Signature-based algorithms to compute Gröbner bases

Christian Eder (joint work with John Perry)

University of Kaiserslautern

June 09, 2011

What is this talk all about?

- 1. Efficient computations of Gröbner bases using so-called **signature-based algorithms**
- 2. Explanation of the **criteria** those algorithms are based on in comparison to Buchberger's criteria.
- 3. Explanation of **termination issues** and how they can be solved
- 4. Comparison between **different attempts** in the signature-based world

Convention

In this talk $R = K[x_1, \ldots, x_n]$, where K is a field. Moreover, < is a well-order on R.

The following section is about

1 Introducing Gröbner bases

Gröbner basics Computation of Gröbner bases Problem of zero reduction

2 Signature-based algorithms

The basic idea

Computing Gröbner bases using signatures

How to reject useless pairs?

3 GGV and F5 – Differences and similarities

What are the differences?

F5

GGV

F5E – Combine the ideas

4 Experimental results

Preliminaries

Critical pairs & zero reductions

Timings

6 Outlook

Basic problem

1. Given a ring R and an ideal $I \lhd R$ we want to answer some question w.r.t. to I.

 \Rightarrow We want to compute a **Gröbner basis** G of I.

- G can be understood as a nice representation for *I*.
 Gröbner bases were discovered by Bruno Buchberger in 1965.
 Having computed G lots of difficult questions concerning *I* are easier to answer using G instead of *I*.
- 3. This is due to some nice properties of Gröbner bases. The following is very useful to understand how to compute a Gröbner basis.

Main properties of Göbner bases

Definition

 $G = \{g_1, \ldots, g_r\}$ is a **Gröbner basis** of an ideal $I = \langle f_1, \ldots, f_m \rangle$ iff $G \subset I$ and $\langle \operatorname{lm}(g_1), \ldots, \operatorname{lm}(g_r) \rangle = \langle \operatorname{lm}(f) \mid f \in I \rangle$.

Main properties of Göbner bases

Definition

 $G = \{g_1, \ldots, g_r\}$ is a **Gröbner basis** of an ideal $I = \langle f_1, \ldots, f_m \rangle$ iff $G \subset I$ and $\langle \operatorname{lm}(g_1), \ldots, \operatorname{lm}(g_r) \rangle = \langle \operatorname{lm}(f) \mid f \in I \rangle$.

Theorem (Buchberger's Criterion)

The following are equivalent:

- 1. G is a Gröbner basis of an ideal I.
- 2. For all $p, q \in G$ it holds that

$$\operatorname{Spol}(p,q) \xrightarrow{G} 0,$$

where

$$> \operatorname{Spol}(p,q) = \operatorname{lc}(q)u_pp - \operatorname{lc}(p)u_qq, \text{ and}$$

$$> u_r = \frac{\operatorname{lcm}(\operatorname{lm}(p),\operatorname{lm}(q))}{\operatorname{lm}(r)}.$$

A lovely example

Example

Assume the ideal $I = \langle g_1, g_2 \rangle \lhd \mathbb{Q}[x, y, z]$ where $g_1 = xy - z^2$, $g_2 = y^2 - z^2$; < degree reverse lexicographical order. Computing

$$Spol(g_2, g_1) = xg_2 - yg_1$$
$$= xy^2 - xz^2 - xy^2 + yz^2$$
$$= -xz^2 + yz^2,$$

we get a new element $g_3 = xz^2 - yz^2$.

The usual **Buchberger Algorithm** to compute *G* follows easily from Buchberger's Criterion: **Input:** Ideal $I = \langle f_1, \ldots, f_m \rangle$ **Output:** Gröbner basis *G* of *I*

1.
$$G = \emptyset$$

- 2. $G := G \cup \{f_i\}$ for all $i \in \{1, ..., m\}$
- 3. Set $P := \{(g_i, g_j) \mid g_i, g_j \in G, i > j\}$

The usual **Buchberger Algorithm** to compute *G* follows easily from Buchberger's Criterion: **Input:** Ideal $I = \langle f_1, \ldots, f_m \rangle$ **Output:** Gröbner basis *G* of *I*

1. $G = \emptyset$

- 2. $G := G \cup \{f_i\}$ for all $i \in \{1, ..., m\}$
- 3. Set $P := \{(g_i, g_j) \mid g_i, g_j \in G, i > j\}$
- 4. Choose $(p,q) \in P$, $P := P \setminus \{p\}$
- 5. $r := \operatorname{Spol}(p, q)$

The usual **Buchberger Algorithm** to compute *G* follows easily from Buchberger's Criterion: **Input:** Ideal $I = \langle f_1, \ldots, f_m \rangle$ **Output:** Gröbner basis *G* of *I*

1. $G = \emptyset$

- 2. $G := G \cup \{f_i\}$ for all $i \in \{1, \dots, m\}$
- 3. Set $P := \{(g_i, g_j) \mid g_i, g_j \in G, i > j\}$
- 4. Choose $(p,q) \in P$, $P := P \setminus \{p\}$
- 5. $r := \operatorname{Spol}(p, q)$
 - (a) If $r \xrightarrow{G} 0$

Go on with the next element in P.

