
Vom Fachbereich Mathematik der Technischen Universität Kaiserslautern zur Verleihung
des akademischen Grades Doktor der Naturwissenscha�en (Doctor rerum naturalium,
Dr. rer. nat.) genehmigte Dissertation

Signature–based algorithms to

compute standard bases

Christian Eder

1. Gutachter: Prof. Dr. Gerhard P�ster

2. Gutachter: Prof. Dr. Vladimir P. Gerdt

Vollzug der Promotion: 13. April 2012

D 386

Preface

Standard bases

�e idea of standard bases has its origin in [90] by Gordan. A�erwards, Macaulay
([121]) and Gröbner ([98]) used monomial orders to study Hilbert functions of graded
ideals. Moreover, they found K–bases of zero–dimensional quotiend rings with this ap-
proach.

In 1965 Bruno Buchberger introduced the notion of a Gröbner basis in his PhD thesis
([34]). �e terminology acknowledges the in�uence of Buchberger’s advisor on his work,
Wolfgang Gröbner. �e term standard basis denotes a more general approach of Gröbner
bases, which can be used not only over ground �elds, but also over ground rings. Inde-
pendently, Buchberger, Grauert, and Hironaka introduced the notion of a standard basis
([34, 95, 101, 102]).

�ere exist very few concepts in the �eld of computational algebraic geometry and com-
mutative algebra with such an impact on the development of new concepts as standard
bases. Standard bases have various applications, for example, solving systems of polyno-

ii

mial equations, elimination, ideal membership, and ideal intersection problems. �ey are
one of the most important tools in computer algebra, computational algebraic geometry,
and computational commutative algebra.

�eir computations can be understood as multivariate, non–linear generalizations of
the Euclidean Algorithm for computing the univariate greatest common divisors, of the
Gaussian Elimination of systems of linear equations, and of integer programming prob-
lems.

Whereas the general idea of how to compute a standard basis, based on Buchberger’s
Criterion, is quite straightforward and a practical implementation can be easily done, such
an ad–hoc algorithm is not e�cient at all due to several problems concerningmostly useless
computations and overhead inrtroduced by them. Over the last, nearly 50 years lots of
improvements in terms of the computation of standard bases have been made. Not only
criteria to detect useless data during the algorithm’s working have been found, but also
selection strategies for better reducers, modular methods to keep coe�cients small even
when computing in polynomials rings over the rationals, and quite a lot of othermachinery
have been developed. Due to these ideas, more e�cient algorithms are possible, which can
compute way harder examples previously intractable. Solving these, again, leads to new
insight in other �elds of algebraic geometry and commutative algebra, giving impulses for
new approaches there.

Signature–based approach

A special kind of those recent, algorithmic improvements in the area of standard bases
are the ones based on signatures. �ose algorithms are in the focus of this thesis. In 2002,
Faugère published a new standard basis algorithm, called F5. �is algorithm uses a com-
pletely new concept to detect useless data during the computations, called signatures. Also
it lays some restrictions on the input data, it is known as one of the most e�cient stan-
dard basis algorithms nowadays due to its powerful criteria. �e algorithm is known to
compute very few zero reductions. In the rather common situation of the underlying po-
lynomial system de�ning a complete intersection, it even does not reduce any polynomial
to zero. In general, reduction to zero is the primary bottleneck in the computation of a
standard basis, since it does not deliver any new information for the algorithm, but takes
lots of polynomial operations. It is thus no surprise that F5 has succeeded at computing
many standard bases that were previously intractable.

An open question surrounding the F5 algorithm regards correctness and termination.
Due to the aggressive criteria used in F5, a proof for its correct computation cannot be
given as easily as for the classical algorithms using other criteria. Moreover, in a traditional
algorithm computing standard bases, the proof of termination follows from the algorithm’s
ability to exploit the Noetherian property of monomial ideals: each polynomial added to
the basis G expands the ideal generated by the leading terms of G. �is is not true with

iii

F5; the same criteria that detect reductions to zero also lead the algorithm to add to G
polynomials which do not expand the ideal of leading terms.

Lots of variants of F5 have been developed over the last couple of years, and a more
general view on signature–based algorithms are possible right now. Understanding those
algorithms lead to new insights in recent optimizations. �e signature–based world is a
�eld of active research right now, with lots of new and promising results to come up in the
near future, hopefully leading to even better algorithms.

Results of this thesis

�is thesis is devoted to e�cient computations of standard bases with an emphasis on
signature–based attempts. �e structure of the presentation is the following:

(1) InChapter 1 we give a short introduction to commutative algebrawith a view to com-
putational aspects. In Section 1.7 we start the particular discussion about standard
bases. At the end of Chapter 1 we have covered the basic ideas behind the computa-
tional aspects and have already seen the most obvious problems with the standard
approach of the Buchberger Algorithm, Std.

(2) Based on this �rst approach we give an in–depth overview of various optimizations
of the Buchberger Algorithm. �ese cover not only Buchberger’s criteria, but also
more sophisticated improvements like modular computations, usage of the Hilbert
polynomial, Gröbner walks, or involutive methods. �us Chapter 2 should be un-
derstood as a smorgasbord of ideas that where presented over the last 40 years to
receive more e�cient algorithms computing standard bases.

(3) Also attempts like using staggered linear bases or syzygies to improve standard ba-
sis computations �t to the content of Chapter 2, we present them in more detail in
Chapter 3. �e reason we handle these di�erent is based on the fact that those ideas
represent the origin of signature–based standard basis algorithms this thesis is ded-
icated to.

(4) Beginning in Chapter 4 we give a complete, generalized introduction to signature–
based standard basis algorithms. �is is done in such a general setting for the �rst
time. Besides introducing the basic notions and ideas, we present a rather generic
implementation of an standard basis algorithm using signatures called SigStd. As
this algorithm does not contain any criteria check or other optimization it can be un-
derstood as a mirroring of the �rst classical standard basis algorithm Std presented
in Section 1.8. It turns out that all optimized signature–based algorithms presented
in the rest of this thesis can be derived from this implementation by adding respec-
tive criteria checks and reduction processes.

iv

(5) Whereas Chapter 5 discusses rather easy variants of SigStd, Chapter 6 is devoted
to Faugère’s F5 Algorithm. Although Faugère’s algorithm is the origin of all other
signature–based ones, the order of representation makes sense.

�e algorithms presented in Chapter 5 can be understood in two ways:

a) On the one hand, they are optimizations of SigStd and their di�erent ap-
proaches are presented in detail. Moreover, we give a vast comparison of their
performance devoting a whole section on experimental results.

b) On the other hand, all these algorithms are nothing else but, rather good, sim-
pli�cations of F5. From this point of view F5 can be interpreted as the most
aggressive one of all signature–based algorithms.

�is in mind it is quite good to postpone the introduction to F5 and start with the
more comprehensible discussion of the other variants. Proving correctness and ter-
mination of the improved algorithms presented in Chapter 5 can easily be done de-
riving the ideas of the corresponding proofs given for SigStd.

(6) On the contrary, the corresponding proofs for F5 turn out to be a lot more tricky.
In Section 6.1 we give the �rst complete proof of F5’s correctness. Even more, we
give not only optimizations of F5, but we also tackle the, still unsolved, problem of
showing F5’s termination. So besides improving the algorithm, a rather complex
theoretical background is part of Chapter 6.

(7) Chapter 7 �nishes this thesis, presenting various di�erent topics, all of them fo-
cussing on the generalization and optimization of signature–based standard basis
algorithms. Partiallyi, complete new proofs are given never published before, some-
times approaches of active research are discussed and give the reader a deeper in-
sight in the topic. Most of these ideas need implementations and more theoretical
results, but they represent the worthwile �eld of signature–based algorithms, which
are promising to host lots of more improvements for standard basis computations in
the near future.

�is thesis contains material from the author’s (partly published) articles [55–59]. In
particular, the thesis contains joint work with Justin Gash and John Perry. Most of the
results of these articles are generalized in this thesis, the respective publication is listed at
the beginning of the corresponding chapter respectively section it gives contributions to.

Financial support

Financial support was provided by the Forschungszentrum Oberwolfach via a graduate
fellowship.

v

Acknowledgements

Danke.

Contents

Preface i

1 An introduction to standard bases 1

1.1 Rings, ideals, and modules . 2
1.2 Polynomial rings . 10
1.3 Monomial orders on polynomial rings . 13

1.4 Monomial orders on free P–modules . 18
1.5 Gradings . 22
1.6 Hilbert–Poincaré series and dimensions . 24
1.7 Normal forms and standard bases . 26
1.8 �e basic standard basis algorithm . 35
1.9 On the complexity of standard basis computations 41

2 Ways to improve standard basis computations 43

2.1 �e problem of zero reductions . 45
2.2 Selection strategies for critical pairs . 46

viii Contents

2.3 Buchberger’s criteria . 49
2.4 �e Gebauer–Möller implementation . 52
2.5 Normal form computations and their relation to Gaussian elimination . . 55
2.6 Picking a good reducer . 63
2.7 Using the Hilbert–Poincaré series . 71
2.8 Going the indirect way . 77
2.9 Modular standard basis computations . 88
2.10 Involutive bases . 98
2.11 Concluding remarks . 100

3 Syzygy modules and standard bases 103

3.1 Staggered linear bases . 104
3.2 Syzygies and free resolutions . 111
3.3 Computing standard bases using syzygies 118

4 An introduction to signature–based standard basis algorithms 125

4.1 Basic ideas behind signatures and labeled polynomials 126
4.2 A generic signature–based standard basis algorithm 135
4.3 Some remarks on sig–safeness . 143

5 Signature–based criteria to detect useless critical pairs 149

5.1 Generic criteria based on signatures . 150
5.2 Reducing computational overhead in SigStd 157
5.3 An explicit choice in (RW) . 162
5.4 A variant of AP using sparser polynomials 166
5.5 G2V – Complete reduction, weakened (RW) 168
5.6 Experimental results . 173

6 Faugère’s F5 Algorithm 183

6.1 Faugère’s initial presentation of F5 . 184
6.2 F5C – F5 using reduced bases . 203
6.3 Classifying F5 in the signature–based world 211
6.4 Experimental results . 216
6.5 Termination–ensured variants of F5 . 217

7 Generalizing signature–based algorithms 239

7.1 Signature–based algorithms and inhomogeneous input 240
7.2 Computing the ideal quotient . 247
7.3 Generalizing signatures . 252
7.4 Non–incremental signature–based standard basis algorithms 254
7.5 Parallelization of signature–based algorithms 258
7.6 Computing syzygies with generalized signature–based algorithms 260

A Examples 267

Index . 320

List of Figures

2.8.1 An example of fans, cones and faces . 80
2.8.2 Crossing the border of two Gröbner cones 84
2.8.3 �e classi�cation of K[x , y] by N , E and S 86
2.9.1 Parallelized modStd . 93

5.6.1 Coloration of results for variants of SigStd 174

6.1.1 Illustration of the Rewritten Criterion . 192
6.4.1 Coloration of the results for di�erent variants of F5 216
6.5.1 Coloration of the results for termination variants of F5 234

List of Tables

5.1 Time needed to compute a standard basis, given in seconds. 177
5.2 Number of zero reductions computed by the algorithms. 178

5.3 Memory used to compute a standard basis, given in Megabyte. 179
5.4 Number of all reduction steps during the computations. 180
5.5 Number of critical pairs not detected by the respective criteria used. 181
5.6 Size of the resulting standard basis. 182

6.1 Time needed to compute a standard basis, given in seconds. 218
6.2 Number of zero reductions computed by the algorithms. 218
6.3 Memory used to compute a standard basis, given in Megabyte. 219
6.4 Number of critical pairs not detected by the respective criteria used. 219

6.5 Number of all reduction steps during the computations. 220
6.6 Size of the resulting standard basis. 220
6.7 Timings (in seconds) & degrees of F5, F5B, and F5B+ 238

