An Introduction to F4, some remarks on F5

Christian Eder

University of Kaiserslautern

September 15, 2010

/10

Connections between Buchberger's
Algorithm and Faugere's F4
Similarities
@ Both compute a Grobner basis G for a finite set of
polynomials F.

® Both generate pairs of elements of the input, reduce these,
add newly generated elements to G, generate new pairs of
elements, ...

10

Connections between Buchberger's
Algorithm and Faugere's F4
Similarities
@ Both compute a Grobner basis G for a finite set of
polynomials F.

® Both generate pairs of elements of the input, reduce these,
add newly generated elements to G, generate new pairs of
elements, ...

Differences
@ F4 should select many pairs at a time.

® F4 pre-computes all reducers for all pairs of the given
selection.

© F4 stores all the above data in a huge matrix M and reduces
all pairs simultaneously computing the row echelon form of
this matrix.

10

Pseudocode of basic F4

Require: finite subset F of K[x]
G =F
{(ghgj) | 8i:8j € G,i <./}
d =1
while P # () do
Py := select(P)
P = P\Py
Ly = {uigi | g gen. of pair in Py,
u; corr. multiple for s-poly}
My := symbPreprocessing(Ly, G)
My := rowEchelonForm(My)
M} := {p corr. to rows in My | Im(p) ¢ L(G)}
P:=PU{(p.g)| peMj,geG}
G:=GUM;
d=d+1
return Grobner basis G of F

10

A first look

PROS
@ Reduction is done for the complete selection at once.

® Matrix computations can be parallelized.

10

A first look

PROS
@ Reduction is done for the complete selection at once.

® Matrix computations can be parallelized.

CONS
@ huge matrices (memory usage!)

® slow (standard version)

10

An easy example

Let F =G ={g1,&} C K[x,y, z] where

g =xy — 2%,

o=y -7

> degree reverse lexicographical ordering x >y > z

5/10

An easy example

Let F =G ={g1,&} C K[x,y, z] where
g =xy —2°,
o=y -7

> degree reverse lexicographical ordering x >y > z

Add g3 = xz% — yz? to G.

5/10

Do we need to compute (g3,82) ?

Improving F4

10

Improving F4

Do we need to compute (g3,82) ?
No, since ged(Im(gs3),1lm(g2)) = 1 (Product Criterion).

10

Improving F4

Do we need to compute (g3,82) ?
No, since ged(Im(gs3),1lm(g2)) = 1 (Product Criterion).

= Use criteria to discard “redundant” pairs, e.g. Buchberger's
criteria

10

Improving F4

Do we need to compute (g3,82) ?
No, since ged(Im(gs3),1lm(g2)) = 1 (Product Criterion).

= Use criteria to discard “redundant” pairs, e.g. Buchberger's
criteria

Problem: We are still too slow!

10

Pseudocode of full F4

Require: finite subset F of K[x]

G:=F

P := criteria({(gi, &) | &i.8 € G,i <Jj})

d:=1

while P # () do
Py := select(P)
P = P\Py
Ly = {uigi | g gen. of pair in Py,

u; corr. multiple for s-poly}

M, := symbPreprocessing(Ly, G))
My := rowEchelonForm(My)
M7 = {p corr. to rows in My | Im(p) ¢ L(G)}
P := criteria(PU{(p,g) | p € M}, g € G})
G =GU /\/I:,r
d=d+1

return Grobner basis G of F

10

Pseudocode of full F4

Require: finite subset F of K[x]

G:=F

P := criteria({(gi, &) | gi,8 € G,i <Jj})

d:=1

while P # () do
Py := select(P)
P = P\Py
Ly = {uigi | g gen. of pair in Py,

u; corr. multiple for s-poly}

My := symbPreprocessing(simplify(Ly, G))
My := rowEchelonForm(My)
M7 = {p corr. to rows in My | Im(p) ¢ L(G)}
P := criteria(P U {(p,g) | p € M .g € G})
G:=GU /\/I:,r
d=d+1

return Grobner basis G of F

10

Idea behind SIMPLIFY

Use already computed data, i.e. use not only I\/I(}L for the next
iteration, but also My:

10

Idea behind SIMPLIFY

Use already computed data, i.e. use not only I\/Ic}L for the next
iteration, but also My:

Assume the reducer ug in the symbolic preprocessing at iteration
d, where g € G.
If It s.t. t|vand tg € Moy

® dpc MN<d representing a (possibly) more reduced version of
tg.

@ Rewrite $p by ug.

® Check 7p for further rewritings.

10

Problems of SIMPLIFY

® We need to store all My = memory consumption.

10

Problems of SIMPLIFY

® We need to store all My = memory consumption.

@® It is possible that the newly chosen reducer is not (much)
better.

10

Problems of SIMPLIFY

® We need to store all My = memory consumption.

@® It is possible that the newly chosen reducer is not (much)
better.

© Sometimes other rewritings would be better. Those are
possibly hidden by SIMPLIFY.

10

Problems of SIMPLIFY

® We need to store all My = memory consumption.

@® It is possible that the newly chosen reducer is not (much)
better.

© Sometimes other rewritings would be better. Those are
possibly hidden by SIMPLIFY.

= |ldeas of SLIMGB:

@ Add some more criteria for the reducer-rewriting, e.g. length
of the poly, size of coeffs, etc.

10

Problems of SIMPLIFY

® We need to store all My = memory consumption.

@® It is possible that the newly chosen reducer is not (much)
better.

© Sometimes other rewritings would be better. Those are
possibly hidden by SIMPLIFY.

= |deas of SLIMGB:
@ Add some more criteria for the reducer-rewriting, e.g. length
of the poly, size of coeffs, etc.

® Store not the whole bunch of data from done computations,
but only a list of “good” rewriters.

9/10

How to use F5 in F47

Instead of Buchberger's criteria one can use Fb's criteria,

10/10

How to use F5 in F47

Instead of Buchberger's criteria one can use Fb's criteria,

+ more “redundant” pairs are detected,

10

How to use F5 in F47

Instead of Buchberger's criteria one can use Fb's criteria,
+ more “redundant” pairs are detected,

- only in the homogeneous case,

10

How to use F5 in F47

Instead of Buchberger's criteria one can use Fb's criteria,
+ more “redundant” pairs are detected,

- only in the homogeneous case,

- we have to add some elements g of I\7Id\/\ﬂ~;r to G, i.e.
Im(g) € L(G).

10

How to use F5 in F47

Instead of Buchberger's criteria one can use Fb's criteria,
+ more “redundant” pairs are detected,

- only in the homogeneous case,

- we have to add some elements g of I\7Id\/\ﬂ~;r to G, i.e.
Im(g) € L(G).

Due to the last point some intermediate matrices can be bigger
than in the Buchberger approach = more data needs to be stored.

10

	Connections between Buchberger's Algorithm and Faugère's F4