The usual **Buchberger Algorithm** to compute *G* follows easily from Buchberger's Criterion: **Input:** Ideal $I = \langle f_1, \ldots, f_m \rangle$ **Output:** Gröbner basis *G* of *I*

1. $G = \emptyset$

- 2. $G := G \cup \{f_i\}$ for all $i \in \{1, ..., m\}$
- 3. Set $P := \{(g_i, g_j) \mid g_i, g_j \in G, i > j\}$
- 4. Choose $(p,q) \in P$, $P := P \setminus \{p\}$

5.
$$r := \operatorname{Spol}(p, q)$$

(a) If
$$r \xrightarrow{G} 0$$

Go on with the next element in P.

(b) If
$$r \xrightarrow{G} h \neq 0$$

Add h to G.

Build new s-polynomials with h and add them to P. Go on with the next element in P.

6. When $P = \emptyset$ we are done and G is a Gröbner basis of I.

The usual **Buchberger Algorithm** to compute *G* follows easily from Buchberger's Criterion: **Input:** Ideal $I = \langle f_1, \ldots, f_m \rangle$ **Output:** Gröbner basis *G* of *I*

1. $G = \emptyset$

- 2. $G := G \cup \{f_i\}$ for all $i \in \{1, \dots, m\}$
- 3. Set $P := \{(g_i, g_j) \mid g_i, g_j \in G, i > j\}$
- 4. Choose $(p,q) \in P$, $P := P \setminus \{p\}$
- 5. $r := \operatorname{Spol}(p, q)$
 - (a) If $r \xrightarrow{G} 0 \Rightarrow$ no new information Go on with the next element in *P*.

(b) If
$$r \xrightarrow{G} h \neq 0$$

Add h to G.

Build new s-polynomials with h and add them to P. Go on with the next element in P.

6. When $P = \emptyset$ we are done and G is a Gröbner basis of I.

The usual **Buchberger Algorithm** to compute *G* follows easily from Buchberger's Criterion: **Input:** Ideal $I = \langle f_1, \ldots, f_m \rangle$ **Output:** Gröbner basis *G* of *I*

1. $G = \emptyset$

- 2. $G := G \cup \{f_i\}$ for all $i \in \{1, \dots, m\}$
- 3. Set $P := \{(g_i, g_j) \mid g_i, g_j \in G, i > j\}$
- 4. Choose $(p,q) \in P$, $P := P \setminus \{p\}$
- 5. $r := \operatorname{Spol}(p, q)$
 - (a) If $r \xrightarrow{G} 0 \Rightarrow$ no new information Go on with the next element in *P*.
 - (b) If $r \xrightarrow{G} h \neq 0 \Rightarrow$ new information Add h to G.

Build new s-polynomials with h and add them to P. Go on with the next element in P.

6. When $P = \emptyset$ we are done and G is a Gröbner basis of I.

A slightly variant of this algorithm is the following computing the Gröbner basis **incrementally**:

A slightly variant of this algorithm is the following computing the Gröbner basis **incrementally**:

Input: Ideal $I = \langle f_1, \ldots, f_m \rangle$

Output: Gröbner basis G of I

A slightly variant of this algorithm is the following computing the Gröbner basis **incrementally**:

Input: Ideal $I = \langle f_1, \ldots, f_m \rangle$ **Output:** Gröbner basis *G* of *I*

1. Compute Gröbner basis G_1 of $\langle f_1 \rangle$.

A slightly variant of this algorithm is the following computing the Gröbner basis **incrementally**:

Input: Ideal $I = \langle f_1, \ldots, f_m \rangle$ **Output:** Gröbner basis *G* of *I*

- 1. Compute Gröbner basis G_1 of $\langle f_1 \rangle$.
- 2. Compute Gröbner basis ${\it G}_2$ of $\langle {\it f}_1, {\it f}_2 \rangle$ by

(a)
$$G_2 = G_1 \cup \{f_2\},$$

- (b) computing s-polynomials of f_2 with elements of G_1
- (c) reducing all s-polynomials w.r.t. ${\it G}_2$ and possibly add new elements to ${\it G}_2$

A slightly variant of this algorithm is the following computing the Gröbner basis **incrementally**:

Input: Ideal $I = \langle f_1, \ldots, f_m \rangle$ **Output:** Gröbner basis *G* of *I*

- 1. Compute Gröbner basis G_1 of $\langle f_1 \rangle$.
- 2. Compute Gröbner basis ${\it G}_2$ of $\langle {\it f}_1, {\it f}_2 \rangle$ by

(a)
$$G_2 = G_1 \cup \{f_2\}$$
,

- (b) computing s-polynomials of f_2 with elements of G_1
- (c) reducing all s-polynomials w.r.t. ${\it G}_2$ and possibly add new elements to ${\it G}_2$

3. ...

4. $G := G_m$ is the Gröbner basis of I

Lots of useless computations

It is very time-consuming to compute G such that Spol(p,q)reduces to zero w.r.t. G for all $p, q \in G$.

Lots of useless computations

It is very time-consuming to compute G such that Spol(p,q)reduces to zero w.r.t. G for all $p, q \in G$.

When such an s-polynomial reduces to an element $h \neq 0$ w.r.t. *G* then we get **new information** for the structure of *G*, namely adding *h* to *G*.

Lots of useless computations

It is very time-consuming to compute G such that Spol(p,q) reduces to zero w.r.t. G for all $p, q \in G$.

When such an s-polynomial reduces to an element $h \neq 0$ w.r.t. *G* then we get **new information** for the structure of *G*, namely adding *h* to *G*.

