{2}
\end{gathered}
$$

Let us compute $\operatorname{Spol}\left(g_{3}, g_{1}\right)$ next:

$$
\operatorname{Spol}\left(g_{3}, g_{1}\right)=\mathrm{xyz}^{2}-y^{2} z^{2}-\mathrm{xyz}^{2}+z^{4}=-y^{2} z^{2}+z^{4}
$$

Now we can reduce further with $z^{2} g_{2}$:

$$
-y^{2} z^{2}+z^{4}+y^{2} z^{2}-z^{4}=0
$$

\Rightarrow How to detect zero reductions in advance?

Known ideas for optimizing computations

- Predict zero reductions (Buchberger, Gebauer-Möller, Möller-Mora-Traverso, etc.)
- Selection strategies: Pick pairs in a clever way (Buchberger, Giovini et al., Möller et al.)
- Homogenization: d-Gröbner bases
- Involutive bases: Forbid some top-reductions (Gerdt, Blinkov)

The following section is about

(1) Introducing Gröbner bases

Gröbner basics
Computation of Gröbner bases
Problem of zero reduction
(2) Signature-based algorithms

The basic idea
Computing Gröbner bases using signatures
How to reject useless pairs?
(3) GGV and F5 - Differences and similarities

What are the differences?
F5
GGV
F5E - Combine the ideas
(4) Experimental results

Preliminaries
Critical pairs \& zero reductions
Timings

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$. The idea is to give each polynomial during the computations of the algorithm a so-called signature:

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$. The idea is to give each polynomial during the computations of the algorithm a so-called signature:

1. Let $e_{1}, \ldots, e_{m} \in R^{m}$ be canonical generators such that $\pi: R^{m} \rightarrow R: \pi\left(e_{i}\right)=f_{i}$ for all i.

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$. The idea is to give each polynomial during the computations of the algorithm a so-called signature:

1. Let $e_{1}, \ldots, e_{m} \in R^{m}$ be canonical generators such that $\pi: R^{m} \rightarrow R: \pi\left(e_{i}\right)=f_{i}$ for all i.
2. Any polynomial $p \in I$ can be written as $p=h_{1} f_{1}+\ldots+h_{m} f_{m}$.

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$. The idea is to give each polynomial during the computations of the algorithm a so-called signature:

1. Let $e_{1}, \ldots, e_{m} \in R^{m}$ be canonical generators such that $\pi: R^{m} \rightarrow R: \pi\left(e_{i}\right)=f_{i}$ for all i.
2. Any polynomial $p \in I$ can be written as $p=h_{1} f_{1}+\ldots+h_{m} f_{m}$.
3. Let k be the greatest index such that h_{k} is not zero.
\Rightarrow A signature $\mathcal{S}(p)=\operatorname{lm}\left(h_{k}\right) e_{k}$.

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$. The idea is to give each polynomial during the computations of the algorithm a so-called signature:

1. Let $e_{1}, \ldots, e_{m} \in R^{m}$ be canonical generators such that $\pi: R^{m} \rightarrow R: \pi\left(e_{i}\right)=f_{i}$ for all i.
2. Any polynomial $p \in I$ can be written as $p=h_{1} f_{1}+\ldots+h_{m} f_{m}$.
3. Let k be the greatest index such that h_{k} is not zero. \Rightarrow A signature $\mathcal{S}(p)=\operatorname{lm}\left(h_{k}\right) e_{k}$.
4. A generating element f_{i} of I gets the signature $\mathcal{S}\left(f_{i}\right)=e_{i}$.

Signatures of polynomials

Let $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$. The idea is to give each polynomial during the computations of the algorithm a so-called signature:

1. Let $e_{1}, \ldots, e_{m} \in R^{m}$ be canonical generators such that $\pi: R^{m} \rightarrow R: \pi\left(e_{i}\right)=f_{i}$ for all i.
2. Any polynomial $p \in I$ can be written as $p=h_{1} f_{1}+\ldots+h_{m} f_{m}$.
3. Let k be the greatest index such that h_{k} is not zero. \Rightarrow A signature $\mathcal{S}(p)=\operatorname{lm}\left(h_{k}\right) e_{k}$.
4. A generating element f_{i} of I gets the signature $\mathcal{S}\left(f_{i}\right)=e_{i}$.
5. Extend the monomial order on the signatures
(a) Well-order \prec on the set of all signatures
(b) Existence of the minimal signature of a polynomial p

