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Connections between Buchberger’s

Algorithm and Faugère’s F4

Similarities

1 Both compute a Gröbner basis G for a finite set of
polynomials F .

2 Both generate pairs of elements of the input, reduce these,
add newly generated elements to G , generate new pairs of
elements, . . .
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1 Both compute a Gröbner basis G for a finite set of
polynomials F .

2 Both generate pairs of elements of the input, reduce these,
add newly generated elements to G , generate new pairs of
elements, . . .

Differences

1 F4 should select many pairs at a time.

2 F4 pre-computes all reducers for all pairs of the given
selection.

3 F4 stores all the above data in a huge matrix M and reduces
all pairs simultaneously computing the row echelon form of
this matrix.
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Pseudocode of basic F4

Require: finite subset F of K[x ]
G := F

P := {(gi , gj ) | gi , gj ∈ G , i < j}
d := 1
while P 6= ∅ do

Pd := select(P)
P := P\Pd

Ld := {uigi | gi gen. of pair in Pd ,
ui corr. multiple for s-poly}

Md := symbPreprocessing(Ld ,G )
M̃d := rowEchelonForm(Md)

M̃+
d

:= {p corr. to rows in M̃d | lm(p) /∈ L(G )}

P := P ∪ {(p, g) | p ∈ M̃+
d
, g ∈ G}

G := G ∪ M̃+
d

d := d + 1
return Gröbner basis G of F
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A first look

PROS

1 Reduction is done for the complete selection at once.

2 Matrix computations can be parallelized.

4 / 10



A first look

PROS

1 Reduction is done for the complete selection at once.

2 Matrix computations can be parallelized.

CONS

1 huge matrices (memory usage!)

2 slow (standard version)
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An easy example

Let F = G = {g1, g2} ⊂ K[x , y , z ] where

g1 = xy − z2,

g2 = y2 − z2.

> degree reverse lexicographical ordering x > y > z
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An easy example

Let F = G = {g1, g2} ⊂ K[x , y , z ] where

g1 = xy − z2,

g2 = y2 − z2.

> degree reverse lexicographical ordering x > y > z

Add g3 = xz2 − yz2 to G .
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Improving F4

Do we need to compute (g3, g2) ?
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Improving F4

Do we need to compute (g3, g2) ?
No, since gcd(lm(g3), lm(g2)) = 1 (Product Criterion).

⇒ Use criteria to discard “redundant” pairs, e.g. Buchberger’s
criteria

Problem: We are still too slow!
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Pseudocode of full F4

Require: finite subset F of K[x ]
G := F

P := criteria({(gi , gj ) | gi , gj ∈ G , i < j})
d := 1
while P 6= ∅ do

Pd := select(P)
P := P\Pd

Ld := {uigi | gi gen. of pair in Pd ,
ui corr. multiple for s-poly}

Md := symbPreprocessing(simplify(Ld ,G ))
M̃d := rowEchelonForm(Md)

M̃+
d

:= {p corr. to rows in M̃d | lm(p) /∈ L(G )}

P := criteria(P ∪ {(p, g) | p ∈ M̃+
d
, g ∈ G})

G := G ∪ M̃+
d

d := d + 1
return Gröbner basis G of F
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Idea behind Simplify

Use already computed data, i.e. use not only M̃+
d for the next

iteration, but also M̃d :
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Idea behind Simplify

Use already computed data, i.e. use not only M̃+
d for the next

iteration, but also M̃d :

Assume the reducer ug in the symbolic preprocessing at iteration
d , where g ∈ G .
If ∃t s.t. t | u and tg ∈ M<d

1 ∃p ∈ ˜M<d representing a (possibly) more reduced version of
tg .

2 Rewrite u
t
p by ug .

3 Check u
t
p for further rewritings.
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Problems of Simplify

1 We need to store all M̃d ⇒ memory consumption.
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Problems of Simplify

1 We need to store all M̃d ⇒ memory consumption.

2 It is possible that the newly chosen reducer is not (much)
better.

3 Sometimes other rewritings would be better. Those are
possibly hidden by Simplify.

⇒ Ideas of Slimgb:

1 Add some more criteria for the reducer-rewriting, e.g. length
of the poly, size of coeffs, etc.

2 Store not the whole bunch of data from done computations,
but only a list of “good” rewriters.
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How to use F5 in F4?

Instead of Buchberger’s criteria one can use F5’s criteria,
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How to use F5 in F4?

Instead of Buchberger’s criteria one can use F5’s criteria,

+ more “redundant” pairs are detected,

- only in the homogeneous case,

- we have to add some elements g of M̃d\M̃
+
d

to G , i.e.
lm(g) ∈ L(G ).

Due to the last point some intermediate matrices can be bigger
than in the Buchberger approach ⇒ more data needs to be stored.
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