But most of the s-polynomials considered during the algorithm reduce to zero w.r.t. G.

 \Rightarrow No new information from zero reductions

Lots of useless computations

It is very time-consuming to compute G such that Spol(p,q) reduces to zero w.r.t. G for all $p, q \in G$.

When such an s-polynomial reduces to an element $h \neq 0$ w.r.t. *G* then we get **new information** for the structure of *G*, namely adding *h* to *G*.

But most of the s-polynomials considered during the algorithm reduce to zero w.r.t. G.

 \Rightarrow No new information from zero reductions

Let's have a look at the example again:

Example

Given $g_1 = xy - z^2$, $g_2 = y^2 - z^2$, we have computed

$$\text{Spol}(g_2, g_1) = \mathbf{x}\mathbf{y}^2 - xz^2 - \mathbf{x}\mathbf{y}^2 + yz^2 = -xz^2 + yz^2.$$

Example

Given
$$g_1 = xy - z^2$$
, $g_2 = y^2 - z^2$, we have computed

$$Spol(g_2, g_1) = xy^2 - xz^2 - xy^2 + yz^2 = -xz^2 + yz^2.$$

We get a new element $g_3 = xz^2 - yz^2$ for *G*.

Example

where
$$g_1=xy-z^2$$
, $g_2=y^2-z^2$, we have computed

 $\operatorname{Spol}(g_2, g_1) = xy^2 - xz^2 - xy^2 + yz^2 = -xz^2 + yz^2.$

$$g_3 = xz^2 - yz^2$$

Let us compute $\operatorname{Spol}(g_3, g_1)$ next:

Example

where
$$g_1=xy-z^2$$
, $g_2=y^2-z^2$, we have computed

 $\operatorname{Spol}(g_2, g_1) = \mathbf{x}\mathbf{y}^2 - \mathbf{x}z^2 - \mathbf{x}\mathbf{y}^2 + yz^2 = -\mathbf{x}z^2 + yz^2.$

 $g_3 = xz^2 - yz^2$ Let us compute $\operatorname{Spol}(g_3, g_1)$ next:

 $Spol(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$

Example

where
$$g_1=xy-z^2$$
, $g_2=y^2-z^2$, we have computed

 $\operatorname{Spol}(g_2, g_1) = \mathbf{x}\mathbf{y}^2 - \mathbf{x}\mathbf{z}^2 - \mathbf{x}\mathbf{y}^2 + y\mathbf{z}^2 = -\mathbf{x}\mathbf{z}^2 + y\mathbf{z}^2.$

 $g_3 = xz^2 - yz^2$ Let us compute $\text{Spol}(g_3, g_1)$ next:

$$Spol(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$$

Now we can reduce further with z^2g_2 :

$$-y^2z^2 + z^4 + y^2z^2 - z^4 = 0.$$

Example

where
$$g_1=xy-z^2$$
, $g_2=y^2-z^2$, we have computed

 $\operatorname{Spol}(g_2, g_1) = xy^2 - xz^2 - xy^2 + yz^2 = -xz^2 + yz^2.$

Let us compute $\operatorname{Spol}(g_3, g_1)$ next:

$$Spol(g_3, g_1) = xyz^2 - y^2z^2 - xyz^2 + z^4 = -y^2z^2 + z^4.$$

Now we can reduce further with z^2g_2 :

$$-y^2z^2 + z^4 + y^2z^2 - z^4 = 0.$$

 \Rightarrow How to detect zero reductions in advance?

Known ideas for optimizing computations

- Predict zero reductions (Buchberger, Gebauer-Möller, Möller-Mora-Traverso, etc.)
- Selection strategies: Pick pairs in a clever way (Buchberger, Giovini et al., Möller et al.)
- ► Homogenization: *d*-Gröbner bases
- Involutive bases: Forbid some top-reductions (Gerdt, Blinkov)

The following section is about

1 Introducing Gröbner bases

Gröbner basics Computation of Gröbner bases Problem of zero reduction

2 Signature-based algorithms

The basic idea Computing Gröbner bases using signatures How to reject useless pairs?

3 GGV and F5 – Differences and similarities

What are the differences?

F5

GGV

F5E – Combine the ideas

④ Experimental results

Preliminaries

Critical pairs & zero reductions

Timings

6 Outlook

Let $I = \langle f_1, \ldots, f_m \rangle$. The idea is to give each polynomial during the computations of the algorithm a so-called **signature**:

1. Let $e_1, \ldots, e_m \in R^m$ be canonical generators such that $\pi: R^m \to R: \pi(e_i) = f_i$ for all *i*.

- 1. Let $e_1, \ldots, e_m \in R^m$ be canonical generators such that $\pi: R^m \to R: \pi(e_i) = f_i$ for all *i*.
- 2. Any polynomial $p \in I$ can be written as $p = h_1 f_1 + \ldots + h_m f_m$.

- 1. Let $e_1, \ldots, e_m \in R^m$ be canonical generators such that $\pi: R^m \to R: \pi(e_i) = f_i$ for all *i*.
- 2. Any polynomial $p \in I$ can be written as $p = h_1 f_1 + \ldots + h_m f_m$.
- 3. Let k be the greatest index such that h_k is not zero. $\Rightarrow \mathbf{A} \text{ signature } S(p) = \operatorname{lm}(h_k)e_k.$

- 1. Let $e_1, \ldots, e_m \in R^m$ be canonical generators such that $\pi: R^m \to R: \pi(e_i) = f_i$ for all *i*.
- 2. Any polynomial $p \in I$ can be written as $p = h_1 f_1 + \ldots + h_m f_m$.
- 3. Let k be the greatest index such that h_k is not zero. \Rightarrow A signature $S(p) = lm(h_k)e_k$.
- 4. A generating element f_i of I gets the signature $S(f_i) = e_i$.