Orders on signatures

Remark

Note that there are various ways to define the order \prec depending on different preferences of the monomial resp. the index of the signature

1. 2002 Faugère [Fa02]
2. 2009 Ars and Hashemi [AH09]
3. 2010 Gao, Volny, and Wang [GVW11]
4. 2010 / 2011 Sun and Wang [SW10, SW11]

Orders on signatures

We use Faugère's variant:

$$
\begin{aligned}
t_{k} e_{k} \succ t_{\ell} e_{\ell} \Leftrightarrow & (\mathrm{a}) k>\ell \text { or } \\
& (\mathrm{b}) k=\ell \text { and } t_{k}>t_{\ell}
\end{aligned}
$$

Orders on signatures

We use Faugère's variant:

$$
\begin{aligned}
t_{k} e_{k} \succ t_{\ell} e_{\ell} \Leftrightarrow & (\mathrm{a}) k>\ell \text { or } \\
& (\mathrm{b}) k=\ell \text { and } t_{k}>t_{\ell}
\end{aligned}
$$

Example

Assume $\mathbb{Q}[x, y, z]$ with degree reverse lexicographical order. Then

1. $x^{2} y e_{3} \succ z^{3} e_{3}$,
2. $1 \cdot e_{5} \succ x^{12} y^{234} z^{3456} e_{4}$.

Signatures of s-polynomials

Using signatures in a Gröbner basis algorithm we clearly need to define them for s-polynomials, too:

$$
\operatorname{Spol}(p, q)=\operatorname{lc}(q) u_{p} p-\operatorname{lc}(p) u_{q} q
$$

such that

$$
\begin{aligned}
\mathcal{S}(\operatorname{Spol}(p, q)) & =u_{p} \mathcal{S}(p) \\
u_{p} \mathcal{S}(p) & \succ u_{q} \mathcal{S}(q) .
\end{aligned}
$$

Example revisited - with signatures

In our example

$$
\begin{aligned}
g_{3} & =\operatorname{Spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathcal{S}\left(g_{3}\right) & =x \mathcal{S}\left(g_{2}\right)=x e_{2} .
\end{aligned}
$$

Example revisited - with signatures

In our example

$$
\begin{aligned}
g_{3} & =\operatorname{Spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathcal{S}\left(g_{3}\right) & =x \mathcal{S}\left(g_{2}\right)=x e_{2}
\end{aligned}
$$

It follows that $\operatorname{Spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}$ has

$$
\mathcal{S}\left(\operatorname{Spol}\left(g_{3}, g_{1}\right)\right)=y \mathcal{S}\left(g_{3}\right)=x y e_{2} .
$$

Example revisited - with signatures

In our example

$$
\begin{aligned}
g_{3} & =\operatorname{Spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathcal{S}\left(g_{3}\right) & =x \mathcal{S}\left(g_{2}\right)=x e_{2}
\end{aligned}
$$

It follows that $\operatorname{Spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}$ has

$$
\mathcal{S}\left(\operatorname{Spol}\left(g_{3}, g_{1}\right)\right)=y \mathcal{S}\left(g_{3}\right)=x y e_{2} .
$$

Note that $\mathcal{S}\left(\operatorname{Spol}\left(g_{3}, g_{1}\right)\right)=\left(x y e_{2}\right)$ and $\operatorname{lm}\left(g_{1}\right)=x y$.

Example revisited - with signatures

In our example

$$
\begin{aligned}
g_{3} & =\operatorname{Spol}\left(g_{2}, g_{1}\right)=x g_{2}-y g_{1} \\
\Rightarrow \mathcal{S}\left(g_{3}\right) & =x \mathcal{S}\left(g_{2}\right)=x e_{2}
\end{aligned}
$$

It follows that $\operatorname{Spol}\left(g_{3}, g_{1}\right)=y g_{3}-z^{2} g_{1}$ has

$$
\mathcal{S}\left(\operatorname{Spol}\left(g_{3}, g_{1}\right)\right)=y \mathcal{S}\left(g_{3}\right)=x^{2} e_{2}
$$

Note that $\mathcal{S}\left(\operatorname{Spol}\left(g_{3}, g_{1}\right)\right)=\left(x y e_{2}\right)$ and $\operatorname{lm}\left(g_{1}\right)=x y$. \Rightarrow We know that $\operatorname{Spol}\left(g_{3}, g_{1}\right)$ will reduce to zero!