7.1 Computation for inhomogeneous input using F5E 246

xii List of Tables

7.2 Computation for inhomogeneous input using AP 246

List of Algorithms

1 Normal form w.r.t. G for a global order ≺ (GNF) 31

2 Reduced normal form w.r.t. G for a global order ≺ (GNFred) 31

3 Normal form w.r.t. G for a non–global order ≺ (LNF) 33

4 Standard basis computation w.r.t. ≺ (Std) 38

5 Standard basis algorithm including selection strategy (Std) 46

6 Improved standard basis computation w.r.t. < (GM) 54

7 Updating the set of critical pairs (Update) 55

8 Faugère’s F4 Algorithm (F4) . 57

9 Symbolic preprocessing of possible reducers (SymPre) 59

10 Reduction process in F4 (F4Reduction) . 60

11 Improved F4 Algorithm (F4) . 65

12 Improved Symbolic preprocessing of possible reducers (SymPre) 66

13 Reduction process in the improved F4 (F4Reduction) 67

14 Simplifying the reduction process in F4 (Simplify) 68

xiv List of Algorithms

15 SlimGB Algorithm computing a standard basis w.r.t. < (SlimGB) 69

16 Normal form w.r.t. G of SlimGB (SlimNF) 70

17 Replacement check for SlimGB (Replace?) 70

18 Hilbert–driven variant of GM w.r.t. a global order < (HGM) 75

19 Dynamic variant of GM w.r.t. a global order < (DGM) 78

20 Gröbner walk to compute a reduced Gröbner basis (GBWalk) 83

21 Gröbner basis conversion algorithm (FGLM) 87

22 Modular standard basis computation (modStd) 92

23 Gröbner trace reconstruction algorithm (GBTrace) 95

24 Modular Gröbner trace algorithm (TraceModStd) 97

25 Initial staggered linear basis algorithm (StagGB1) 108

26 Revised staggered linear basis algorithm (StagGB2) 110

27 Normal form computation for staggered linear bases (StagNF) 111

28 Standard basis algorithm for the �rst module of syzygies (Syz1) 114

29 Standard basis algorithm for the �rst module of syzygies (Syz2) 116

30 Standard basis algorithm using syzygies to improve computations (SyzStd) 118

31 Normal form w.r.t. G of SyzStd (SyzNF) . 119

32 Generic signature–based standard basis computation w.r.t. < (SigStd) . . 136

33 Incremental signature–based standard basis computation w.r.t. < (IncSig) 138

34 Semi–complete sig–safe reduction algorithm (SigRed) 139

35 Slim semi–complete sig–safe reduction algorithm (SigRed) 145

36 IncSig including implementations of (NM) and (RW) (IncSigCrit) . . . 154

37 Generic implementation of (NM) (NonMin?) 155

38 Generic implementation of (RW) (Rewrite?) 156

39 SigStd with reduced standard bases (SigStdRed) 159

40 AP’s implementation of (NM) (NonMinAP?) 164

41 AP’s implementation of (RW) (RewriteAP?) 165

42 MM’s implementation of (RW) (RewriteMM?) 167

43 G2V’s sig–safe reduction algorithm (SigRedG2V) 169

44 G2V’s implementation of (RW) (RewriteG2V?) 171

45 G2V’s implementation of IncSigCrit (IncSigG2V) 172

46 �e F5 Algorithm(F5) . 185

47 F5’s implementation of (NM) (NonMinF5?) 187

48 F5’s F5 Criterion adding algorithm (addF5Crit) 187

49 F5’s semi–complete sig–safe reduction algorithm (SigRedF5) 189

50 Incremental F5 step (IncF5) . 191

51 F5’s rule adding algorithm (addRule) . 193

52 F5’s implementation of the Rewritten Criterion (RewriteF5?) 193

53 F5C’s interreduction process (ReduceF5) 206

54 �e F5 Algorithm using reduced standard bases(F5C) 207

55 Incremental F5C step (IncF5C) . 210

List of Algorithms xv

56 Incremental F5E step (IncF5E) . 215
57 Termination ensured incremental F5 step (IncF5+) 230
58 F5’s semi–complete sig–safe reduction algorithm (SigRedF5+) 231
59 Termination ensured incremental F5 step (IncF5B+) 235

60 SigStd including ideal quotients(SigStdQ) 250
61 IncSigCrit with curr–index labeled polynomials (IncSigQ) 251
62 �e F5Syz Algorithm(F5Syz) . 262
63 Incremental F5 step computing syzygies(IncF5Syz) 265
64 F5Syz’s semi–complete sig–safe reduction algorithm (SigRedF5Syz) 266

1 An introduction to standard

bases

�is chapter introduces the basic notions of rings, ideals, and modules. A�er stating
and explaining essential properties and connections of these mathematical structures, we
focus our introduction on polynomial data. Section 1.2 gives a review of notations and
basics of polynomials.

A�er presenting the fundamental structures our area of research is based on in Sec-
tions 1.1 – 1.6, we introduce the objects of main interest, namely standard bases. �e notion
of standard bases as well as basic algorithms for their computations are given in Section 1.7.
We �nish this chapter with a short discussion on the complexity of standard basis compu-
tations motivating the wish to improve computations, which is content of Chapter 2.

For amore detailed introduction on commutative algebra we refer the reader to [12,60].
Good books covering those topics with amore detailed introduction to standard bases and
a stronger emphasis on computational aspects are, for example, [18, 50, 97, 111, 112].

Most of the proofs given in this chapter are either easy or can be found in any intro-
ductory book about commutative resp. computational algebra (for example in the ones

2 1 An introduction to standard bases

mentioned above). �us, we skip most of the proofs, give some references where needed
and state them if they are short, beautiful, and give some deeper insight on the topics cov-
ered. None of the presented statements are genuine nor their proofs. We focus ourselves on
the topic of standard basis computations, thus some introductory aspects of commutative
resp. computer algebra are only shortly covered, whereas others are explained in detail.

Readers familiar with these topics may want to skim this chapter for notation and ter-
minology.

1.1 Rings, ideals, and modules

Let us start with the basic structures building the ground for concepts in computer
algebra.

De�nition 1.1.1. A ring is a set R together with two binary operators

+ ∶ R × R Ð→ R, (a, b)z→ a + b
⋅ ∶ R × R Ð→ R, (a, b)z→ a ⋅ b =∶ ab

referred to as addition and multiplication, such that

(1) (R,+) is an abelian group with neutral element 0 ∈ R. �e inverse w.r.t. + of a ∈ R
is denoted by −a.

(2) Multiplication is associative, i.e. (ab)c = a(bc) = abc for all a, b, c ∈ R.
(3) �e distributive laws a(b+ c) = ab+ac and (a+b)c = ac+bc hold for all a, b, c ∈ R.

If, in addition, multiplication is commutative, i.e. ab = ba for all a, b ∈ R, then (R,+, ⋅) is
called a commutative ring. (R,+, ⋅) is called a ring with (identity) 1R if 1R ∈ R, 1R ≠ 0, and
1Ra = a for all a ∈ R.
A subset S of a ring R is called a subring of R if it is closed under the ring operations induced
from R (restricted to S).

Convention. In this thesis ring always means commutative ring with identity. Omitting the
notation of the two binary operators, we denote a ring just by R. Moreover, when the ring
corresponding to the identity is clear, we omit the subscript and denote it by 1.

Example 1.1.2.

(1) �e integers Z, the rationals Q, the reals R, and the complex numbers C are rings
with their natural addition and multiplication. �eld as Z∗ ≠ Z/{0}.

(2) Any �eld is an integral domain, e.g. the rationals, the reals, and the complex num-
bers.

1.1 Rings, ideals, and modules 3

A well–known algebraic structure is the vector space consisting of a �eld and a group,
connected together by an operation of the �eld on the group. �is structure is generalized
in the following way:

De�nition 1.1.3.

(1) Let R be a ring. An R–module M is a set M together with two binary operators
+ ∶ M ×M → M and ⋅ ∶ R ×M → M (scalar multiplication) such that the following
hold for all a, b ∈ R, m,m′ ∈ M:

a) (M ,+) is an abelian group,

b) a ⋅ (b ⋅m) = (ab) ⋅m,

c) (a + b) ⋅m = a ⋅m + b ⋅m,

d) a ⋅ (m +m′) = a ⋅m + a ⋅m′,

e) 1R ⋅m = m.

An abelian subgroup N ⊆ M is called an R–submodule if R ⋅N ⊆ N . In particular, an
R–submodule I of the R–module R is called an ideal of R.

(2) Let (S ,+) be a monoid. An S–monomodule (or S–monoid module) N is a set N
together with two binary operators + ∶ N × N → N and ⋅ ∶ S × N → N such that the
following hold for all n ∈ N , s, s′ ∈ S:

a) (s + s′) ⋅ n = s ⋅ (s′ ⋅ n),
b) 1S ⋅ n = n.

Remark 1.1.4. Note that the concept of amonomodule is used in Section 4.2 to prove termi-
nation of a generic signature–based standard basis algorithm. We do not use this de�nition
anywhere else, besides characterizing the property of being Noetherian (see Lemma 1.1.15),
in this thesis. �e reader unfamiliar with this notion should not bother with it too much.

Example 1.1.5.

(1) Every abelian group is aZ–module: As 1Z ⋅m = m the scalar multiplication is de�ned
by r ⋅m ∶= (1 +⋯+ 1)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

r times

⋅m = m +⋯ +m´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r times

.

(2) If R is a ring, then R itself is an R–module with the ring operations. Also {0} is an
R–module resp. ideal of R.

(3) If R = K is a �eld, then R–modules are K–vector spaces. Moreover, {0} and K are
the only ideals inK.

(4) 2Z is the ideal of all even numbers inZ. On the other hand, 2Z+1 of all odd numbers
is not an ideal, for example, 2 ∈ Z, 3 ∈ 2Z + 1, but 2 ⋅ 3 = 6 ∉ 2Z + 1.

(5) { f ∈ C(R) ∣ f (1) = 0} is an ideal in C(R).

4 1 An introduction to standard bases

De�nition 1.1.6. Let M be an R–module, N = {n1 , . . . , ns} be a non–empty subset of M,
and let I be an ideal in R.

(1) �e set of all R–linear combinations of elements of N is a module over R. It is de-
noted ⟨N⟩ ∶= ⟨n1 , . . . , ns⟩, the module generated by N . By convention, the module
generated by the empty set is 0 ∶= ⟨∅⟩.

(2) If M = ⟨N⟩, then N is called a system of generators of M.

(3) If #(N) <∞ we call M �nitely generated.

(4) If #(N) = 1 we call M cyclic. In the special case of M being an ideal, we speak of a
principal ideal. If every ideal in R is principal, then R is called a principal ideal ring.
If R is furthermore an integral domain than R is called a principal ideal domain.

(5) N is called an R–basis of M if eachm ∈ M has a unique representation m = ∑s
i=1 rin i .

If M has an R–basis, then M is called a free R–module.

(6) If M is a �nitely generated free R–module with R–basis N , then s is called the rank
of M, rank(M) = s.

(7) For t ∈ N/{0} we set R t ∶= {(r1 , . . . , rt) ∣ r1 , . . . , rt ∈ R}. �en R t is the free R–
module of all s–tuples w.r.t. component–wise addition and scalar multiplication.
Moreover, let e i = (0, . . . , 0, 1, 0, . . . , 0) ∈ R t with the ith entry being 1 for all i ∈{1, . . . , t}, then the set {e1 , . . . , et} is an R–basis of R t , the so–called canonical basis.

(8) For any ideal I ⊂ Rwe denote the radical of I by
√
I ∶= {a ∈ R ∣ ∃d ∈ N such that ad ∈

I}.
(9) I is called a prime ideal if for all a, b ∈ I such that ab ∈ I ⇒ (a ∈ I or b ∈ I).
(10) I is called a primary ideal if for all a, b ∈ I such that ab ∈ I and a ∉ I it holds that

b ∈
√
I.

(11) I ⊊ R is called amaximal ideal if there exists no J ⊊ R such that I ⊊ J ⊊ R.

(12) Let I , J ⊂ R be two ideals. �en we denote the ideal quotient of I by J1 by

I ∶ J ∶= {r ∈ R ∣ rJ ⊂ I}.
Moreover, the saturation of I by J is given by

I ∶ J∞ ∶= {r ∈ R ∣ ∃n ∈ N such that rJn ⊂ I}.
Example 1.1.7.

(1) �e ideal 2Z ⊂ Z is a free Z–module with rank 1.

(2) �e ring R is a free R–module of rank 1 with basis 1.

1Sometimes this is also denoted colon module resp. colon ideal.

1.1 Rings, ideals, and modules 5

(3) �e ideal 6Z is not a prime ideal in Z as 2 ⋅ 3 ∈ 6Z whereas 2, 3 ∉ 6Z.

(4) Z is a principal ideal domain.

In this thesis we are mainly interested in modules and their computations. For this we
have to consider some more basic properties and structures related to rings and ideals.

Lemma 1.1.8. Let M1 and M2 be modules over the ring R. �en the following hold:

(1) M1 ∩M2 is a module over R.

(2) We de�ne the sum of M1 and M2 by

M1 +M2 ∶= {m1 +m2 ∣ m1 ∈ M1 ,m2 ∈ M2}.
M1 +M2 is a module over R, Mk ⊂ M1 +M2 for k = 1, 2.

We skip the straightforward proof and continue with an important de�nition we use
several times when improving standard basis algorithms and try to ensure their termina-
tion.

De�nition 1.1.9. Let M be an R–module, N ⊂ M a submodule, m ∈ M. We de�ne the
residue class of m modulo N by

m + N ∶= {m + n ∣ n ∈ N}.
�e following property for residue classes modulo N is straightforward.