- 1. Let $e_1, \ldots, e_m \in R^m$ be canonical generators such that $\pi: R^m \to R: \pi(e_i) = f_i$ for all *i*.
- 2. Any polynomial $p \in I$ can be written as $p = h_1 f_1 + \ldots + h_m f_m$.
- 3. Let k be the greatest index such that h_k is not zero. \Rightarrow **A signature** $S(p) = lm(h_k)e_k$.
- 4. A generating element f_i of I gets the signature $S(f_i) = e_i$.
- 5. Extend the monomial order on the signatures
 - (a) Well-order \prec on the set of all signatures
 - (b) Existence of the minimal signature of a polynomial p

Orders on signatures

Remark

Note that there are various ways to define the order \prec depending on different preferences of the monomial resp. the index of the signature

- 1. 2002 Faugère [Fa02]
- 2. 2009 Ars and Hashemi [AH09]
- 3. 2010 Gao, Volny, and Wang [GVW11]
- 4. 2010 / 2011 Sun and Wang [SW10, SW11]

Orders on signatures

We use Faugère's variant:

$$t_k e_k \succ t_\ell e_\ell \quad \Leftrightarrow \quad (a)k > \ell \text{ or}$$

 $(b)k = \ell \text{ and } t_k > t_\ell$

Orders on signatures

We use Faugère's variant:

$$\begin{aligned} t_k e_k \succ t_\ell e_\ell & \Leftrightarrow & (\mathbf{a})k > \ell \text{ or} \\ & (\mathbf{b})k = \ell \text{ and } t_k > t_\ell \end{aligned}$$

Example

Assume $\mathbb{Q}[x, y, z]$ with degree reverse lexicographical order. Then 1. $x^2ye_3 \succ z^3e_3$, 2. $1 \cdot e_5 \succ x^{12}y^{234}z^{3456}e_4$.

Signatures of s-polynomials

Using **signatures** in a Gröbner basis algorithm we clearly need to define them **for s-polynomials**, too:

$$\operatorname{Spol}(p,q) = \operatorname{lc}(q)u_pp - \operatorname{lc}(p)u_qq$$

such that

$$\begin{aligned} \mathcal{S}\left(\mathrm{Spol}(p,q)\right) &= u_p \mathcal{S}(p) \\ u_p \mathcal{S}(p) \succ u_q \mathcal{S}(q). \end{aligned}$$

In our example

$$g_3 = \operatorname{Spol}(g_2, g_1) = xg_2 - yg_1$$
$$\Rightarrow \mathcal{S}(g_3) = x\mathcal{S}(g_2) = xe_2.$$

In our example

$$g_3 = \operatorname{Spol}(g_2, g_1) = xg_2 - yg_1$$
$$\Rightarrow \mathcal{S}(g_3) = x\mathcal{S}(g_2) = xe_2.$$

It follows that $\mathrm{Spol}(g_3,g_1)=yg_3-z^2g_1$ has $\mathcal{S}\left(\mathrm{Spol}(g_3,g_1)
ight)=y\mathcal{S}(g_3)=xye_2.$

In our example

$$g_3 = \operatorname{Spol}(g_2, g_1) = xg_2 - yg_1$$
$$\Rightarrow \mathcal{S}(g_3) = x\mathcal{S}(g_2) = xe_2.$$

It follows that $\mathrm{Spol}(g_3,g_1)=yg_3-z^2g_1$ has $\mathcal{S}\left(\mathrm{Spol}(g_3,g_1)
ight)=y\mathcal{S}(g_3)=xye_2.$

Note that $\mathcal{S}(\operatorname{Spol}(g_3,g_1)) = (xye_2)$ and $\operatorname{lm}(g_1) = xy$.

In our example

$$g_3 = \operatorname{Spol}(g_2, g_1) = xg_2 - yg_1$$
$$\Rightarrow \mathcal{S}(g_3) = x\mathcal{S}(g_2) = xe_2.$$

It follows that $\operatorname{Spol}(g_3,g_1)=yg_3-z^2g_1$ has

$$\mathcal{S}(\mathrm{Spol}(g_3,g_1)) = y\mathcal{S}(g_3) = xye_2.$$

Note that $S(\operatorname{Spol}(g_3, g_1)) = (xye_2)$ and $\operatorname{Im}(g_1) = xy$. \Rightarrow We **know** that $\operatorname{Spol}(g_3, g_1)$ will reduce to zero!

How does this work?

The main idea is to check if the next element Spol(p, q) has the **minimal signature**.

How does this work?

The main idea is to check if the next element Spol(p, q) has the minimal signature.

If $\mathcal{S}(\operatorname{Spol}(p,q))$ is not minimal \Rightarrow $\operatorname{Spol}(p,q)$ can be discarded.

How does this work?

The main idea is to check if the next element Spol(p, q) has the **minimal signature**.

