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Connections between Buchberger's
Algorithm and Faugere's F4
Similarities
@ Both compute a Grobner basis G for a finite set of
polynomials F.

® Both generate pairs of elements of the input, reduce these,
add newly generated elements to G, generate new pairs of
elements, ...
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Connections between Buchberger's
Algorithm and Faugere's F4
Similarities
@ Both compute a Grobner basis G for a finite set of
polynomials F.

® Both generate pairs of elements of the input, reduce these,
add newly generated elements to G, generate new pairs of
elements, ...

Differences
@ F4 should select many pairs at a time.

® F4 pre-computes all reducers for all pairs of the given
selection.

© F4 stores all the above data in a huge matrix M and reduces
all pairs simultaneously computing the row echelon form of
this matrix.
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Pseudocode of basic F4

Require: finite subset F of K[x]
G =F
{(ghgj) | 8i:8j € G,i <./}
d =1
while P # () do
Py := select(P)
P = P\Py
Ly = {uigi | g gen. of pair in Py,
u; corr. multiple for s-poly}
My := symbPreprocessing(Ly, G)
My := rowEchelonForm(My)
M} := {p corr. to rows in My | Im(p) ¢ L(G)}
P:=PU{(p.g)| peMj,geG}
G:=GUM;
d=d+1
return Grobner basis G of F
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A first look

PROS
@ Reduction is done for the complete selection at once.

® Matrix computations can be parallelized.
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A first look

PROS
@ Reduction is done for the complete selection at once.

® Matrix computations can be parallelized.

CONS
@ huge matrices (memory usage!)

® slow (standard version)
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An easy example

Let F =G ={g1,&} C K[x,y, z] where

g =xy — 2%,

o=y -7

> degree reverse lexicographical ordering x >y > z
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An easy example

Let F =G ={g1,&} C K[x,y, z] where
g =xy —2°,
o=y -7

> degree reverse lexicographical ordering x >y > z

Add g3 = xz% — yz? to G.
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Do we need to compute (g3,82) ?

Improving F4
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Improving F4

Do we need to compute (g3,82) ?
No, since ged(Im(gs3),1lm(g2)) = 1 (Product Criterion).

= Use criteria to discard “redundant” pairs, e.g. Buchberger's
criteria

Problem: We are still too slow!
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Pseudocode of full F4

Require: finite subset F of K[x]

G:=F

P := criteria({(gi, &) | &i.8 € G,i <Jj})

d:=1

while P # () do
Py := select(P)
P = P\Py
Ly = {uigi | g gen. of pair in Py,

u; corr. multiple for s-poly}

M, := symbPreprocessing( Ly, G))
My := rowEchelonForm(My)
M7 = {p corr. to rows in My | Im(p) ¢ L(G)}
P := criteria(PU{(p,g) | p € M}, g € G})
G =GU /\/I:,r
d=d+1

return Grobner basis G of F
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Pseudocode of full F4

Require: finite subset F of K[x]

G:=F

P := criteria({(gi, &) | gi,8 € G,i <Jj})

d:=1

while P # () do
Py := select(P)
P = P\Py
Ly = {uigi | g gen. of pair in Py,

u; corr. multiple for s-poly}

My := symbPreprocessing(simplify(Ly, G))
My := rowEchelonForm(My)
M7 = {p corr. to rows in My | Im(p) ¢ L(G)}
P := criteria(P U {(p,g) | p € M .g € G})
G:=GU /\/I:,r
d=d+1

return Grobner basis G of F
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Idea behind SIMPLIFY

Use already computed data, i.e. use not only I\/I(}L for the next
iteration, but also My:
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Idea behind SIMPLIFY

Use already computed data, i.e. use not only I\/Ic}L for the next
iteration, but also My:

Assume the reducer ug in the symbolic preprocessing at iteration
d, where g € G.
If It s.t. t|vand tg € Moy

® dpc MN<d representing a (possibly) more reduced version of
tg.

@ Rewrite $p by ug.

® Check 7p for further rewritings.
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Problems of SIMPLIFY

® We need to store all My = memory consumption.
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Problems of SIMPLIFY

® We need to store all My = memory consumption.

@® It is possible that the newly chosen reducer is not (much)
better.

© Sometimes other rewritings would be better. Those are
possibly hidden by SIMPLIFY.

= |deas of SLIMGB:
@ Add some more criteria for the reducer-rewriting, e.g. length
of the poly, size of coeffs, etc.

® Store not the whole bunch of data from done computations,
but only a list of “good” rewriters.
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How to use F5 in F47

Instead of Buchberger's criteria one can use Fb's criteria,
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How to use F5 in F47

Instead of Buchberger's criteria one can use Fb's criteria,
+ more “redundant” pairs are detected,

- only in the homogeneous case,

- we have to add some elements g of I\7Id\/\ﬂ~;r to G, i.e.
Im(g) € L(G).

Due to the last point some intermediate matrices can be bigger
than in the Buchberger approach = more data needs to be stored.
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