Lemma 1.1.10. Let M be an R–module, N ⊂ M a submodule. For all a, b ∈ M it holds that

a + N = b + N ⇐⇒ a − b ∈ N .

De�nition 1.1.11. LetM be an R–module, N ⊂ M a submodule. �e setM/N ∶= {m +N ∣
m ∈ M} forms an R–module, the quotient module, together with the two binary opterators

(m + N)+ (m′ + N) = (m +m′) + N

a ⋅ (m + N) = (am)+ N

for all a ∈ R, m,m′ ∈ M.

In the special situation where we consider R as an R–module, I ⊂ R an ideal, the set
R/I forms a ring, the quotient ring.
�ere is a close connection between properties of the ideal I and those of the quotient ring
R/I:
Proposition 1.1.12. Let I be an ideal in the ring R.

(1) I is prime⇔ R/I is an integral domain.

(2) I is maximal⇔ R/I is a �eld.

6 1 An introduction to standard bases

(3) Every maximal ideal is prime.

Proof.

(1) Let a, b ∈ R. ab ∈ I⇔ (ab)+ I = (a + I) ⋅ (b + I) = 0 ∈ R/I.�is proves (1).

(2) I and R are the only ideals containing I⇔ R/I has only the ideals 0 and R/I. �is
implies (2).

(3) A �eld is an integral domain, thus (3) follows from (1) and (2).

Example 1.1.13.

(1) For any prime number p, Z/pZ is a ring with the usual additon and multiplication.
Moreover, pZ is a maximal ideal in Z, thus Fp ∶= Z/pZ is a �eld. �is also implies

that (Z/pZ)∗ = (Z/pZ)/{0}.
(2) We have already seen in Example 1.1.7 that 6Z is not a prime ideal. �us Z/6Z is not

an integral domain:

(2 + 6Z) ⋅ (3 + 6Z) = 6 + 6Z = 0 + 6Z.

De�nition 1.1.14. A (mono–)moduleM is calledNoetherian if every submodule N ⊂ M is
�nitely generated. In particular, a ring R is called Noetherian if every ideal I in R is �nitely
generated.

Clearly, any �eld K is Noetherian as the only ideals in K are ⟨0⟩ and ⟨1⟩.
�e next lemma is very useful when it comes to computations. It is used to ensure

termination of most of the algorithms presented in this thesis.

Lemma 1.1.15.

(1) Submodules and quotient modules of Noetherian modules are Noetherian.

(2) Let M be an R–module, N ⊂ M a submodule. �en the following are equivalent:

a) M is Noetherian.

b) N and M/N are Noetherian.

(3) Let M be an R–module. �en the following are equivalent:

a) M is Noetherian

b) For every ascending chain of submodules of M

M1 ⊂ M2 ⊂ ⋯ ⊂ Mk ⊂ ⋯

there exists k ∈ N such that M l = Mk for all l ≥ k.

c) Every non–empty set of submodules of M has a maximal element with respect to
inclusion.

1.1 Rings, ideals, and modules 7

(4) Let (S ,+) be amonoid, and let M be an S–monomodule. �en the following are equiv-
alent:

a) M is Noetherian

b) For every ascending chain of submodules of M

M1 ⊂ M2 ⊂⋯ ⊂ Mk ⊂ ⋯

there exists k ∈ N such that M l = Mk for all l ≥ k.

c) Every non–empty set of submodules of M has a maximal element with respect to
inclusion.

Proof. Whereas the proof of the module part of Lemma 1.1.15 can be found in nearly any
textbook about commutative or computer algebra, the following, quite similar statement
formonomodules, Part (4), is not so common. For this, we refer to the proof of Proposition
1.3.4 in [112].

Next we de�ne maps between rings resp. modules which respect the corresponding
structure. Due to similar behaviour and properties of these maps, we do this in parallel.

De�nition 1.1.16. Let R and S be rings, let 1R and 1S the respective units in R and S. A
map φ ∶ R → S is called a ring homomorphism if for all a, b ∈ R it holds that

(1) φ(a + b) = φ(a)+ φ(b),
(2) φ(a ⋅ b) = φ(a) ⋅ φ(b), and
(3) φ(1R) = 1S .
As every ring R is also an R–module, De�nition 1.1.16 induces a map between modules:

De�nition 1.1.17. Let M and N be R–modules. A map ϕ ∶ M → N is called a module
homomorphism if for all a, b ∈ M it holds that

(1) ϕ(a + b) = ϕ(a)+ ϕ(b) and
(2) ϕ(a ⋅ b) = ϕ(a) ⋅ ϕ(b).

Lemma 1.1.18. Let φ ∶ R → S be a ring homomorphism. �en

(1) φ(0R) = 0S and
(2) φ(−a) = −φ(a) for all a ∈ R.

Proof. �e claims can be seen rather nicely in the following way:

φ(0) = φ(0+ 0) = φ(0)+ φ(0)Ô⇒ (1),

0 = φ(0) = φ(a + (−a)) = φ(a)+ φ(−a)Ô⇒ (2).

8 1 An introduction to standard bases

Corollary 1.1.19. �e statement of Lemma 1.1.18 also holds for an R–module homomorphism
ϕ ∶ M → N with a ∈ M.

De�nition 1.1.20. Let φ ∶ R → S be a ring homomorphism, I ⊂ R, J ⊂ S be ideals.

(1) �e preimage of J under φ is de�ned by φ−1(J) ∶= {r ∈ R ∣ φ(r) ∈ J}. We denote
ker(φ) ∶= φ−1(0), the kernel of φ.

(2) �e image of I under φ is denoted im(φ) ∶= φ(R) = {φ(r) ∣ r ∈ R}. �e image of φ
restricted to I is denoted im(φ ∣I) ∶= φ(I) = {φ(r) ∣ r ∈ I}.

(3) φ is called injective if ker(φ) = 0.
(4) φ is called surjective if im(φ) = S.
(5) φ is called bijective if φ is injective and surjective. A bijective ring homomorphism

is also called an isomorphism. If there exists an isomorphism φ between two rings R
and S we say that R is isomorphic to S, denoted R ≅ S

Remark 1.1.21. �e above de�nitions can be translated one–to–one to an R–module ho-
momorphism ϕ ∶ M → N .

Proposition 1.1.22. Let φ ∶ R → S be a ring homomorphism, I ⊂ R, J ⊂ S be ideals. �e
following properties hold:

(1) φ−1(J) is an ideal in R.

(2) im(φ) is a subring of S.
Proof.

(1) φ−1(J) ≠ ∅ as 0 = φ(0) ∈ J. If a, b ∈ φ−1(J) then φ(a), φ(b) ∈ J. As φ(a + b) =
φ(a) + φ(b) ∈ J, it follows that a + b ∈ φ−1(J). If a ∈ φ−1(J) and r ∈ R then
φ(ra) = φ(r) ⋅ φ(a) ∈ J. �us ra ∈ φ−1(J), which proves the �rst assumption.

(2) Clear.

Corollary 1.1.23. Let ϕ ∶ M → N be an R–module homomorphism. �e following properties
hold:

(1) ϕ−1(N) is a submodule of M.

(2) im(ϕ) is a submodule of N.

Remark 1.1.24.

(1) In particular, from Corollary 1.1.23 it follows that ker(ϕ) is a submodule of M.

1.1 Rings, ideals, and modules 9

(2) Note the di�erences between Proposition 1.1.22 (2) and Corollary 1.1.23 (2): φ(I)
need not be an ideal in S for a ring homomorphism φ ∶ R → S. For example, consider
φ ∶ Z→ Q, then for any 0 ≠ I ⊂ Z φ(I) is not an ideal inQ. �is is due to one of the
main di�erences of module and ring homomorphisms: �e one is based onmodules
over the same ring, whereas the other maps from one ring to a (possibly) di�erent
ring.

(3) For an ideal I ⊂ R there exists the surjective ring homomorphism

φ ∶ R → R/I ,
with ker(φ) = I, the quotient map.

Proposition 1.1.25. Let M ,N be R–modules, then

(1) the map π ∶ M → M/N is a surjective R–module homomorphism and

(2) for any module homomorphism ϕ ∶ M → N it holds that im(ϕ) ≅ N/ker(ϕ).
Proof.

(1) Clear.

(2) Let m ∈ M. We de�ne a map η ∶ M/ker(ϕ) → im(ϕ) by η(m + ker(ϕ)) = ϕ(m).
�en η is well de�ned, an R–module homomorphism and surjective by construc-
tion. Take m such that η(m + ker(ϕ)) = 0. �en ϕ(m) = 0, i.e. m ∈ ker(ϕ). �us
m + ker(ϕ) = 0 + ker(ϕ) from which injectivity of η follows.

To �nish this section, let us present two �nal statements, which turn out to be very
important considering our further research.

One of the main tools to improve many polynomial algorithms is using modular meth-
ods combined with the Chinese Remainder�eorem.

�eorem 1.1.26 (Chinese Remainder �eorem). Let R be a ring, let I1 , . . . , In be ideals in
R. If Is + It = R for all s ≠ t, then

R/ n

⋂
k=1

Ik ≅
n

∏
k=1

R/Ik .
In particular, consider φ ∶ R → ∏n

k=1 R/Ik constructed from the n morphisms R → R/Ik.
�en φ is surjective with ker(φ) = ∩n

k=1Ik .

Proof. See, for example, Section 3.7 in [112] or Section 2.8 in [18].

Using Lemma 1.1.15 we can state an important connection between Noetherian rings
and �nitely generated modules.

Proposition 1.1.27. Let R be a Noetherian ring, and let M be a �nitely generated free R–
module. �en M is Noetherian.

10 1 An introduction to standard bases

Proof. We can assume M = Rs , N ⊂ M, and proceed by induction on s: If s = 1, then
M is an ideal in R and thus �nitely generated. If s > 1, then we consider the module
homomorphism

ϕ ∶ Rs
Ð→ Rs−1

(a1, . . . , an)z→ (a1 , . . . , an−1).
By 1.1.23 (1) ker(ϕ) is a submodule of M, which is Noetherian as ker(ϕ) ≅ R. Moreover,
Rs/ker(ϕ) ≅ Rs−1, which isNoetherian by our induction hypothesis. �us by Statement (2)
of Lemma 1.1.15 the induction step is done.

Computations of standard bases are much easier over �elds of �nite characteristic p,
due to the fact that coe�cient growth is bounded to p.

De�nition 1.1.28. �e characteristic of a ring R, denoted char(R), is the positive integer p
that generates the kernel of the ring homomorphism

φ ∶ Z→ R, n ↦ n ⋅ 1R = 1R +⋯ + 1R´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

.

Example 1.1.29. For any prime number p the �eld Fp has characteristic char(Fp) = p.
Having set up a general basis for our discussions, we can go on and restrict ourselves to

some special rings, ideals, and modules, in which we are really interested in.

1.2 Polynomial rings

A�er introducing the basic algebraic structures in an arbitrary manner in the last sec-
tion, we now focus on special rings and ideals, namely consisting of elements called polyno-
mials. We see how those can be derived from the free R–module Rs de�ned in De�nition
1.1.6(7) by the following (general) construction:

Let R be a ring. Consider the set2

R(N) ∶= {(a i)i∈N ∣ a i ∈ R, a i = 0 for almost all i}.
Together with the component–wise addition

(a i)i∈N + (bi)i∈N ∶= (a i + bi)i∈N
and the mutliplication

(a i)i∈N ⋅ (bi)i∈N ∶= (k

∑
i=0

a ibk−i)k∈N ,
2Note that 0 ∈ N.

1.2 Polynomial rings 11

R(N) is a ring. Moreover, R(N) is a free R–module with canonical basis {e i ∣ i ∈ N},
e i ∈ R(N) with 1 in the (i + 1)st position, 0 otherwise. �us we can identify (a i)i∈N with

∑i∈N a i e i .
From this we get the following proposition:

Proposition 1.2.1. Let R(N) be de�ned as above. �en it holds that

(1) R(N) is a commutative ring with identity e0.

(2) For all i ∈ N it holds that e i = e i1 .

(3) �ere exists an injective ring homomorphism φ ∶ R → R(N) given by a ↦ a ⋅ e0 for all
a ∈ R.

�e proof is straightforward. Moreover, with the above discussion we have already de-
�ned our desired ring.

De�nition 1.2.2. Let R be a ring, R(N) as de�ned above.

(1) Set x = e1, the ring R(N) is called the polynomial ring in one variable x over R. We
denote it by R[x]. Every element p ∈ R[x] has a representation

p =
finite

∑
i∈N

c ix
i , c i ∈ R

where almost all c i = 0. �is representation is uniquely de�ned, up to the order of
the summands.