If $\mathcal{S}(\operatorname{Spol}(p,q))$ is not minimal \Rightarrow $\operatorname{Spol}(p,q)$ can be discarded.

Question

How do we know, if the signature of a polynomial / critical pair is not minimal?

Input: $G_{i-1} = \{g_1, \ldots, g_{r-1}\}$, a Gröbner basis of $\langle f_1, \ldots, f_{i-1} \rangle$ **Output:** Gröbner basis *G* of $\langle f_1, \ldots, f_i \rangle$

1. $g_r := f_i$

1.
$$g_r := f_i$$

2. $G = \{(e_1, g_1), \dots, (e_{r-1}, g_{r-1}), (e_r, g_r)\}$ (monic)

1.
$$g_r := f_i$$

2. $G = \{(e_1, g_1), \dots, (e_{r-1}, g_{r-1}), (e_r, g_r)\}$ (monic)
3. Set $P := \{(\frac{\operatorname{lcm}(g_r, g_j)}{\operatorname{lm}(g_r)}e_r, g_r, g_j), j < r\}$

- 1. $g_r := f_i$ 2. $G = \{(e_1, g_1), \dots, (e_{r-1}, g_{r-1}), (e_r, g_r)\}$ (monic) 3. Set $P := \{(\frac{\operatorname{lcm}(g_r, g_j)}{\operatorname{lm}(g_r)}e_r, g_r, g_j), j < r\}$ 4. While $P \neq \emptyset$
 - (a) Choose $(\lambda e_r, p, q) \in P$ such that λe_r is minimal.
 - (b) Delete $(\lambda e_r, p, q)$ from *P*.

- 1. $g_r := f_i$ 2. $G = \{(e_1, g_1), \dots, (e_{r-1}, g_{r-1}), (e_r, g_r)\}$ (monic) 3. Set $P := \{(\frac{\operatorname{lcm}(g_r, g_j)}{\operatorname{lm}(g_r)}e_r, g_r, g_j), j < r\}$
- 4. While $P \neq \emptyset$
 - (a) Choose $(\lambda e_r, p, q) \in P$ such that λe_r is minimal.
 - (b) Delete $(\lambda e_r, p, q)$ from *P*.
 - (c) (λe_r) not minimal for $up vq \Rightarrow \text{goto } 4$.

1.
$$g_r := f_i$$

2. $G = \{(e_1, g_1), \dots, (e_{r-1}, g_{r-1}), (e_r, g_r)\}$ (monic)
3. Set $P := \{(\frac{\operatorname{lcm}(g_r, g_j)}{\operatorname{lm}(g_r)}e_r, g_r, g_j), j < r\}$
4. While $P \neq \emptyset$

Input: $G_{i-1} = \{g_1, \dots, g_{r-1}\}$, a Gröbner basis of $\langle f_1, \dots, f_{i-1} \rangle$ **Output:** Gröbner basis *G* of $\langle f_1, \dots, f_i \rangle$

1.
$$g_r := f_i$$

2. $G = \{(e_1, g_1), \dots, (e_{r-1}, g_{r-1}), (e_r, g_r)\}$ (monic)
3. Set $P := \{(\frac{\operatorname{lcm}(g_r, g_j)}{\operatorname{lm}(g_r)}e_r, g_r, g_j), j < r\}$
4. While $P \neq \emptyset$
(a) Choose $(\lambda e_r, p, q) \in P$ such that λe_r is minimal.
(b) Delete $(\lambda e_r, p, q)$ from P .
(c) (λe_r) not minimal for $up - vq \Rightarrow \text{goto } 4$.
(d) $(S(h), h) = \text{reduce}((\lambda e_r, up - vq), G)$
(e) $h \neq 0 \& \nexists(S(g), g) \in G$, $t \in M$ s.t. $tS(g) = S(h)$ and $t\mathrm{lm}(g) = \mathrm{lm}(h)$
(i) For all $g \in G$ add $(\sigma e_r, h, g)$ to P .
(ii) Add $(S(h), h)$ to G .

5. When $P = \emptyset$ we are done and G is a Gröbner basis of $\langle f_1, \ldots, f_i \rangle$.

Input: $G_{i-1} = \{g_1, \ldots, g_{r-1}\}$, a Gröbner basis of $\langle f_1, \ldots, f_{i-1} \rangle$ **Output:** Gröbner basis *G* of $\langle f_1, \ldots, f_i \rangle$

1.
$$g_r := f_i$$

2. $G = \{(e_1, g_1), \dots, (e_{r-1}, g_{r-1}), (e_r, g_r)\}$ (monic)
3. Set $P := \{(\frac{\operatorname{lcm}(g_r, g_j)}{\operatorname{lm}(g_r)}e_r, g_r, g_j), j < r\}$
4. While $P \neq \emptyset$
(a) Choose $(\lambda e_r, p, q) \in P$ such that λe_r is minimal.
(b) Delete $(\lambda e_r, p, q)$ from P .
(c) (λe_r) not minimal for $up - vq \Rightarrow \text{goto } 4$.
(d) $(S(h), h) = \text{reduce}((\lambda e_r, up - vq), G) \Leftarrow \text{sig-safe!}$
(e) $h \neq 0 \& \nexists(S(g), g) \in G, t \in M \text{ s.t. } tS(g) = S(h)$ and $tlm(g) = lm(h)$
(i) For all $g \in G$ add $(\sigma e_r, h, g)$ to P .
(ii) Add $(S(h), h)$ to G .