How does this work?

The main idea is to check if the next element $\operatorname{Spol}(p, q)$ has the minimal signature.

How does this work?

The main idea is to check if the next element $\operatorname{Spol}(p, q)$ has the minimal signature.
If $\mathcal{S}(\operatorname{Spol}(p, q))$ is not minimal $\Rightarrow \operatorname{Spol}(p, q)$ can be discarded.

How does this work?

The main idea is to check if the next element $\operatorname{Spol}(p, q)$ has the minimal signature.
If $\mathcal{S}(\operatorname{Spol}(p, q))$ is not minimal $\Rightarrow \operatorname{Spol}(p, q)$ can be discarded.

Question

How do we know, if the signature of a polynomial / critical pair is not minimal?

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$
2. $G=\left\{\left(e_{1}, g_{1}\right), \ldots,\left(e_{r-1}, g_{r-1}\right),\left(e_{r}, g_{r}\right)\right\}$ (monic)

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$
2. $G=\left\{\left(e_{1}, g_{1}\right), \ldots,\left(e_{r-1}, g_{r-1}\right),\left(e_{r}, g_{r}\right)\right\}$ (monic)
3. Set $P:=\left\{\left(\frac{\operatorname{lcm}\left(g_{r}, g_{j}\right)}{\operatorname{lm}\left(g_{r}\right)} e_{r}, g_{r}, g_{j}\right), j<r\right\}$

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$
2. $G=\left\{\left(e_{1}, g_{1}\right), \ldots,\left(e_{r-1}, g_{r-1}\right),\left(e_{r}, g_{r}\right)\right\}$ (monic)
3. Set $P:=\left\{\left(\frac{\operatorname{lcm}\left(g_{r}, g_{j}\right)}{\operatorname{lm}\left(g_{r}\right)} e_{r}, g_{r}, g_{j}\right), j<r\right\}$
4. While $P \neq \emptyset$
(a) Choose $\left(\lambda e_{r}, p, q\right) \in P$ such that λe_{r} is minimal.
(b) Delete $\left(\lambda e_{r}, p, q\right)$ from P.

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$
2. $G=\left\{\left(e_{1}, g_{1}\right), \ldots,\left(e_{r-1}, g_{r-1}\right),\left(e_{r}, g_{r}\right)\right\}$ (monic)
3. Set $P:=\left\{\left(\frac{\operatorname{lcm}\left(g_{r}, g_{j}\right)}{\operatorname{lm}\left(g_{r}\right)} e_{r}, g_{r}, g_{j}\right), j<r\right\}$
4. While $P \neq \emptyset$
(a) Choose $\left(\lambda e_{r}, p, q\right) \in P$ such that λe_{r} is minimal.
(b) Delete $\left(\lambda e_{r}, p, q\right)$ from P.
(c) $\left(\lambda e_{r}\right)$ not minimal for $u p-v q \Rightarrow$ goto 4 .

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$
2. $G=\left\{\left(e_{1}, g_{1}\right), \ldots,\left(e_{r-1}, g_{r-1}\right),\left(e_{r}, g_{r}\right)\right\}$ (monic)
3. Set $P:=\left\{\left(\frac{\operatorname{lcm}\left(g_{r}, g_{j}\right)}{\operatorname{lm}\left(g_{r}\right)} e_{r}, g_{r}, g_{j}\right), j<r\right\}$
4. While $P \neq \emptyset$
(a) Choose $\left(\lambda e_{r}, p, q\right) \in P$ such that λe_{r} is minimal.
(b) Delete $\left(\lambda e_{r}, p, q\right)$ from P.
(c) $\left(\lambda e_{r}\right)$ not minimal for $u p-v q \Rightarrow$ goto 4 .
(d) $(S(h), h)=\operatorname{reduce}\left(\left(\lambda e_{r}, u p-v q\right), G\right)$