(2) For n > 1 we de�ne the polynomial ring in n variables x1 , . . . , xn over R recursively
by

R[x1 , . . . , xn] ∶= (R[x1 , . . . , xn−1])[xn].
(3) Let φ be as de�ned in Proposition 1.2.1 (3). An element c ∈ im(φ) is called a constant

(polynomial) of the polynomial ring.

In this thesis we are mainly interested in the polynomial rings, and thus in its elements
and their behaviour. Let us have a closer look at the elements of R[x1 , . . . , xn]:
De�nition 1.2.3. Let R[x1 , . . . , xn] be the polynomial ring in n variables, αi ∈ N for all
i ∈ {1, . . . , n}.
(1) Amonomial m ∈ R[x1 , . . . , xn] in n variables x1 , . . . , xn is a power product∏n

i=1 x
α i

i .
�e degree of a monomial m ≠ 0 is denoted deg(m) = ∑n

i=1 αi ; deg(0) ∶= −1. �e
degree of a variable xi in m is denoted degx i (m) = αi .

(2) �e set of all monomials in n variables is denoted byMon(x1 , . . . , xn) ∶= {∏n
i=1 x

α i

i ∣
αi ∈ N}.

(3) A term is a monomial times a coe�cent (constant), c ∈ R, c∏n
i=1 x

α i

i .

12 1 An introduction to standard bases

(4) A polynomial p over R is a �niteR–linear combination ofmonomials inR[x1 , . . . , xn],
p =

finite

∑
(α1 ,... ,αn)∈Nn

c(α1 ,... ,αn)

n

∏
i=1

xα i

i .

(5) �e support of p is de�ned by supp(p) = {all terms in p}. Moreover, the monomial
support of p is de�ned by m-supp(p) = {all monomials in p}.

(6) �e (total) degree of p is de�ned by deg(p) ∶= max{α1 +⋯ + αn ∣ c(α1 ,... ,αn) ≠ 0}, if
p ≠ 0.

Note that the representation of polynomials p in n variables de�ned inDe�nition 1.2.3 (4)
is just a generalization of the representation in 1 variable stated in De�nition 1.2.2 (1).

Remark 1.2.4. On the one hand every monomial is a term (with coe�cient 1), on the other
hand, for example, 0 is a term, but not a monomial.

We are only interested in some speci�c polynomial rings, namely those over a ground
�eld K. �e following statement is fundamental for working with polynomial rings over
�elds:

�eorem 1.2.5 (Hilbert basis theorem). If R is a Noetherian ring, then the polynomial ring
R[x1 , . . . , xn] is Noetherian, too.
Proof. See, for example, Section 1.3 in [97] or Section 4.1 in [18].

In particular, it follows that K[x1 , . . . , xn] is Noetherian as every �eld is Noetherian.
For an easier notation let us agree on the following:

Convention. We introduce a multi–indices notation for monomials by

xα ∶=
n

∏
i=1

xα i

i , α = (α1 , . . . , αn) ∈ Nn .

In the following we also investigate so–called local rings. A localization of a ring is noth-
ing else but allowing denominators, which enlarges the ring. One can think of this as the
step from the integers Z to the rationals Q. In terms of polynomial rings and algebraic
geometry localization of rings is used to get a more detailed view of some small neighbor-
hood around some point inKn , e.g. for the study of singularities in algebraic varieties.
We give a really short introduction to local polynomial rings, limited to those cases we are
interested in. Local polynomial rings are only a minor point in this thesis. If you need
some more extensive introduction on local rings see for example Section 1.4 in [97].

De�nition 1.2.6. A local ring R is a ring which has exactly one maximal ideal.

Fields are always local (with maximal ideal ⟨0⟩), whereas the polynomial ring in n vari-
ables K[x1 , . . . , xn] is not local. �is is due to the fact that I ∶= ⟨x1 − a1 , . . . , xn − an⟩ is a
maximal ideal for all (a1 , . . . , an) ∈ Kn .
�us we need a procedure to “localize”K[x1 , . . . , xn]. One way is to localizeK[x1 , . . . , xn]
at the point (0, . . . , 0) resp. with the maximal ideal I ∶= ⟨x1 , . . . , xn⟩:

1.3 Monomial orders on polynomial rings 13

De�nition 1.2.7. �e localization of K[x1 , . . . , xn] at the point (0, . . . , 0) ∈ Kn is de�ned
as

K[x1 , . . . , xn]⟨x1 ,... ,xn⟩ ∶= { ab ∣ a, b ∈ K[x1 , . . . , xn], b(0, . . . , 0) ≠ 0} .
Next we need to add somemore structure, namely amonomial order, to our polynomial

rings to receive a unique representation of polynomials. We see that there exist special, so–
called “local” monomial orders, such that we can compute in the localized polynomial ringK[x1 , . . . , xn]⟨x1 ,... ,xn ⟩ without explicit denominators. Moreover, we need to add a corre-
sponding structure to modules over K[x1 , . . . , xn]. Both of these structures have much in
common, but they are handled di�erently. Since they are the main keys not only to enable
the notion and computation of a standard basis, but also to understand the di�erences be-
tween classical algorithms to compute standard bases and the signature–based approach,
we explain them in detail in their own section each.

1.3 Monomial orders on polynomial rings

Until now we have de�ned the basic algebraic structures we want to work with. Fur-
thermore, we have already started focussing ourselves on polynomial rings K[x1 , . . . , xn]
and their ideals. Having de�ned the elements ofK[x1 , . . . , xn], called polynomials,

p =
finite

∑
α∈Nn

cαx
α

they are uniquely de�ned, but only up to the order of their monomials. �us our next task is
to add some new property called a monomial order < toK[x1 , . . . , xn] to achieve uniquely
de�ned polynomials in K[x1 , . . . , xn] w.r.t. <.

For this we should start with somemore general orders and restrict them later on to the
monomial case:

De�nition 1.3.1. A strict partial order < is a binary relation on a set S such that for all
a, b, c ∈ S the following conditions hold:

(1) ¬(a < a), (irre�exivity)
(2) (a < b)⇒ ¬(b < a), (antisymmetry)

(3) (a < b and b < c) Ô⇒ (a < c). (transitivity)
A strict total order < is a strict partial together with the condition;

(4) Exactly one relation is true: a < b, b < a or a = b. (trichotomy)

14 1 An introduction to standard bases

Every total order (resp. partial order) ≤ is a binary relation on a set S associated to a strict
total order (resp. strict partial order) < such that

a ≤ b ⇐⇒ a < b or a = b.

A well–order ≤ is a total order on a set S such that every non–empty subset of S has a least
element w.r.t. ≤.

Let us give some examples.

Example 1.3.2.

(1) �e natural order ≤nat onN orZ is a total order. In particular, ≤nat induces a compo-
nentwise (natural) order on Nn .

(2) As an example for an order being not total assume the power set of Z together with
the order ⊆. If a ≠ b ∈ Z then neither {a} ⊆ {b} nor {b} ⊆ {a} hold.

Important in our further investigations is the partial order de�ned by the division of
two monomials:

De�nition 1.3.3. xα ≤div xβ i� β − α ∈ Nn . In spite of using the notation ≤div we say that
xα divides xβ . As a shorthand notation we use xα ∣ xβ .

�e following statement is a basis for the characterization of monomial orders de�ned
above.

Lemma 1.3.4 (Dickson’s Lemma). For any subset A ⊂ Nn there exists a �nite set B ⊂ A such
that for every α ∈ A there exists an element β ∈ B satisfying β ≤nat α.

Proof. See, for example, Section 1.2 in [97] or Section 4.3 in [18].

Let us restrict the above, general de�nition of a total order to an order on the set of
monomials Mon(x):
De�nition 1.3.5. A monomial order < on K[x1 , . . . , xn] is a total order on Mon(x) such
that

xα < xβ
Ô⇒ xγxα < xγxβ for α, β, γ ∈ Nn .

Note that language is a bit sloppy as < is an order and thus de�ned on the set of all
monomials, Mon(x1 , . . . , xn), not on the polynomial ring K[x1 , . . . , xn] itself.

�is structure of amonomial order is themain tool to enable polynomial computations:
If we have de�ned a polynomial ring together with a monomial order we can write each
polynomial in the ring in a unique way. �us it is possible for a computer algebra system
like Singular [49] to store a polynomial as an ordered list, such that a lot of computations,
like equality checks of polynomials or reduction processes, are fast and easy. We have a
closer look at these computations in the following sections.

De�nition 1.3.6. Let < be a monomial order onK[x1 , . . . , xn]. �en < is

1.3 Monomial orders on polynomial rings 15

(1) global ⇐⇒ xi > 1 for i = 1, . . . , n,

(2) local ⇐⇒ xi < 1 for i = 1, . . . , n, and

(3) mixed if it is neither global nor local.

Next we give some well–known examples of monomial orders. For this, reconsider
the multi–indices notation: Let α, β ∈ Nn then we de�ne α + β resp. α − β to be the
componentwise, natural addition resp. subtraction on Z.

De�nition 1.3.7. �e following are monomial orders3 onK[x1 , . . . , xn].
(1) Global orders

a) Lexicographical order <lp :

xα <lp xβ ∶⇔ the nonzero entry of lowest index in α − β is negative.

b) Graded lexicographical order <Dp :

xα <Dp x
β ∶⇔deg(xα) < deg(xβ) or,

(deg(xα) = deg(xβ) and
the nonzero entry of lowest index in α − β is negative).

c) Graded reverse lexicographical order <dp :

xα <dp xβ ∶⇔deg(xα) < deg(xβ) or,
(deg(xα) = deg(xβ) and
the nonzero entry of highest index in α − β is positive).

(2) Local orders

a) Negative lexicographical order <ls:

xα <ls xβ ∶⇔ the nonzero entry of lowest index in α − β is positive.

b) Negative graded lexicographical order <Ds:

xα <Ds x
β ∶⇔deg(xα) > deg(xβ) or,
(deg(xα) = deg(xβ) and
the nonzero entry of lowest index in α − β is negative).

c) Negative graded reverse lexicographical order <ds

xα <ds xβ ∶⇔deg(xα) > deg(xβ) or,
(deg(xα) = deg(xβ) and
the nonzero entry of highest index in α − β is positive).

3We use the Singular notation for the presented monomial orders.

16 1 An introduction to standard bases

(3) Product ordersAssume the polynomial ringK[x1 , . . . , xn , y1 , . . . , ym] togetherwith
two monomial orders <1 on Mon(x1 , . . . , xn) and <2 on Mon(y1 , . . . , ym). �en we
get a product order <∶= (<1 , <2) by

xα yᾱ < xβ y β̄ ∶⇐⇒xα <1 xβ or,

(xα = xβ and yᾱ <2 y β̄).
E.g., if <1 is global, then monomials containing an xi are always larger than those
which do not.
If <1 and <2 are both global (resp. local), then < is global (resp. local). Otherwise <
is a mixed order.

(4) (Matrix) weight orders Let W ∈ GL(n,R) be a matrix. �en we de�ne the weight
order by

xα <W xβ ∶⇐⇒ the nonzero entry of lowest index ofWα −Wβ is negative.

Example 1.3.8. Assume the three monomialsm1, m2 andm3 inK[x1 , x2 , x3 , x4 , x5]where
m1 = x31 x

2
2x4x

4
5 ,

m2 = x21 x
8
4 ,

m3 = x135 .

Note that deg(m1) = deg(m2) < deg(m3). Let us see how the above de�ned orders behave
and how they are related to each other considering m1, m2 and m3.

(1) m3 <lp m2 <lp m1,

(2) m1 <ls m2 <ls m3,

(3) m2 <Dp m1 <Dp m3,

(4) m3 <Ds m2 <Ds m1,

(5) m1 <dp m2 <dp m3,

(6) m3 <ds m1 <ds m2.

Remark 1.3.9. Note that any monomial order < on K[x1 , . . . , xn] can be represented by a
matrix weight order <W for someW ∈ GL(n,R).
Proposition 1.3.10. Let < be a monomial order on K[x1 , . . . , xn]. �en the following are
equivalent:

(1) < is a well–order.

(2) < is global.

(3) If α ≤nat β, then xα < xβ or xα = xβ .

1.3 Monomial orders on polynomial rings 17

Proof. (1)⇒ (2) as well as (2)⇒ (3) are trivial. So let us prove the direction (3)⇒ (1):
For any non–empty setM of monomials inK[x1 , . . . , xn] there exists a �nite set B ⊂ M by
Lemma 1.3.4 such that for any xα ∈ M there exists xβ ∈ B such that β ≤nat α. �en either
xβ < xα or xβ = xα . �us B contains a smallest element of M w.r.t. <.