5. When $P = \emptyset$ we are done and G is a Gröbner basis of $\langle f_1, \ldots, f_i \rangle$.

Let $(\mathcal{S}(p), p)$, $(\mathcal{S}(q), q)$ such that $\lambda \operatorname{lm}(q) = \operatorname{lm}(p)$.

Let $(\mathcal{S}(p), p)$, $(\mathcal{S}(q), q)$ such that $\lambda \operatorname{lm}(q) = \operatorname{lm}(p)$. 1. Sig-safe: $\mathcal{S}(p - \lambda q) = \mathcal{S}(p)$.

- Let $(\mathcal{S}(p), p)$, $(\mathcal{S}(q), q)$ such that $\lambda \operatorname{lm}(q) = \operatorname{lm}(p)$.
 - 1. Sig-safe: $S(p \lambda q) = S(p)$.
 - 2. Sig-unsafe: $S(p \lambda q) = \lambda S(q)$.

Let $(\mathcal{S}(p),p)$, $(\mathcal{S}(q),q)$ such that $\lambda \mathrm{lm}(q) = \mathrm{lm}(p)$.

- 1. Sig-safe: $S(p \lambda q) = S(p)$.
- 2. Sig-unsafe: $S(p \lambda q) = \lambda S(q)$.
- 3. Sig-cancelling: $S(p) = \lambda S(q) \Rightarrow S(p \lambda q) = ?$

Let $(\mathcal{S}(p),p)$, $(\mathcal{S}(q),q)$ such that $\lambda \mathrm{lm}(q) = \mathrm{lm}(p)$.

- 1. Sig-safe: $S(p \lambda q) = S(p)$.
- 2. Sig-unsafe: $S(p \lambda q) = \lambda S(q)$.
- 3. Sig-cancelling: $S(p) = \lambda S(q) \Rightarrow S(p \lambda q) = ?$

Example

$$S(p) = xy^2 e_1, S(q) = xy e_1, x > y > z$$

1. Sig-safe: $S(p - zq) = xy^2 e_1$.

Let $(\mathcal{S}(p),p)$, $(\mathcal{S}(q),q)$ such that $\lambda \mathrm{lm}(q) = \mathrm{lm}(p)$.

- 1. Sig-safe: $S(p \lambda q) = S(p)$.
- 2. Sig-unsafe: $S(p \lambda q) = \lambda S(q)$.
- 3. Sig-cancelling: $S(p) = \lambda S(q) \Rightarrow S(p \lambda q) = ?$

Example

$$\mathcal{S}(p) = xy^2 e_1$$
, $\mathcal{S}(q) = xye_1$, $x > y > z$

- 1. Sig-safe: $S(p zq) = xy^2 e_1$.
- 2. Sig-unsafe: $S(p xq) = x^2 ye_1$.

Let $(\mathcal{S}(p),p)$, $(\mathcal{S}(q),q)$ such that $\lambda \mathrm{lm}(q) = \mathrm{lm}(p)$.

- 1. Sig-safe: $S(p \lambda q) = S(p)$.
- 2. Sig-unsafe: $S(p \lambda q) = \lambda S(q)$.
- 3. Sig-cancelling: $S(p) = \lambda S(q) \Rightarrow S(p \lambda q) = ?$

Example

$$\mathcal{S}(p) = xy^2 e_1$$
, $\mathcal{S}(q) = xye_1$, $x > y > z$

1. Sig-safe:
$$S(p-zq) = xy^2e_1$$
.

2. Sig-unsafe:
$$S(p - xq) = x^2 ye_1$$
.

3. Sig-cancelling: S(p - yq) = ?

Termination?

- 1. No new s-polynomials for $(\mathcal{S}(h), h) = \lambda(\mathcal{S}(g), g)$
- 2. Each new element expands $\langle (\mathcal{S}(h), \operatorname{Im}(h)) \rangle$

Termination?

- 1. No new s-polynomials for $(\mathcal{S}(h), h) = \lambda(\mathcal{S}(g), g)$
- 2. Each new element expands $\langle (\mathcal{S}(h), \operatorname{lm}(h)) \rangle$

Correctness?

- 1. Proceed by minimal signature in P
- 2. All s-polynomials considered: sig-unsafe reduction \Rightarrow new critical pair next round
- 3. All nonzero elements added besides $(\mathcal{S}(h), h) = \lambda(\mathcal{S}(g), g)$

Non-minimal signature (NM) S(h) not minimal for $h? \Rightarrow$ discard h

Non-minimal signature (NM)

 $\mathcal{S}(h)$ not minimal for $h? \Rightarrow$ discard h

Proof.

- 1. There exists syzygy s with lm(s) = S(h).
- 2. We can rewrite h using a lower signature.
- 3. We proceed by increasing signatures. \Rightarrow Those reductions are already considered.

Rewritable signature (RW) $S(g) = S(h)? \Rightarrow$ discard either g or h

Rewritable signature (RW)

 $\mathcal{S}(g) = \mathcal{S}(h)? \Rightarrow \mathsf{discard} \ \mathsf{either} \ g \ \mathsf{or} \ h$

Proof.

1.
$$\mathcal{S}(g-h) < \mathcal{S}(h), \mathcal{S}(g).$$

2. We proceed by increasing signatures.

- \Rightarrow Those reductions are already considered.
- \Rightarrow We can rewrite h = g + terms of lower signature.