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$
2. $G=\left\{\left(e_{1}, g_{1}\right), \ldots,\left(e_{r-1}, g_{r-1}\right),\left(e_{r}, g_{r}\right)\right\}$ (monic)
3. Set $P:=\left\{\left(\frac{\operatorname{lcm}\left(g_{r}, g_{j}\right)}{\operatorname{lm}\left(g_{r}\right)} e_{r}, g_{r}, g_{j}\right), j<r\right\}$
4. While $P \neq \emptyset$
(a) Choose $\left(\lambda e_{r}, p, q\right) \in P$ such that λe_{r} is minimal.
(b) Delete ($\lambda e_{r}, p, q$) from P.
(c) $\left(\lambda e_{r}\right)$ not minimal for $u p-v q \Rightarrow$ goto 4 .
(d) $(S(h), h)=\operatorname{reduce}\left(\left(\lambda e_{r}, u p-v q\right), G\right)$
(e) $h \neq 0 \& \nexists(\mathcal{S}(g), g) \in G, t \in M$ s.t. $t \mathcal{S}(g)=\mathcal{S}(h)$ and $t \operatorname{lm}(g)=\operatorname{lm}(h)$
(i) For all $g \in G$ add $\left(\sigma e_{r}, h, g\right)$ to P.
(ii) Add $(\mathcal{S}(h), h)$ to G.
5. When $P=\emptyset$ we are done and G is a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$.

Computing Gröbner bases using signatures

Input: $G_{i-1}=\left\{g_{1}, \ldots, g_{r-1}\right\}$, a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i-1}\right\rangle$
Output: Gröbner basis G of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$

1. $g_{r}:=f_{i}$
2. $G=\left\{\left(e_{1}, g_{1}\right), \ldots,\left(e_{r-1}, g_{r-1}\right),\left(e_{r}, g_{r}\right)\right\}$ (monic)
3. Set $P:=\left\{\left(\frac{\operatorname{lcm}\left(g_{r}, g_{j}\right)}{\operatorname{lm}\left(g_{r}\right)} e_{r}, g_{r}, g_{j}\right), j<r\right\}$
4. While $P \neq \emptyset$
(a) Choose $\left(\lambda e_{r}, p, q\right) \in P$ such that λe_{r} is minimal.
(b) Delete ($\lambda e_{r}, p, q$) from P.
(c) $\left(\lambda e_{r}\right)$ not minimal for $u p-v q \Rightarrow$ goto 4 .
(d) $(S(h), h)=$ reduce $\left(\left(\lambda e_{r}, u p-v q\right), G\right) \Leftarrow$ sig-safe!
(e) $h \neq 0 \& \nexists(\mathcal{S}(g), g) \in G, t \in M$ s.t. $t \mathcal{S}(g)=\mathcal{S}(h)$ and $t \operatorname{lm}(g)=\operatorname{lm}(h)$
(i) For all $g \in G$ add $\left(\sigma e_{r}, h, g\right)$ to P.
(ii) Add $(\mathcal{S}(h), h)$ to G.
5. When $P=\emptyset$ we are done and G is a Gröbner basis of $\left\langle f_{1}, \ldots, f_{i}\right\rangle$.

Reductions w.r.t. signatures

Let $(\mathcal{S}(p), p),(\mathcal{S}(q), q)$ such that $\lambda \operatorname{lm}(q)=\operatorname{lm}(p)$.

Reductions w.r.t. signatures

Let $(\mathcal{S}(p), p),(\mathcal{S}(q), q)$ such that $\lambda \operatorname{lm}(q)=\operatorname{lm}(p)$.

1. Sig-safe: $\mathcal{S}(p-\lambda q)=\mathcal{S}(p)$.

Reductions w.r.t. signatures

Let $(\mathcal{S}(p), p),(\mathcal{S}(q), q)$ such that $\lambda \operatorname{lm}(q)=\operatorname{lm}(p)$.

1. Sig-safe: $\mathcal{S}(p-\lambda q)=\mathcal{S}(p)$.
2. Sig-unsafe: $\mathcal{S}(p-\lambda q)=\lambda \mathcal{S}(q)$.

Reductions w.r.t. signatures

Let $(\mathcal{S}(p), p),(\mathcal{S}(q), q)$ such that $\lambda \operatorname{lm}(q)=\operatorname{lm}(p)$.

1. Sig-safe: $\mathcal{S}(p-\lambda q)=\mathcal{S}(p)$.
2. Sig-unsafe: $\mathcal{S}(p-\lambda q)=\lambda \mathcal{S}(q)$.
3. Sig-cancelling: $\mathcal{S}(p)=\lambda \mathcal{S}(q) \Rightarrow \mathcal{S}(p-\lambda q)=$?