EquippingK[x1 , . . . , xn]with amonomial order <we get a solution for our initial prob-
lem: We receive a uniquely determined representation for polynomials inK[x1 , . . . , xn]:

p = cαxα + cβx
β +⋯+ cγx

γ ,

such that xα > xβ >⋯ > xγ and cα , cβ , . . . , cγ ∈ K. �us we can de�ne special parts of p:

De�nition 1.3.11. Let p ∈ K[x1 , . . . , xn] as above. �en we denote

(1) the leading monomial of p lm(p) = xα ,

(2) the leading coe�cient of p lc(p) = cα ,
(3) the leading term of p lt(p) = cαxα ,

(4) the tail of p tail(p) = p − lt(p), and
(5) the ecart4 of p ecart(p) = deg(p) − deg (lm(p)).

Furthermore, a polynomial p with lc(p) = 1 is called monic.

As a last step let us consider localizations of polynomial rings again: We have intro-
duced the localization of K[x1 , . . . , xn] at the point (0, . . . , 0) ∈ Kn in De�nition 1.2.7.
We show how to use local monomial orders to avoid computations with denominators inK[x1 , . . . , xn]⟨x1 ,... ,xn ⟩.

In the following let the subset U inK[x1 , . . . , xn] be de�ned by

U ∶= {u ∈ K[x1 , . . . , xn] ∣ u ≠ 0, lm(u) = 1} .
�e following property of U is straightforward.

Lemma 1.3.12. U is multiplicatively closed, that is

(1) 1 ∈ U, and

(2) for a, b ∈ S it holds that ab ∈ U.

De�nition 1.3.13. Let < be a monomial order onK[x1 , . . . , xn]. We de�ne the localization
ofK[x1 , . . . , xn] w.r.t. U by

U−1K[x1 , . . . , xn] ∶= { a
u
∣ a, u ∈ K[x1 , . . . , xn], u ≠ 0, lm(u) = 1} .

Clearly, it holds that

4Actually we should write écart as this is French for “separation” or “di�erence”.

18 1 An introduction to standard bases

(1) < is a global order if and only if U = K∗.
(2) < is a local order if and only if U = K[x1 , . . . , xn]/⟨x1 , . . . , xn⟩.

Proposition 1.3.14. Let < be a monomial order on K[x1 , . . . , xn].
(1) < is a global order if and only ifK[x1 , . . . , xn] = U−1K[x1 , . . . , xn].
(2) < is a local order if and only ifK[x1 , . . . , xn]⟨x1 ,... ,xn ⟩ = U−1K[x1 , . . . , xn].

Proof.

(1) Clear, since U = K∗ ⇐⇒< is global.
(2) K[x1 , . . . , xn]/⟨x1 , . . . , xn⟩ is the multiplicatively closed set of units in the local-

ized polynomial ring U−1K[x1 , . . . , xn] if and only if every p ∈ K[x1 , . . . , xn] with
lm(p) = 1 is in U . �is is the case if and only if < is local.

Clearly, the units in the localized polynomial ring are de�ned to be

(U−1K[x1 , . . . , xn])∗ = { a
b
∣ lm(a) = lm(b) = 1} .

We see in Section 1.7 how this fact sometimes must be used to ensure termination for stan-
dard basis algorithms.

As a very last note on local polynomial rings let us state the following important fact,
whose proof can be found in [97]:

Proposition 1.3.15. U−1K[x1 , . . . , xn] is Noetherian.
Convention. From the above discussion it is clear that we always need to equip the po-
lynomial ring U−1K[x1 , . . . , xn] with a monomial order <, as otherwise the elements we
are interested in are not uniquely de�ned. In the following we do not explicitly state the
monomial order for a better reading, i.e. when we write U−1K[x1 , . . . , xn] we always
mean U−1K[x1 , . . . , xn] together with a monomial order < onU−1K[x1 , . . . , xn]. Further-
more, in this thesis P always denotes the localization of the polynomial ring in n variables
x1 , . . . , xn over the ground �eld K, P ∶= U−1K[x1 , . . . , xn]. Writing K[x1 , . . . , xn] we al-
ways assume our polynomial ring to be equipped with a well–order.

1.4 Monomial orders on free P–modules

In the following we induce orders on free P–modules from the monomial orders de-
�ned in the last section. Orders on modules are very important for signature–based stan-
dard basis algorithms, as we see in Chapter 4.

1.4 Monomial orders on free P–modules 19

Right nowwe cande�ne polynomials inP uniquely equipping the polynomial ringwith
a monomial order as de�ned in Section 1.3. �ere are two reasons why we are interested in
orders on free P–modulesM:

(1) We also want to compute standard bases of such modules.

(2) Signature–based standard basis algorithms are based on comparing elements ofM.

Convention. In the following letM = ⊕s
i=1P e i always be a free P–module of rank s with

canonical basis elements e i .

De�nition 1.4.1.

(1) A (module) monomial inM is an element of the formm = xα e i where x
α is a mono-

mial in P .
(2) A term cm inM is a monomial m ∈M times a coe�cient c ∈ K.
(3) �e index of a term t = cxα e i is denoted index(t) = i.
(4) An element f ∈M can be written as a �nite K–linear combination of such mono-

mials m.

f =
s

∑
i=1

(finite∑
α∈Nn

cαx
α)e i (1.4.1)

where cα ∈ K, xα ∈Mon(x1 , . . . , xn).
(5) �e support of f ∈M is de�ned by supp(f) = {all terms in f }.
(6) �emonomial support of f ∈M is de�ned by m-supp(f) = {all monomials in f }.
(7) �e notion of the degree of a monomial m = xα e i is reduced to the one of the mono-

mial xα ∈ P as de�ned in 1.2.3 (1):

deg(m) ∶= deg(xα) = n

∑
i=1

αi .

Clearly, deg(f) ∶= max{deg(m) ∣ m a module monomial of f }.
Although we can write any element f ∈M as a sum of terms as in Equation 1.4.1, this

representation is, again, unique only up to the order of the monomials. �us we need a
monomial order onM. Naturally, this is a generalization of a corresponding monomial
order on P taking into account the canonical basis elements e i :

De�nition 1.4.2. Let < be a monomial order on P . A module (monomial) order ≺ onM
is a total order on the set of all monomials ofM such that

(1) xα e i ≺ xβ e j Ô⇒ xγxα e i ≺ xγxβ e j and

(2) xα < xβ
Ô⇒ xα e i ≺ xβe i .

20 1 An introduction to standard bases

for α, β, γ ∈ Nn and i , j ∈ {1, . . . , s}.
Let us note some important facts about the correspondences of the module monomial

order onM and the monomial order on P , from which it is induced.

Remark 1.4.3. From the above de�nition it is clear that anymonomial order on the polyno-
mial ring P can also be understood as a module monomial order on the module P ≅ P e1.
�us the module monomial order is a generalization of the usual monomial order de�ned
in Section 1.3.

Proposition 1.4.4. Let ≺ be a module order onM, < the corresponding monomial order onP . �en the following hold:

(1) ≺ is a well–order⇐⇒ < is a well–order.

(2) ≺ is global resp. local resp. mixed⇐⇒ < is global resp. local resp. mixed.

Proof. �ese facts follow easily from Property (2) of De�ntion 1.4.2.

Let us give examples for module orders we need in the signature–based attempt of com-
puting standard bases.

Example 1.4.5. Again, let < be the monomial order on P which induces the module order
≺ onM. �e main new structure one can tweak with are the canoncial basis elements ofM.

(1) ≺i denotes the order which emphasizes the index of the canonical basis element:

xα e i ≺i xβe j ∶⇐⇒ i < j or,

i = j and xα < xβ .

(2) ≺m denotes the order which emphasizes the monomial:

xα e i ≺m xβe j ∶⇐⇒ xα < xβ or,

xα = xβ and i < j.

When talking about signature–based algorithms in the following we see that there are
other useful module orders. More about this is postponed to Chapter 4.

Similar to the polynomial case we can now identify and de�ne special parts of elements
f ∈M.

De�nition 1.4.6. Given a module order ≺ onM every element f ∈M can be uniquely
represented by

f = cαxα e i + f ′ ,

cα ∈ K, xα ∈Mon(x1 , . . . , xn) such that for all nonzero terms cβx
βe j of f

′ it holds that

xα e i ≻ xβe j .

As in the situation of polynomials, De�nition 1.3.11, we can identify special parts of f :

1.4 Monomial orders on free P–modules 21

(1) the leading monomial of f lm(f) = xα e i ,

(2) the leading coe�cient of f lc(f) = cα ,
(3) the leading term of f lt(f) = cαxα e i ,

(4) the tail of f tail(f) = f − lt(f), and
(5) the ecart of f ecart(f) = deg(f) − deg (lm(f)).

Furthermore, a module element f with lc(f) = 1 is called monic.

Convention. Likewise the polynomial case we always equipM with a module monomial
order ≺ to receive uniquely de�ned elements, thus the notation ofM implies a module
monomial order.

It is urgent to get some more information of the relationship between two module
monomials when talking about normal forms and standard bases in the following sections.

De�nition 1.4.7. We say that xα e i divides x
βe j if and only if

i = j and xα ∣ xβ .

As a shorthand notation we use xα e i ∣ xβ e j.

As a last note let us give some example why we need to be cautious with the repre-
sentation of an element f ∈M as given in Equation 1.4.1 where we grouped the di�erent
monomials by the index of the canonical basis elements e i . We have used this straightfor-
ward notation only to simplify notations at that point of our study of free P–modules.

Example 1.4.8. Let P = K[x , y, z],M = P 2. Assume the three monomials

m1 = −2x2 ye1 ,

m2 = 4x3 yz2e1 ,

m3 = z4e2 .

Let us construct the element f ∈M being the sum ofm1,m2 andm3. At this point we have
to �x a monomial order onM to give a uniquely de�ned representation of f :

(1) If we pick ≺i induced by <dp we get the following:

f = (4x3 yz2 − 2x2 y)e1 + z4e2 .

�is coincides with the representation given in Equation 1.4.1.

(2) If we pick ≺m induced by <dp we get a di�erent sequence of the monomials:

f = 4x3 yz2e1 + z4e2 − 2x2 ye1 ,

which does not correlate with Equation 1.4.1.

With this, we conclude our introduction to monomial orders on polynomial rings and
free modules. For more details on monomial orders see for example [97].

22 1 An introduction to standard bases

1.5 Gradings

In this section we want to characterize gradings. We de�ne them in general, but focus
on the main usage of them in this thesis: Homogenizing module elements resp. polynomi-
als. �ese homogenized elements have some properties one can use to improve standard
basis computations as explained in more detail in Chapter 2. Moreover, the restriction
to homogeneous input was one of the drawbacks of the initial presention of Faugère’s F5
Algorithm in [62] (see Section 6.1 for more details).

De�nition 1.5.1.

(1) A ring R is called a graded ring if there exist abelian subgroups Rν such that

a) R = ⊕ν≥0Rν , and

b) for all ν, µ ≥ 0 it holds that RνRµ ⊆ Rν+µ .

(2) An R–module M is called a graded R–module if there exist abelian subgroups Mν

such that

a) M = ⊕ν∈ZMν , and

b) for all µ, ν ≥ 0 it holds that RνMµ ⊆ Mν+µ .

(3) An element of f of Rν resp. Mν is called homogeneous (of degree ν). A not homoge-
neous element is sometimes also called inhomogeneous. Moreover, we de�ne that 0
is a homogeneous element of every degree.

(4) A module M = ⟨ f1 , . . . , fr⟩ is called homogeneous if fi is homogeneous for all i ∈{1, . . . , r}.
Remark 1.5.2.

(1) Every element f in M can be decomposed into

f = ∑
ν≥0

fν ,

such that fν ∈ Mν for all ν. �is decomposition is unique due to the fact that M is a
direct sum of the Mνs.

(2) Note that an homogeneous module resp. ideal M = ⟨ f1 , . . . , fr⟩ is only generated by
homogeneous elements, we do not require that each element f ∈ M is homogeneous.
What follows from the de�nition in 1.5.1 (4) is that f is generated by homogeneous
elements. For example let M = ⟨x2 + y2 , x3 − x2 y⟩ be a homogenenous ideal inK[x , y] with <dp then

f = x3 − x2 y + x2 + y2 ∈ M ,

but f is inhomogeneous.

1.5 Gradings 23

We are interested in some special gradings on the polynomial ringsP : Some polynomi-
als have a special structure where all monomials it consists of share a property, in particular
the degree.

De�nition 1.5.3.

(1) A polynomial p ∈ P is called homogeneous (of degree d) if every monomial of p
has degree d. We denote the set of all such polynomials Pd = {p ∈ K[x1 , . . . , xn] ∣
deg(t) = d for all t ∈ supp(p)} for d ≥ 0. �is is sometimes called the standard
grading on P .