The following section is about

1 Introducing Gröbner bases

Gröbner basics Computation of Gröbner bases Problem of zero reduction

2 Signature-based algorithms

The basic idea Computing Gröbner bases using signatures How to reject useless pairs?

3 GGV and F5 – Differences and similarities

What are the differences? F5

GGV

F5E – Combine the ideas

4 Experimental results

Preliminaries

Critical pairs & zero reductions

Timings

6 Outlook

What are the differences?

1. Different implementations of (NM) and (RW)

What are the differences?

- 1. Different implementations of (NM) and (RW)
- 2. Different implementations of the sig-safe reduction

What are the differences?

- 1. Different implementations of (NM) and (RW)
- 2. Different implementations of the sig-safe reduction

Remark

The presented criteria (NM) and (RW) are also used during the (sig-safe) reduction steps. This usage is quite **soft in GGV** and quite **aggressive in F5**.

What are the differences?

- 1. Different implementations of (NM) and (RW)
- 2. Different implementations of the sig-safe reduction

Remark

The presented criteria (NM) and (RW) are also used during the (sig-safe) reduction steps. This usage is quite **soft in GGV** and quite **aggressive in F5**.

 \Rightarrow Termination: GGV \odot – F5 \odot

lf

$$\begin{split} \mathcal{S}(\mathbf{g}) &= \lambda \mathbf{e}_{< i}, \\ \mathcal{S}(\mathbf{h}) &= \sigma \mathbf{e}_{i}, \text{ and } \\ \mathrm{lm}(\mathbf{g}) \mid \sigma, \end{split}$$

then discard h.

F5's implementation of (RW)

If there exists $(\mathcal{S}(g),g)$ such that

$$\begin{split} \mathcal{S}(g) &= \lambda e_r, \\ \mathcal{S}(h) &= \sigma \mathcal{S}(f) = \sigma \big(\tau e_r \big), \\ \lambda \mid \sigma \tau, \text{ and} \\ g \text{ computed after } f, \end{split}$$

then discard h.

F5's implementation of (RW)

If there exists $(\mathcal{S}(g),g)$ such that

$$\begin{split} \mathcal{S}(g) &= \lambda e_r, \\ \mathcal{S}(h) &= \sigma \mathcal{S}(f) = \sigma \big(\tau e_r \big), \\ \lambda \mid \sigma \tau, \text{ and} \\ g \text{ computed after } f, \end{split}$$

then discard h.

Remark

This is an aggressive implementation of (RW) changing "equality" to "divisibility" in the criterion.

Initially $H = \{ \operatorname{lm}(g_1), \ldots, \operatorname{lm}(g_{r-1}) \}.$

Initially $H = \{ \operatorname{lm}(g_1), \ldots, \operatorname{lm}(g_{r-1}) \}$. Whenever p reduces to zero

$$\Rightarrow H = H \cup \{\lambda\} \text{ where } \mathcal{S}(p) = \lambda e_r.$$

Initially $H = \{ lm(g_1), \dots, lm(g_{r-1}) \}.$ Whenever p reduces to zero

$$\Rightarrow H = H \cup \{\lambda\} \text{ where } \mathcal{S}(p) = \lambda e_r.$$

 $\mathcal{S}(g) = \sigma e_r,$ $\exists h \in H \text{ such that } h \mid \sigma,$

then discard g.

lf

Initially $H = \{ \operatorname{lm}(g_1), \dots, \operatorname{lm}(g_{r-1}) \}$. Whenever p reduces to zero

$$\Rightarrow H = H \cup \{\lambda\} \text{ where } \mathcal{S}(p) = \lambda e_r.$$

lf

$$\mathcal{S}(g) = \sigma e_r,$$

$$\exists h \in H \text{ such that } h \mid \sigma,$$

then discard g.

Remark

This is F5's NM criterion with additional criteria added during the computation.

lf

$$\mathcal{S}(g) = \mathcal{S}(h),$$

then consider only g or h.

$$\mathcal{S}(g) = \mathcal{S}(h),$$

then consider only g or h.

Remark

This is used when creating new critical pairs.

F5E – Combine the ideas

Behaviour depending on number of zero reductions

- ► GGV actively uses zero reductions to improve (NM).
- F5 does not do this, but possible incorporates some of this data in (RW).
- Checking by F5's (RW) costs much more time than checking by (NM).

F5E – Combine the ideas

Behaviour depending on number of zero reductions

- ► GGV actively uses zero reductions to improve (NM).
- F5 does not do this, but possible incorporates some of this data in (RW).
- Checking by F5's (RW) costs much more time than checking by (NM).

The following combination is straightforward:

- ▶ Use the F5 Algorithm.
- ► Add GGV's (NM) to it: Whenever g reduces to zero, add S(g) to H.

The following section is about

1 Introducing Gröbner bases

Gröbner basics Computation of Gröbner bases Problem of zero reduction

2 Signature-based algorithms

The basic idea

Computing Gröbner bases using signatures

How to reject useless pairs?

3 GGV and F5 – Differences and similarities

What are the differences?

F5

GGV

F5E – Combine the ideas

4 Experimental results

Preliminaries Critical pairs & zero reductions Timings

Test environments

All examples are computed in the following setting:

- 1. \mathbb{F}_{32003} ,
- 2. graded reverse lexicographical order.