Reductions w.r.t. signatures

Let $(\mathcal{S}(p), p),(\mathcal{S}(q), q)$ such that $\lambda \operatorname{lm}(q)=\operatorname{lm}(p)$.

1. Sig-safe: $\mathcal{S}(p-\lambda q)=\mathcal{S}(p)$.
2. Sig-unsafe: $\mathcal{S}(p-\lambda q)=\lambda \mathcal{S}(q)$.
3. Sig-cancelling: $\mathcal{S}(p)=\lambda \mathcal{S}(q) \Rightarrow \mathcal{S}(p-\lambda q)=$?

Example

$\mathcal{S}(p)=x y^{2} e_{1}, \mathcal{S}(q)=x y e_{1}, x>y>z$

1. Sig-safe: $\mathcal{S}(p-z q)=x y^{2} e_{1}$.

Reductions w.r.t. signatures

Let $(\mathcal{S}(p), p),(\mathcal{S}(q), q)$ such that $\lambda \operatorname{lm}(q)=\operatorname{lm}(p)$.

1. Sig-safe: $\mathcal{S}(p-\lambda q)=\mathcal{S}(p)$.
2. Sig-unsafe: $\mathcal{S}(p-\lambda q)=\lambda \mathcal{S}(q)$.
3. Sig-cancelling: $\mathcal{S}(p)=\lambda \mathcal{S}(q) \Rightarrow \mathcal{S}(p-\lambda q)=$?

Example

$\mathcal{S}(p)=x y^{2} e_{1}, \mathcal{S}(q)=x y e_{1}, x>y>z$

1. Sig-safe: $\mathcal{S}(p-z q)=x y^{2} e_{1}$.
2. Sig-unsafe: $\mathcal{S}(p-x q)=x^{2} y e_{1}$.

Reductions w.r.t. signatures

Let $(\mathcal{S}(p), p),(\mathcal{S}(q), q)$ such that $\lambda \operatorname{lm}(q)=\operatorname{lm}(p)$.

1. Sig-safe: $\mathcal{S}(p-\lambda q)=\mathcal{S}(p)$.
2. Sig-unsafe: $\mathcal{S}(p-\lambda q)=\lambda \mathcal{S}(q)$.
3. Sig-cancelling: $\mathcal{S}(p)=\lambda \mathcal{S}(q) \Rightarrow \mathcal{S}(p-\lambda q)=$?

Example

$\mathcal{S}(p)=x y^{2} e_{1}, \mathcal{S}(q)=x y e_{1}, x>y>z$

1. Sig-safe: $\mathcal{S}(p-z q)=x y^{2} e_{1}$.
2. Sig-unsafe: $\mathcal{S}(p-x q)=x^{2} y e_{1}$.
3. Sig-cancelling: $\mathcal{S}(p-y q)=$?

Computing Gröbner bases using signatures

Termination?

1. No new s-polynomials for $(\mathcal{S}(h), h)=\lambda(\mathcal{S}(g), g)$
2. Each new element expands $\langle(\mathcal{S}(h), \operatorname{lm}(h))\rangle$

Computing Gröbner bases using signatures

Termination?

1. No new s-polynomials for $(\mathcal{S}(h), h)=\lambda(\mathcal{S}(g), g)$
2. Each new element expands $\langle(\mathcal{S}(h), \operatorname{lm}(h))\rangle$

Correctness?

1. Proceed by minimal signature in P
2. All s-polynomials considered:
sig-unsafe reduction \Rightarrow new critical pair next round
3. All nonzero elements added besides $(\mathcal{S}(h), h)=\lambda(\mathcal{S}(g), g)$

Allowed criteria?

Non-minimal signature (NM)
$\mathcal{S}(h)$ not minimal for h ? \Rightarrow discard h

Allowed criteria?

Non-minimal signature (NM)
$\mathcal{S}(h)$ not minimal for h ? \Rightarrow discard h

Proof.

1. There exists syzygy s with $\operatorname{lm}(s)=\mathcal{S}(h)$.
2. We can rewrite h using a lower signature.
3. We proceed by increasing signatures.
\Rightarrow Those reductions are already considered.