(2) Given any polynomial p ∈ K[x1 , . . . , xn] and some extra variable x0

ph = xdeg(p)0 p(x1
x0

, . . . ,
xn

x0
) ∈ K[x0 , . . . , xn]

denotes thehomogenization of p with respect to x0 . p
h is thenhomogeneous of degree

deg(p).
(3) Conversely, for every homogeneous polynomial P ∈ K[x0 , . . . , xn] there exists a

dehomogenization with respect to x0 de�ned by

Pdeh = P(1, x1 , . . . , xn) ∈ K[x1 , . . . , xn].
(4) Furthermore, the following connection hold:

P = x l
0 P(1, x1 , . . . , xn)h

where l = max{s ∈ N ∣ every monomial of P includes x t
0 such that t > s}5.

Of course, one needs to adjust a new order <h switching from U−1K[x1 , . . . , xn] to
U−1K[x0 , . . . , xn] when homogenizing:

De�nition 1.5.4. Let < be a monomial order on U−1K[x1 , . . . , xn], which can be repre-
sented by a weight matrix A ∈ Rm×n . Furthermore, let xα and xβ be two monomials inK[x1 , . . . , xn]. We de�ne the induced homogenized monomial order <h by

xs0x
α <h x t

0x
β ∶⇔s + deg(xα) <nat t + deg(xβ) or,

(s + deg(xα) = t + deg(xβ) and
xα < xβ).

Any such induced homogenized monomial order <h can be represented by a weight matrix

Ah ∶=

⎛⎜⎜⎜⎝
1 1 ⋯ 1
0
⋮ A
0

⎞⎟⎟⎟⎠
5In Section 1.3 we see that this is equivalent to the condition that x s0 divides x t0 .

24 1 An introduction to standard bases

Using the de�nitions of Section 1.4 homogenization and dehomogenization generalize
naturally to the world of modules.

One can conclude from the above defnitions easily the following statements:

Corollary 1.5.5. With the notations from above the following statements hold:

(1) �e induced homogenized order ≺h is a well–order onM.

(2) If f ∈M is homogeneous, then ecart(f) = 0.
(3) For any f ∈M we have the following correspondence between the leading monomial

of f and the leading monomial of f h :

lm≺h(f h) = xecart(f)0 lm≺(f).
Remark 1.5.6. Note that similar to Corollary 1.5.5 (3) for any module element f inM the
ecart(f) can be intepreted in terms of the homogenization of f : Homogenizing f with
respect to x0 we just need to know the degree of x0 in lm≺h(f h),

ecart(f) = degx0 (lm≺h(f h)).
In the following sections of this chapter we use the homogeneity of elements only as

a sideline, but de�ne the basic ideas of standard basis computations. We get back to the
ideas of homogenization when introducing improvements to the fundamental standard
basis algorithm (Section 2.2).

1.6 Hilbert–Poincaré series and dimensions

Next we de�ne one very important invariant in commutative algebra, theHilbert–Poin-
caré series. Used in graded rings resp. modules it stores the dimensions of the homoge-
neous parts of the graded structures. �ere are various ways introducing this topic, we use
an attempt strongly related to [97].

LetR be aNoetherian graded ringwithR0 = K.�enwe knowbyProposition 1.1.27 that
every �nitely generated graded R–moduleM is Noetherian, too. �us each homogeneous
partMν is a �nite dimensionalK–vector space, it makes sense to speak of dimK(Mν).�is
is an important invariant in the following.

De�nition 1.6.1. Let R be a Noetherian graded ring, and let M = ⊕ν∈ZMν be a �nitely
generated R–module.

(1) We de�ne the Hilbert function of M by

HM ∶ Z Ð→ Z

ν z→ dimK(Mν).

1.6 Hilbert–Poincaré series and dimensions 25

(2) �e Hilbert–Poincaré series of M is de�ned by

HSM(t) ∶= ∑
ν∈Z

HM(ν)tν ∈ Z[[t, t−1]].
Example 1.6.2. For each degree d ≥ 0 we have

HP(d) = (d + n − 1

n − 1
) = (d + n − 1)(d + n − 2)⋯(d + 1)(n − 1)! .

Remark 1.6.3. For ν ∈ N it holds that 1 ≤ HM(ν) as Rν is never empty.

A well–known statement on the Hilbert–Poincaré series for positively graded modules
over the polynomial ring P is the following.

�eorem 1.6.4. Let M = ⊕ν≥0Mν be a �nitely generated, positively gradedP–module. �en
there exists a polynomial p(t) ∈ Z[t] such that the Hilbert–Poincaré series can be written
as6

HSM(t) = p(t)(1 − t)n . (1.6.1)

Proof. See, for example, Section 5.2 in [97].

�eorem 1.6.5 (Hilbert). Let M be a �nitely generated, graded module over P . �en there
exists a polynomial HPM(t) with deg (HPM(t)) ≤ n − 1 such that HSM(t) = HPM(t) for
t ≫ 0.

Moreover, one can deduce from the above theorem the Hilbert polynomial: Cancel out

the common factor of p(t) and (1−t)n in Equation 1.6.1 and use the results q(t) = ∑d
i=0 q i t

i

and (1 − t)m for m ≤ n to construct the above mentioned polynomial:

De�nition 1.6.6. With the above construction the polynomial7

HPM(t) = d

∑
i=0

q i(t − i +m − 1

m − 1
)

is called the Hilbert polynomial of M.

In Section 2.7 we discuss how to use the information stored in the Hilbert polynomial
to improve the computation of a standard basis of a homogeneous ideal I.

With this we �nish our introduction to Hilbert–Poincaré series, giving a last remark on
the situation in the case of local rings.

If ≺ is a local order on P the Hilbert–Samuel function is the counterpart of the Hilbert
function in the homogeneous case. �e connection to the Hilbert function is given by the
following theorem.

6Note that n is the number of variables inP .
7(n

k
) = 0 for k < 0

26 1 An introduction to standard bases

�eorem 1.6.7. Let P be equipped with a local order <, Q ⊂ P a primary ideal, and M
a �nitely generated P–module. �en the Hilbert–Samuel function χ ful�lls the following
equation:

χQM(d + 1) = d

∑
i=0

HgrQ(M)
(i),

where grQ(M) = ⊕∞ν=0Qν/Qν+1 .

We do not go any further with this local situation, as it is not of main interest in this
thesis.

1.7 Normal forms and standard bases

Having equippedM = P s with a monomial order ≺ in Section 1.4, we receive uniquely
de�ned elements inM. �is enables us to de�ne the standard basis of a submodule M ⊂M. A standard basis is nothing else but a nice set of generators of M, where nice should
be understood as being equipped with some properties useful for computations with M.

A standard basis is a generalization of a Gröbner basis which was discovered by Bruno
Buchberger in 1965 in his PhD thesis ([34]). He named it a�er his advisor Wolfgang
Gröbner. Independently, Buchberger, Grauert and Hironaka introduced the notion of a
standard basis ([34, 95, 101, 102]).

In the following sections we present algorithms for computing such bases, which are,
in the special situation of ≺ being global and M being an ideal in P , just generaliziations
of the Gaussian elimination algorithm and the Euclidean algorithm.

Next, we focus on the characterization of the normal form of an element f ∈M w.r.t.
some G ⊂ M. It turns out that computing the normal forms of special elements called
s–vectors is the main step when searching for a standard basis of a given submodule.

Although the situation having a global order is of main interest in this thesis, the spe-
cial behaviour in case of local (and thus also mixed) orders is important to be understood
for a deeper inside in the advantages and disadvantages of signature–based standard basis
algorithms.

Remark 1.7.1. We introduce standard bases in the world of modules. Clearly, we are in-
terested in standard bases of ideals in P , too. �is is just a specialization of the module
case, thus included. We give extensive explanations and examples of peculiarities, wher-
ever these are important for our further investigations.

�e next lemma is very important in what follows.

Lemma 1.7.2. Any free, �nitely generated P–module is Noetherian.

Proof. �is follows from the fact that P is Noetherian combined with Proposition 1.1.27.

1.7 Normal forms and standard bases 27

As a last preliminary step we need to de�ne some more structure needed in the follow-
ing discussion.

De�nition 1.7.3. A sequence S is an ordered list of objects. It contains elements and has a
(possibly in�nite) length denoted #(S), like a set. On the contrary, the elements are ordered
and the same element can appear several times at di�erent positions in the sequence.

Let us start with the de�nition of the element of main interest in this thesis.

De�nition 1.7.4.

(1) For any subset S ⊂M we de�ne

L≺(S) ∶= ⟨ lm(s) ∣ s ∈ S/{0}⟩,
the leading submodule of S. In particular, if L<(S) ⊂ P is an ideal we speak of the
leading ideal8 of S. If the order is clear by context, we just write L(S).

(2) Let M ⊂M be a submodule. A �nite sequence G = {g1 , . . . , gr} ⊂ M is a standard
basis for M if

L(M) = ⟨ lm(g1), . . . , lm(gr)⟩ = L(G).
Remark 1.7.5.

(1) Note that L(M) = L(G) = ⟨lm(g1), . . . , lm(gr)⟩ is equivalent to the fact that for
every f ∈ M there exists l ∈ {1, . . . , r} such that lm(g l) ∣ lm(f).

(2) For a shorter notation we say that G is a standard basis when we mean that G is a
standard basis for ⟨G⟩.

(3) If ≺ is a well–order onM, then G is also called a Gröbner basis.

Proposition 1.7.6. Let M ⊂M be a nonzero submodule.

(1) �ere exists a standard basis G for M.

(2) Let G ⊂ M be a standard basis for M. �en ⟨G⟩ = M.

Proof.

(1) By Lemma 1.7.2M is Noetherian, thus L(M) is �nitely generated. We can choose
�nitely many monomials m1 , . . . ,mr generating L(M). By de�nition the mi are
leading monomials of appropriate elements g1 , . . . , gr ∈ M. It follows that G ∶={g1 , . . . , gr} is a standard basis of M.

(2) Clear.

Note that a standard basis depends on the chosen monomial order ≺.

8In the following, an ideal generated by monomials only is called a monomial ideal.

28 1 An introduction to standard bases

Example 1.7.7. Let us have a closer look at the ideal I = ⟨p1 , p2⟩ ⊂ U−1K[x , y, z] where
p1 = x2 − y and p2 = xy − z.

(1) On the one hand, if we choose <ds lm(p1) = y and lm(p2) = z, thus we easily see
that ⟨y, z⟩ = L(I). In other words, {p1 , p2} is already a standard basis for I.

(2) On the other hand we can choose the order <dp .�en lm(p1) = x2 and lm(p2) = xy,
but ⟨x2 , xy⟩ ≠ L(I) as

p3 ∶= −y(x2 − y) + x(xy − z) = y2 − xz ∈ I

and lm(p3) = y2 ∉ ⟨x2 , xy⟩. One can easily show that G = {p1 , p2 , p3} is a standard
basis for I.

�is is a crucial problem in the theory of standard basis computations. Given amodule
M, it can be possible to compute a standard basis w.r.t. an order ≺1 for it in seconds on
a small computer, whereas the computation w.r.t. to another order ≺2 can be unsolvable,
even on super computers. �ere exist methods to use a standard basis w.r.t. ≺1 to compute a
standard basis w.r.t. ≺2 , but this is not an easy process and can sometimes be harder (slower,
consuming more memory, etc.) than computing from scratch w.r.t. ≺2 . We investigate this
problem and possible solutions in more detail in Chapter 2.

Right now we have shown the existence of a standard basis G for any 0 ≠ M ⊂ M
and any monomial order ≺. G needs not to be uniquely de�ned as there could be another
standard basisG′ consisting of all elements ofG and some linear combinations of those. We
can require some more properties on G to receive the unique, so–called reduced standard
basis of M.

De�nition 1.7.8. Let G be a �nite sequence in the free P–moduleM.

(1) G is called interreduced if

a) 0 ∉ G and

b) for every g ∈ G it holds that lm(g) ∉ L(G/{g}).
(2) Let f ∈ M. �en we say that f is top–reduced with respect to G if lm(t) ∉ L(G).

Furthermore, we say that f is reduced with respect to G if no monomial of the power
series expansion of f is contained in L(G).

(3) We say that G is reduced if

a) 0 ∉ G,

b) each g ∈ G is top–reduced w.r.t. G/{g},
c) for each g ∈ G it holds that tail(g) is reduced w.r.t. G and

d) for every g ∈ G it holds that lc(g) = 1.
Lemma 1.7.9. Let M ∈M be a submodule. If G is a reduced standard basis for M, then G
is unique.

1.7 Normal forms and standard bases 29

Proof. Assume that there exists another reduced standard basis H for M. By 1.7.8 (3)b
#(G) = #(H). Let G = {g1 , . . . , gr} and H = {h1 , . . . , hr}, both sorted by increasing
leadingmonomials. For all i ∈ {1, . . . , r} g i−hi ∈ M. If g i−hi ≠ 0 then lm(g i−hi) ∈ L(M).
By 1.7.8 (3)c lm(g i − hi) ∉ L(G) as well as lm(g i − hi) ∉ L(H). �is contradicts our
assumption that G and H are reduced standard bases for M.