Test environments

All examples are computed in the following setting:

- 1. \mathbb{F}_{32003} ,
- 2. graded reverse lexicographical order.

All examples are computed on the following machine:

- 1. MacBook Pro 7,1 (Intel Core 2 Duo P8800),
- 2. 4GB Ram,
- 3. 5,400 rpm HDD,
- 4. 64-bit Ubuntu 10.10.
- 5. SINGULAR 3-1-3 Developer Version

Test environments

All examples are computed in the following setting:

- 1. \mathbb{F}_{32003} ,
- 2. graded reverse lexicographical order.

All examples are computed on the following machine:

- 1. MacBook Pro 7,1 (Intel Core 2 Duo P8800),
- 2. 4GB Ram,
- 3. 5,400 rpm HDD,
- 4. 64-bit Ubuntu 10.10.
- 5. SINGULAR 3-1-3 Developer Version

Remark

All algorithms use **the same underlying structure**, differing only in the implementation of the criteria presented in this talk.

Number of critical pairs and zero reductions

System	F5		F5E		GGV	
Katsura 9	886	0	886	0	886	0
Katsura 10	1,781	0	1,781	0	1,781	0
Eco 8	830	322	565	57	2,012	57
Eco 9	2,087	929	1,278	120	5,794	120
F744	1,324	342	1,151	169	2,145	169
Cyclic 7	1,018	76	978	36	3,072	36
Cyclic 8	7,066	244	5,770	244	24,600	244

Number of critical pairs and zero reductions

System	F5		F5E		GGV	
Katsura 9	886	0	886	0	886	0
Katsura 10	1,781	0	1,781	0	1,781	0
Eco 8	830	322	565	57	2,012	57
Eco 9	2,087	929	1,278	120	5,794	120
F744	1,324	342	1,151	169	2,145	169
Cyclic 7	1,018	76	978	36	3,072	36
Cyclic 8	7,066	244	5,770	244	24,600	244

Remark

Besides considering more critical pairs, GGV does a lot more single reduction steps than F5 does.

Timings in seconds

System	F5	F5E	GGV
Katsura 9	14.98	14.87	17.63
Katsura 10	153.35	152.39	192.20
Eco 8	2.24	0.38	0.49
Eco 9	77.13	8.19	13.51
F744	19.35	8.79	26.86
Cyclic 7	7.01	7.22	33.85
Cyclic 8	7,310.39	4,961.58	26,242.12

The following section is about

1 Introducing Gröbner bases

Gröbner basics Computation of Gröbner bases Problem of zero reduction

2 Signature-based algorithms

The basic idea

Computing Gröbner bases using signatures

How to reject useless pairs?

3 GGV and F5 – Differences and similarities

What are the differences?

F5

GGV

F5E – Combine the ideas

④ Experimental results

Preliminaries

Critical pairs & zero reductions

Timings

► Implementing F4F5:

Gaussian Elimination done by Bradford Hovinen

► Implementing F4F5:

Gaussian Elimination done by Bradford Hovinen

Inhomogeneous case:

Working, but slow

 Implementing F4F5: Gaussian Elimination done by Bradford Hovinen

 Inhomogeneous case: Working, but slow

• Orders on signatures: Lots of tests, heuristics

Implementing F4F5: Gaussian Elimination done by Bradford Hovinen

Inhomogeneous case: Working, but slow

• Orders on signatures: Lots of tests, heuristics

Parallelization:

On criteria checks, needs thread-safe omalloc

Implementing F4F5: Gaussian Elimination done by Bradford Hovinen

Inhomogeneous case: Working, but slow

• Orders on signatures: Lots of tests, heuristics

Parallelization:

On criteria checks, needs thread-safe omalloc

Syzygy computations: Needs implementation

Implementing F4F5: Gaussian Elimination done by Bradford Hovinen

Inhomogeneous case: Working, but slow

• Orders on signatures: Lots of tests, heuristics

Parallelization:

On criteria checks, needs thread-safe omalloc

Syzygy computations: Needs implementation

Generalizing criteria:

Using more data, combining with Buchberger's criteria, etc.

References

- [AH09] G. Ars and A. Hashemi. Extended F5 Criteria
- [EP10] C. Eder and J. Perry. F5C: A variant of Faugre's F5 Algorithm with reduced Gröbner bases
- [EGP11] C. Eder, J. Gash, and J. Perry. Modifying Faugre's F5 Algorithm to ensure termination
- [EP11] C. Eder and J. Perry. Signature-based algorithms to compute Gröbner bases
- [Fa02] J.-C. Faugère. A new efficient algorithm for computing Gröbner bases without reduction to zero F₅
- [GGV10] S. Gao, Y. Guan, and F. Volny IV. A New Incremental Algorithm for Computing Gröbner Bases
- [GVW11] S. Gao, F. Volny IV, and M. Wang. A New Algorithm For Computing Grobner Bases
- [SIN11] W. Decker, G.-M. Greuel, G. Pfister and H. Schönemann. SINGULAR 3-1-3. A computer algebra system for polynomial computations, University of Kaiserslautern, 2011, http://www.singular.uni-kl.de.
- [SW10] Y. Sun and D. Wang. A new proof of the F5 Algorithm
- [SW11] Y. Sun and D. Wang. A Generalized Criterion for Signature Related Gröbner Basis Algorithms