Allowed criteria?

Rewritable signature (RW)
$\mathcal{S}(g)=\mathcal{S}(h) ? \Rightarrow$ discard either g or h

Allowed criteria?

Rewritable signature (RW)

$\mathcal{S}(g)=\mathcal{S}(h) ? \Rightarrow$ discard either g or h

Proof.

1. $\mathcal{S}(g-h)<\mathcal{S}(h), \mathcal{S}(g)$.
2. We proceed by increasing signatures.
\Rightarrow Those reductions are already considered.
\Rightarrow We can rewrite $h=g+$ terms of lower signature.

The following section is about

(1) Introducing Gröbner bases

Gröbner basics
Computation of Gröbner bases
Problem of zero reduction
(2) Signature-based algorithms

The basic idea
Computing Gröbner bases using signatures
How to reject useless pairs?
(3) GGV and F5 - Differences and similarities

What are the differences?
F5
GGV
F5E - Combine the ideas
(4) Experimental results

Preliminaries
Critical pairs \& zero reductions
Timings

What are the differences?

1. Different implementations of (NM) and (RW)

What are the differences?

1. Different implementations of (NM) and (RW)
2. Different implementations of the sig-safe reduction

What are the differences?

1. Different implementations of (NM) and (RW)
2. Different implementations of the sig-safe reduction

Remark

The presented criteria (NM) and (RW) are also used during the (sig-safe) reduction steps. This usage is quite soft in GGV and quite aggressive in F5.

What are the differences?

1. Different implementations of (NM) and (RW)
2. Different implementations of the sig-safe reduction

Remark

The presented criteria (NM) and (RW) are also used during the (sig-safe) reduction steps. This usage is quite soft in GGV and quite aggressive in F5.
\Rightarrow Termination: GGV $\odot-\mathrm{F} 5 \odot$

F5's implementation of (NM)

If

$$
\begin{gathered}
\mathcal{S}(g)=\lambda e_{<i}, \\
\mathcal{S}(h)=\sigma e_{i}, \text { and } \\
\operatorname{lm}(g) \mid \sigma,
\end{gathered}
$$

then discard h.

F5's implementation of (RW)

If there exists $(\mathcal{S}(g), g)$ such that

$$
\begin{aligned}
& \mathcal{S}(g)=\lambda e_{r}, \\
& \mathcal{S}(h)=\sigma \mathcal{S}(f)=\sigma\left(\tau e_{r}\right), \\
& \quad \lambda \mid \sigma \tau, \text { and } \\
& \quad g \text { computed after } f,
\end{aligned}
$$

then discard h.

F5's implementation of (RW)

If there exists $(\mathcal{S}(g), g)$ such that

$$
\begin{aligned}
& \mathcal{S}(g)=\lambda e_{r} \\
& \mathcal{S}(h)=\sigma \mathcal{S}(f)=\sigma\left(\tau e_{r}\right), \\
& \quad \lambda \mid \sigma \tau, \text { and } \\
& \quad g \text { computed after } f,
\end{aligned}
$$

then discard h.

Remark

This is an aggressive implementation of (RW) changing "equality" to "divisibility" in the criterion.

GGV's implementation of (NM)

Initially $H=\left\{\operatorname{lm}\left(g_{1}\right), \ldots, \operatorname{lm}\left(g_{r-1}\right)\right\}$.

GGV's implementation of (NM)

Initially $H=\left\{\operatorname{lm}\left(g_{1}\right), \ldots, \operatorname{lm}\left(g_{r-1}\right)\right\}$.
Whenever p reduces to zero

$$
\Rightarrow H=H \cup\{\lambda\} \text { where } \mathcal{S}(p)=\lambda e_{r} .
$$

GGV's implementation of (NM)

Initially $H=\left\{\operatorname{lm}\left(g_{1}\right), \ldots, \operatorname{lm}\left(g_{r-1}\right)\right\}$.
Whenever p reduces to zero

$$
\Rightarrow H=H \cup\{\lambda\} \text { where } \mathcal{S}(p)=\lambda e_{r} .
$$

If

$$
\mathcal{S}(g)=\sigma e_{r}
$$

$$
\exists h \in H \text { such that } h \mid \sigma,
$$

then discard g.