�e de�nition of the reduced standard basis needs a bit of explanation: A reduced stan-
dard basis might not always exist. Moreover, its computation might be not possible in
�nitely many steps using polynomials only in general:

(1) Starting with a standard basisG we want to transform G to an interreduced basisG′:

a) Delete all zeros from G.

b) Delete all elements g′ such that there exists g ∈ G/{g′} with lm(g) ∣ lm(g′).
(2) From G′ we get the reduced standard basis G′′:

a) For all polynomials g ∈ G′ we set g ∶= 1
lc(g)

g.

b) If there exists a polynomial g′ ∈ G′ such that lm(g′) ∣ lm(tail(g)) we need to
reduce9 tail(g). �is is the hard part computing a reduced standard basis and
sometimes even impossible (see Example 1.7.10).

Example 1.7.10. Assume the polynomial ringU−1K[x] with the local monomial order <ds
and the ideal I = ⟨g⟩ where g = x − x2 is a polynomial. Clearly, a corresponding standard
basis is G = {g}. Trying to compute the reduced standard basis we see that tail(g) = x2 is
divisible by lm(g). Reducing g by xg we get

g ∶= g + xg = x − x2 + x2 − x3 = x − x3 .

Now tail(g) = x3 is again divisible by lm(g) and we easily see that this process of reduction
does not end in �nitely many steps. Although we have seen that there exists a reduced
standard basis of I we cannot compute it this way!

Remark 1.7.11. Note that in the case ofM being equipped with a well–order ≺ the compu-
tation of a reduced Gröbner basis for any given submoduleM is always possible in �nitely
many steps. �is is due to the fact that for any g ∈ G it holds that lm(g) ∤ tail(g) by
De�nition 1.3.3 and Proposition 1.3.10, thus a situation as in Example 1.7.10 is not possible.

Having stated the term “reduction” quite too many times without a correct de�nition it
is time to introduce the notion of a normal form:

De�nition 1.7.12. Let G denote the set of all �nite sequences G inM. �e map

η ∶M × G →M(f ,G)↦ η(f ,G)
is called a normal form ofM if for all f ∈M and all G ∈ G the following hold:

9We explain in the following what we exactly mean by the term “reduction”, right now the reader’s intuition and
natural understanding is quite propriate.

30 1 An introduction to standard bases

(1) η(0,G) = 0.
(2) If η(f ,G) ≠ 0⇒ lm (η(f ,G)) ∉ L(G).
(3) Let G = {g1 , . . . , gr}, u ∈ P∗ a unit. �en there exists a representation

u f − η(f ,G) = r

∑
i=1

pi g i , pi ∈ K[x1 , . . . , xn],
such that

max{lm(pi g i) ∣ 1 ≤ i ≤ r} ⪯ lm (u f − η(f ,G)).
�is is called the standard representation of u f − η(f ,G) w.r.t. G.

We say that η(f ,G) is the normal form of f w.r.t. G. Moreover, if we demand η(f ,G) to
be reduced w.r.t. G for all G ∈ G, then we call ηred(f ,G) a reduced normal form.

Lemma 1.7.13. Let M be a submodule ofM, G ⊂ M a standard basis for M, and η a normal
form of M. �en the following hold:

(1) For any f ∈M it holds: f ∈ M ⇐⇒ η(f ,G) = 0.
(2) M = ⟨G⟩.

Proof.

(1) On the one hand, if η(f ,G) = 0, then u f ∈ M. �us f ∈ M. On the other hand, if
η(f ,G) ≠ 0, then η(f ,G) ∉ M. Since ⟨G⟩ ⊂ M this implies f ∉ M.

(2) ⟨G⟩ ⊂ M is clear. Now assume g ∈ ⟨G⟩ such that g ∉ M. By (1) this means that
η(g ,G) ≠ 0, a contradiction.

Next we state 3 di�erent algorithms of how to compute normal forms: Algorithms 1
and 2 compute the normal form resp. the reduced normal form if a global order ≺ is given.
We see that these algorithms can lead to an endless loop computing normal forms if a non–
global order is given. We illustrate all these algorithms, fundamental for the computation
of a standard basis, with an example:

LetP = U−1K[x , y, z],M = P 2, f = x3e2. LetG be the sequence consisting only of the
module element r = x2e2 − xze1 − xe2. First, we assume the following orders: <dp and ≺m.
Let us compute the normal form of f w.r.t. G:

h ∶= x3e2
Dh ∶= {r}
h ∶= h − xr = x3e2 − x3e2 + x2ze1 + x2e2

= x2ze1 + x2e2

Dh ∶= {}

1.7 Normal forms and standard bases 31

Algorithm 1 Normal form w.r.t. G for a global order ≺ (GNF)
Input: f ∈M, a �nite sequence G inM
Output: h ∈M, a normal form of f w.r.t. G
1: h ← f
2: while (h ≠ 0 and Dh ∶= {g ∈ G ∣ lm(g) ∣ lm(h)} ≠ ∅) do
3: Choose any g ∈ Dh .
4: Let t ∈ P such that t lt(g) = lt(h).
5: h ← h − tg
6: return h

Algorithm 2 Reduced normal form w.r.t. G for a global order ≺ (GNFred)
Input: f ∈M, a �nite sequence G inM
Output: h ∈M, a reduced normal form of f w.r.t. G
1: h ← 0, g ← f
2: while (g ≠ 0) do
3: g ← GNF(g ,G)
4: if (g ≠ 0) then
5: h ← h + lt(g)
6: g ← tail(g)
7: return h

So at this point the normal form computation stops and we get

η(f ,G) = x2ze1 + x2e2 .

From here the reduced normal form (Algorithm 2) would go on, having already com-
puted the normal form in Line 3. Note that in Algorithm 2 g has the role h plays in Algo-
rithm 1. h is just the bucket the nonzero leading terms of η(g ,G) are stored in (Line 5), at
this point h = 0.

g ∶= η(g ,G) = x2ze1 + x2e2 .

As g ≠ 0 we go on in Line 5 and set

h ∶= h + lt(g) = x2ze1
g ∶= tail(g) = x2e2 .

Next we are back in Line 3 and compute the normal form of g:

g ∶= x2e2
Dg ∶= {r}
g ∶= g − r = x2e2 − x2e2 + xze1 + xe2

= xze1 + xe2 .

32 1 An introduction to standard bases

At this point we see that neither xze1 nor xe2 is divisible by x
2e2 thus in the following steps

we just add those terms to h:

h ∶= h + lt(g) = x2ze1 + xze1

g ∶= tail(g) = xe2
Dg ∶= {}
h ∶= h + lt(g) = x2ze1 + xze1 + xe2

g ∶= tail(g) = 0
�us the reduced normal form of the initial f is

ηred(f ,G) = x2ze1 + xze1 + xe2 .

As we have explicitly stated, these algorithms are assumed to terminate only if we have
a global order. Assume the same elements, but now with <ds and ≺i. In this setting the
terms of the elements are reordered:

f = x3e2
r = xe2 + x2e2 − xze1 .

Once more, let us try to compute the normal form η(f ,G) using Algorithm 1:

h ∶= x3e2
Dh ∶= {r}
h ∶= h + x2r = x3e2 − x3e2 + x4e2 − x3ze1

= x4e2 − x3ze1

Dh ∶= {r}
h ∶= h + x3r = x4e2 + x3ze1 − x4e2 + x5e2 − x4ze1

= x5e2 + x3ze1 + x4ze1

Dh ∶= {r}
. . .

We see that this computation does not terminate: �e exponent k of lm(h) = xk e2
increases by 1 every timewe reduce h by r. Right now, the initially a bit strange de�nition of
a normal form (1.7.12 (3)) with the multiplier u ∈ P∗ rescues us. Remember our discussion
about the localized polynomial ringP = U−1K[x1 , . . . , xn] at the end of Section 1.3. Having
a local order <ls P∗ is no longer restricted toK∗, but includes all elements u ∈ P such that
lm(u) = 1.
�e main idea behind computing the normal form of an element for a non–global order is
to compare the ecarts of the reducer and the element to be reduced and possibly add new
elements to the list of reducers Dh . �is was �rst presented by Mora in [130]. We state the
variant of the surroundings of the Singular team ([94,96,97]) using the slightly di�erent
de�nition of the ecart we have already given in De�nitions 1.3.11 and 1.4.6.

1.7 Normal forms and standard bases 33

Algorithm 3 Normal form w.r.t. G for a non–global order ≺ (LNF)
Input: f ∈M, a �nite sequence G inM
Output: h ∈M, a normal form of f w.r.t. G
1: h ← f
2: D ← G
3: while (h ≠ 0 and Dh ← {g ∈ D ∣ lm(g) ∣ lm(h)} ≠ ∅) do
4: Choose g ∈ Dh such that ecart(g) = min{ecart(g′) ∣ g′ ∈ D}.
5: if (ecart(g) > ecart(h)) then
6: D ← D ∪ {h}
7: Let t ∈ P such that t lt(g) = lt(h).
8: h ← h − tg
9: return h

We see that the choice of the reducer depends on the corresponding ecart (Line 4).
Moreover, in Line 6 possibly new reducers are added to D.�ese are the twomain changes
compared to Algorithm 1 which ensure termination in the non–global case. Let us review
our example again, now using LNF:

h ∶= x3e2
D ∶= {r}
Dh ∶= {r}

Inasmuch as ecart(h) = 0 and ecart(r) = 2 we add h (now denoted by hold) to D.

D ∶= {r, hold}
h ∶= h + x2r = x3e2 − x3e2 + x4e2 − x3ze1

= x4e2 − x3ze1

Dh ∶= {r, hold}
Again, ecart(hold) < ecart(r), thus we use hold to reduce h:

h ∶= h − xhold = x4e2 − x3ze1 − x4e2

= −x3ze1

Now Dh = {} and the algorithm terminates with a normal form of f :

η(f ,G) = −x3ze1 .
Let us review the reduction steps in LNF once more to see how this selection of a reducer
w.r.t. a minimal ecart and addition of new elements to the list of reducers leads to a termi-
nating normal form computation including the above mentioned unit u ∈ P∗:

h = f + x2r − x f = −x3ze1 .

34 1 An introduction to standard bases

�is normal form computation can be reformulated combining both summands including
f :

(1 − x) f − x2r = x3ze1

�is is the normal form of f as given in De�nition 1.7.12 with unit u = 1 − x ∈ P∗.
Remark 1.7.14.

(1) Algorithm 3 is the most general one, i.e. it ensures correctness and termination for
any given order. Note that in the case of a global order ≺ appending h to the set of

possible reducers D is useless as lm(h) > lm(h − lt(h)
lt(g)

g), which implies lm(h) ∤
lm(h − lt(h)

lt(g)
g) due to Proposition 1.3.10. �us h is never used as a reducer in the

following. In this situation LNF is just GNF with a special choice of reducers (min-
imal ecart) and some overhead due to appending elements not usable as reducers
to D. Requiring an optimized implementation of the normal form algorithms one
always implement LNF and GNF, using LNF only for non–global orders.

(2) Note that the choice of reducers in Algorithm 1 can in�uence the result.

We do not prove correctness or termination of the presented algorithms. We consider
ourselves satis�ed with the understanding of how they work and the intuitive insight that
both are correct and terminate. For example, proofs can be found in sections 1.6 and 1.7
resp. 2.3 of [97].

As a last note let us recover Example 1.7.10: Using LNFwe can easily compute the normal
form of f = x w.r.t. G = {r} with r = x − x2 without any trouble considering termination:

(1 − x)x − r = 0.

�e main idea behind the de�nition of a normal form is to get a characterization of
a standard basis. Moreover, this turns out to be strongly related to what we want to be
understood as a “reduction”:

De�nition 1.7.15. Let f , h ∈M, let M denote the set of all monomials inM, let G be a
sequence inM, g ∈ G.

(1) f top–reduces to h w.r.t. G if there exist g ∈ G, m ∈ M such that lm(f) = m lm(g)
and h = f −

lc(f)
lc(g)

mg.

(2) f reduces to h w.r.t. G if there exist g ∈ G, a term t in the power series expansion of

f , m ∈ M such that lm(t) = m lm(g) and h = f −
lc(t)
lc(g)

mg.

We also use themore implicit notations f is (top–)reducible (w.r.t. G) in the respective cases
above.

Lemma 1.7.16. Let 0 ≠ f ∈M, let G be a sequence inM.

(1) If f is not reducible w.r.t. G, then f is in normal form w.r.t. G, i.e. f = η(f ,G).

1.8 �e basic standard basis algorithm 35

(2) If f has a standard representation w.r.t. G, then f is top–reducible w.r.t. G.

(3) f has a standard representation w.r.t. G if and only if η(f ,G) = 0.
Proof. Clear.