GGV's implementation of (NM)

Initially $H=\left\{\operatorname{lm}\left(g_{1}\right), \ldots, \operatorname{lm}\left(g_{r-1}\right)\right\}$.
Whenever p reduces to zero

$$
\Rightarrow H=H \cup\{\lambda\} \text { where } \mathcal{S}(p)=\lambda e_{r} .
$$

If

$$
\begin{aligned}
& \mathcal{S}(g)=\sigma e_{r}, \\
& \exists h \in H \text { such that } h \mid \sigma,
\end{aligned}
$$

then discard g.

Remark

This is F5's NM criterion with additional criteria added during the computation.

GGV's implementation of (RW)

If

$$
\mathcal{S}(g)=\mathcal{S}(h)
$$

then consider only g or h.

GGV's implementation of (RW)

If

$$
\mathcal{S}(g)=\mathcal{S}(h)
$$

then consider only g or h.

Remark

This is used when creating new critical pairs.

F5E - Combine the ideas

Behaviour depending on number of zero reductions

- GGV actively uses zero reductions to improve (NM).
- F5 does not do this, but possible incorporates some of this data in (RW).
- Checking by F5's (RW) costs much more time than checking by (NM).

F5E - Combine the ideas

Behaviour depending on number of zero reductions

- GGV actively uses zero reductions to improve (NM).
- F5 does not do this, but possible incorporates some of this data in (RW).
- Checking by F5's (RW) costs much more time than checking by (NM).

The following combination is straightforward:

- Use the F5 Algorithm.
- Add GGV's (NM) to it:

Whenever g reduces to zero, add $\mathcal{S}(g)$ to H.

The following section is about

(1) Introducing Gröbner bases

Gröbner basics
Computation of Gröbner bases
Problem of zero reduction
(2) Signature-based algorithms

The basic idea
Computing Gröbner bases using signatures
How to reject useless pairs?
(3) GGV and F5 - Differences and similarities

What are the differences?
F5
GGV
F5E - Combine the ideas
(4) Experimental results

Preliminaries
Critical pairs \& zero reductions
Timings
(5) Outlook

Test environments

All examples are computed in the following setting:

1. \mathbb{F}_{32003},
2. graded reverse lexicographical order.

Test environments

All examples are computed in the following setting:

1. \mathbb{F}_{32003},
2. graded reverse lexicographical order.

All examples are computed on the following machine:

1. MacBook Pro 7,1 (Intel Core 2 Duo P8800),
2. 4GB Ram,
3. $5,400 \mathrm{rpm}$ HDD,
4. 64-bit Ubuntu 10.10.
5. Singular 3-1-3 Developer Version

Test environments

All examples are computed in the following setting:

1. \mathbb{F}_{32003},
2. graded reverse lexicographical order.

All examples are computed on the following machine:

1. MacBook Pro 7,1 (Intel Core 2 Duo P8800),
2. 4GB Ram,
3. $5,400 \mathrm{rpm}$ HDD,
4. 64-bit Ubuntu 10.10.
5. Singular 3-1-3 Developer Version

Remark

All algorithms use the same underlying structure, differing only in the implementation of the criteria presented in this talk.

Number of critical pairs and zero reductions

System	F5		F5E		GGV	
Katsura 9	886	0	886	0	886	0
Katsura 10	1,781	0	1,781	0	1,781	0
Eco 8	830	322	$\mathbf{5 6 5}$	$\mathbf{5 7}$	2,012	$\mathbf{5 7}$
Eco 9	2,087	929	$\mathbf{1 , 2 7 8}$	$\mathbf{1 2 0}$	5,794	$\mathbf{1 2 0}$
F744	1,324	342	$\mathbf{1 , 1 5 1}$	$\mathbf{1 6 9}$	2,145	$\mathbf{1 6 9}$
Cyclic 7	1,018	76	$\mathbf{9 7 8}$	$\mathbf{3 6}$	3,072	$\mathbf{3 6}$
Cyclic 8	7,066	244	$\mathbf{5 , 7 7 0}$	$\mathbf{2 4 4}$	24,600	$\mathbf{2 4 4}$

Number of critical pairs and zero reductions

System	F5		F5E		GGV	
Katsura 9	886	0	886	0	886	0
Katsura 10	1,781	0	1,781	0	1,781	0
Eco 8	830	322	$\mathbf{5 6 5}$	$\mathbf{5 7}$	2,012	$\mathbf{5 7}$
Eco 9	2,087	929	$\mathbf{1 , 2 7 8}$	$\mathbf{1 2 0}$	5,794	$\mathbf{1 2 0}$
F744	1,324	342	$\mathbf{1 , 1 5 1}$	$\mathbf{1 6 9}$	2,145	$\mathbf{1 6 9}$
Cyclic 7	1,018	76	$\mathbf{9 7 8}$	$\mathbf{3 6}$	3,072	$\mathbf{3 6}$
Cyclic 8	7,066	244	$\mathbf{5 , 7 7 0}$	$\mathbf{2 4 4}$	24,600	$\mathbf{2 4 4}$

Remark

Besides considering more critical pairs, GGV does a lot more single reduction steps than F5 does.

Timings in seconds

System	F5	F5E	GGV
Katsura 9	14.98	$\mathbf{1 4 . 8 7}$	17.63
Katsura 10	153.35	$\mathbf{1 5 2 . 3 9}$	192.20
Eco 8	2.24	$\mathbf{0 . 3 8}$	0.49
Eco 9	77.13	$\mathbf{8 . 1 9}$	13.51
F744	19.35	$\mathbf{8 . 7 9}$	26.86
Cyclic 7	$\mathbf{7 . 0 1}$	7.22	33.85
Cyclic 8	$7,310.39$	$\mathbf{4 , 9 6 1 . 5 8}$	$26,242.12$

The following section is about

(1) Introducing Gröbner bases

Gröbner basics
Computation of Gröbner bases
Problem of zero reduction
(2) Signature-based algorithms

The basic idea
Computing Gröbner bases using signatures
How to reject useless pairs?
(3) GGV and F5 - Differences and similarities

What are the differences?
F5
GGV
F5E - Combine the ideas
(4) Experimental results

Preliminaries
Critical pairs \& zero reductions
Timings
(5) Outlook

Outlook

- Implementing F4F5:

Gaussian Elimination done by Bradford Hovinen

- Implementing F4F5:

Gaussian Elimination done by Bradford Hovinen

- Inhomogeneous case:

Working, but slow

- Implementing F4F5:

Gaussian Elimination done by Bradford Hovinen

- Inhomogeneous case:

Working, but slow

- Orders on signatures:

Lots of tests, heuristics

- Implementing F4F5:

Gaussian Elimination done by Bradford Hovinen

- Inhomogeneous case:

Working, but slow

- Orders on signatures:

Lots of tests, heuristics

- Parallelization:

On criteria checks, needs thread-safe omalloc

- Implementing F4F5:

Gaussian Elimination done by Bradford Hovinen

- Inhomogeneous case:

Working, but slow

- Orders on signatures:

Lots of tests, heuristics

- Parallelization:

On criteria checks, needs thread-safe omalloc

- Syzygy computations:

Needs implementation

- Implementing F4F5:

Gaussian Elimination done by Bradford Hovinen

- Inhomogeneous case:

Working, but slow

- Orders on signatures:

Lots of tests, heuristics

- Parallelization:

On criteria checks, needs thread-safe omalloc

- Syzygy computations:

Needs implementation

- Generalizing criteria:

Using more data, combining with Buchberger's criteria, etc.

References

[AH09] G. Ars and A. Hashemi. Extended F5 Criteria
[EP10] C. Eder and J. Perry. F5C: A variant of Faugre's F5 Algorithm with reduced Gröbner bases
[EGP11] C. Eder, J. Gash, and J. Perry. Modifying Faugre's F5 Algorithm to ensure termination
[EP11] C. Eder and J. Perry. Signature-based algorithms to compute Gröbner bases
[Fa02] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero F_{5}
[GGV10] S. Gao, Y. Guan, and F. Volny IV. A New Incremental Algorithm for Computing Gröbner Bases
[GVW11] S. Gao, F. Volny IV, and M. Wang. A New Algorithm For Computing Grobner Bases
[SIN11] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann. Singular 3-1-3. A computer algebra system for polynomial computations, University of Kaiserslautern, 2011, http://www.singular.uni-kl.de.
[SW10] Y. Sun and D. Wang. A new proof of the F5 Algorithm
[SW11] Y. Sun and D. Wang. A Generalized Criterion for Signature Related Gröbner Basis Algorithms