�is gives us a neat characterization of a standard basis. We see in the next section that
the normal form algorithms form the main part of a standard basis computation.

�eorem 1.7.17. Let G = {g1 , . . . , gr} be a �nite subset inM. G is a standard basis if and
only if each 0 ≠ f ∈ M = ⟨G⟩ has a standard representation w.r.t. G.

Proof. If G is a standard basis for M, then for every 0 ≠ f ∈ M it holds that η(f ,G) = 0.
If 0 ≠ f ∈ M has a standard representation w.r.t. G, then there exists g ∈ G such that
lm(g) ∣ lm(f). �us G is a standard basis for M.

�e main problem of the characterization in �eorem 1.7.17 is that it does not outline
any idea of how to compute a standard basis using a termination–ensured algorithm.

1.8 The basic standard basis algorithm

Until now we have de�ned what a standard basis G for a submoduleM inM is and we
have already found a nice characterization of standard bases in �eorem 1.7.17, requiring
any element 0 ≠ f ∈ M to have a standard representation w.r.t. G. �e problem is that
there are in�nitely many elements in M, thus we are still missing an algorithmic way to
compute a standard basis given any submodule M.

In this section we introduce the notion of s–vectors. �ose are a special linear combi-
nation of two module elements, which enable us to give an algorithmic characterization of
standard bases.

Note that we are only interested in how to compute a standard basis in this chapter. �e
question of computing them e�ciently using various kinds of optimizations is postponed
to the following chapters.

De�nition 1.8.1. Let f , g ∈M/{0} such that lm(f) = xα e i and lm(g) = xβ e j . Let G ={g1 , . . . , gr} be a �nite subset of M.

(1) We de�ne the least common multiple of f and g by

lcm (lm(f), lm(g)) ∶= xγ , γ = (max{α1 , β1}, . . . , max{αn , βn}) ∈ Nn .

Moreover, we introduce a shorthand notation τ(f , g) ∶= lcm (lm(f), lm(g)).
(2) Analogously, we de�ne the greatest common divisor of f and g by

gcd (lm(f), lm(g)) ∶= xγ , γ = (min{α1 , β1}, . . . , min{αn , βn}) ∈ Nn .

36 1 An introduction to standard bases

(3) We de�ne the s–vector of f and g by

S(f , g) ∶= ⎧⎪⎪⎨⎪⎪⎩
lc(g) τ(f ,g)

x α f − lc(f) τ(f ,g)
x β g if i = j,

0 else.

If f , g ∈ P are polynomials we also call S(f , g) the s–polynomial of f and g

(4) We say that S(f , g) has a standard representation w.r.t. G if

S(f , g) = r

∑
i=1

pi g i , pi ∈ P ,

such that
max{lm(pi g i) ∣ 1 ≤ i ≤ r} ≺ τ(f , g).

Remark 1.8.2.

(1) For f , g ∈ P think of P ≅ P 1, i.e. two polynomials can be assumed to always have
i = j in the above de�nition of an s–vector.

(2) �e de�nition of a standard representation of S(f , g) is strongly connected to those
given in De�nition 1.7.12. To see this, note that lm (S(f , g)) ≺ τ(f , g).

�eorem 1.8.3 (Buchberger’s Criterion). Let G = {g1 , . . . , gr} be a subset inM. �en the
following are equivalent:

(1) G is a standard basis.

(2) For all i , j ∈ {1, . . . , r}, S(g i , g j) has a standard representation w.r.t. G.

Intuitive idea of proof sketched.

(1)⇒ (2) By�eorem 1.7.17 every 0 ≠ f ∈ M has a standard representation w.r.t. G. For
any two elements g i , g j ∈ G it holds that S(g i , g j) ∈ M, thus clearly (2) holds.

(2)⇒ (1) Remember that if S(f , g) has a standard representation w.r.t. G. �is is equiv-
alent to η (S(f , g),G) = 0 by Lemma 1.7.16. Any element g ∈ ⟨G⟩ can be written
as

g =
r

∑
i

pi g i , pi ∈ P

=
r

∑
i

(finite∑
k

akmk)g i , ak ∈ K,mk ∈Mon(x1 , . . . , xn).
For an intuitive understanding let us assume the special situation that

g = a1m1g1 − a2m2g2 .

If we want to compute the normal form of g two situations can arise:

1.8 �e basic standard basis algorithm 37

(1) a1m1 lm(g1) ≠ a2m2 lm(g2), say a1m1 lm(g1) > a2m2 lm(g2). �en we can
reduce g to zero by

η(g ,G) = a1m1g1 − a2m2g2´¹¹¹¸¹¹¹¶
g

− a1m1g1´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
1st reducer

+ a2m2g2´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
2nd reducer

= 0.

(2) a1m1 lm(g1) = a2m2 lm(g2). From De�nition 1.8.1 it follows that

τ(g1 , g2) ∣ m1 lm(g1).
�us there exist m′ ∈Mon(x1 , . . . , xn) and a′ ∈ K such that

a′m′τ(g1 , g2) = a1m1 lm(g1).
�is enables us to rewrite a1m1g1 − a2m2 g2:

a1m1g1 − a2m2g2 = a′m′ S(g1 , g2).
By our assumption η (S(g i , g j),G) = 0, thus η(g ,G) = 0.

Remark 1.8.4.

(1) Note that restricting the number of s–vectors in�eorem 1.8.3 (2) by assuming that
i > j is no problem:

a) S(g i , g i) = 0 for all i ∈ {1, . . . , r}.
b) S(g i , g j) = −S(g i , g j) for all i , j ∈ {1, . . . , r}.

(2) In some textbooks the combination of �eorem 1.7.17 and �eorem 1.8.3 is called
Buchberger’s Criterion. We divide this into two parts, as �eorem 1.8.3 is the main
part we are interested in from the computational point of view in this section.

�is enables us to compute standard bases in �nitely many steps.

Remark 1.8.5. If ≺ is a well–order Std is also known as Buchberger’s Algorithm. �is special
case of the above presented algorithm was published �rst in BrunoBuchberger’s PhD thesis
([34]).

Two notions appearing the �rst time in Algorithm 4 are important for our further in-
vestigations.

De�nition 1.8.6. �e set P de�ned in Line 2 of Algorithm 4 is called pair set. �e tuples(f , g) ∈ P are called critical pairs. �e degree of the critical pair (f , g) is de�ned to be
deg (τ(f , g)).

Let us proof why Std is an algorithm computing a standard basis.

�eorem 1.8.7. Let F ⊂ M be the input of Std. �en Std is an algorithm computing a
standard basis G of ⟨F⟩ w.r.t. ≺.

38 1 An introduction to standard bases

Algorithm 4 Standard basis computation w.r.t. ≺ (Std)
Input: F = { f1 , . . . , fr} a subset ofM, NF a normal form
Output: G a standard basis for ⟨F⟩ w.r.t. ≺
1: G ← F
2: P ← {(fi , f j) ∣ i > j}
3: while (P ≠ ∅) do
4: Choose (f , g) from P.
5: P ← P/{(f , g)}
6: h ← S(f , g)
7: h ← NF(h,G)
8: if (h ≠ 0) then
9: P ← P ∪ {(g , h) ∣ g ∈ G}
10: G ← G ∪ {h}
11: return G

Correctness and Termination of Algorithm 4.

(1) Correctness follows from�eorem 1.8.3 as well as the fact that all normal form algo-
rithms (GNF, GNFred , and LNF) compute correct normal forms.

(2) If h ≠ 0 in Line 8, then by Property (2) of De�nition 1.7.12. lm(h) ∉ L(G). �us
whenever such an element h is added to G, then L(G) strictly increases, i.e. L(G) ⊊
L(G ∪ {h}). As M is Noetherian we know by Lemma 1.1.15 (3) that this chain of
increasing modules has to become stationary. �is means that at some point no new
elements h are added to G, and thus no new critical pairs are added to P. So P = ∅
and Std terminates a�er �nitely many steps.

Remark 1.8.8. Note that the normal form used in Line 7 in Algorithm 4 is not explicitly
given: Depending on the order and the variant of standard basis we want to receive this
choice varies:

(1) If ≺ is a global order and there are no further requirements on the basis, we use GNF
(Algorithm 1).

(2) If ≺ is global and we want to get a reduced standard basis, we use Algorithm 2. Be
careful, in this situation the return value G of Std is not a reduced standard basis.
For this we have to delete every element g ∈ G such that there exists g′ ∈ G with
lm(g′) ∣ lm(g) at the end, and we have to normalize the remaining elements.

(3) If ≺ is non–global, we use the normal form described in Algorithm 3 to prevent a
loop of in�nite reduction steps.

At this point, we �nish the main part of our introductory chapter with an example of
a standard basis computation for an ideal w.r.t. a global order. We describe every step in
detail, although many computations turn out to be “useless”. Exactly these steps are the
main issue with Std and need to be avoided as much as possible.

1.8 �e basic standard basis algorithm 39

Example 1.8.9. Let F = {p1 , p2 , p3} be a �nite set of polynomials in K[x , y, z],
p1 = xy − 1,

p2 = x2 − 1,

p3 = y2 − xz.

Let <dp be the graded reverse lexicographical order onK[x , y, z]. For the choice in Line 4
we use the rule �rst in, �rst out. In this example we use the reduced normal form, thus we
stick to Algorithm 2. We set G ∶= {p1 , p2 , p3}. Initially P is set in the following way:

P ∶= {(p2 , p1), (p3 , p1), (p3 , p2)}.
�e computations start with S(p2 , p1):

P ∶ = P/{(p2 , p1)}
S(p2 , p1) = yp2 − xp1 = x2 y − y − x2 y + x

= x − y.

Clearly, h ∶= η(x − y) = x − y, thus we need to add h to G:

p4 ∶= x − y

P ∶= P ∪ {(p4 , p1), (p4 , p2), (p4 , p3)}
G ∶= G ∪ {p4}

Next we go on with S(p3 , p1):
P ∶ = P/{(p3 , p1)}

S(p3 , p1) = xp3 − yp1 = xy2 − x2z − xy2 + y

= −x2z + y,

η(−x2z + y) = −x2z + y + x2z − z´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
zp2

= y − z.

�us the element p5 ∶= y − z has to be added for further computations:

P ∶= P ∪ {(p5 , p1), (p5 , p2), (p5 , p3), (p5 , p4)}
G ∶= G ∪ {p5}

Next pair to be computed:

P ∶ = P/{(p3 , p2)}
S(p3 , p2) = x2p3 − y2p2 = x2 y2 − x3z − x2 y2 + y2

= −x3z + y2 ,

η(−x3z + y2) = −x3z + y2 + x3z − xz´¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¶
xzp2

− y2 + xz´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
p3

= 0.

40 1 An introduction to standard bases

So nothing new has to be added and we can go on with the next pair in P:

P ∶ = P/{(p4 , p1)}
S(p4 , p1) = yp4 − p1 = xy − y2 − xy + 1

= −y2 + 1,

η(−y2 + 1) = −y2 + 1 + y2 − yz´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
y p5

+ yz − z2´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
zp5

= −z2 + 1.

Before adding this element to G, multiply it by −1 and add new pairs with this element to
P:

p6 ∶= z2 − 1

P ∶= P ∪ {(p6 , p1), (p6 , p2), (p6 , p3), (p6 , p4), (p6 , p5)}
G ∶= G ∪ {p6}

Next pair to be computed:

P ∶ = P/{(p4 , p2)}
S(p4 , p2) = xp4 − p2 = x2 − xy − x2 + 1

= −xy + 1,

η(−xy + 1) = −xy + 1 + xy − 1²
p1

= 0.

It turns out that for each pair remaining in P the normal form of the corresponding s–
polynomial is zero. �us we get a Gröbner basis

G = {p1 , p2 , p3 , p4 , p5 , p6}.
To receive a reduced Gröbner basis we have to remove some of the elements. Easily one
sees that the uniquely de�ned reduced Gröbner basis of I is given by

G′ = {p4 , p5 , p6}.
Remark 1.8.10. Note that all 15 s–polynomials mentioned in Example 1.8.9 are generated in
Algorithm 4 andmost of the normal form computations consist of various reduction steps.
�is is very time consuming: Together with the two reductions to zero we have explicitly
done above, we have 12 s–polynomials altogether, which are computed and reduced, but
which do not give any new information for the standard basis we are searching for.
So let us have a more detailed look at the overhead Std has computed in this example:

(1) 15 s–polynomials are generated and their normal forms are computed.

1.9 On the complexity of standard basis computations 41

(2) 3 of them add new polynomials, which need to be added to receive a standard basis
for ⟨F⟩ in the end.

(3) 12 of them, i.e. 4
5
th of the investigated data is just useless.

In Chapter 2 we give possible optimizations to compute as much as possible useful data
only.

1.9 On the complexity of standard basis

computations

As a last step in our introduction to standard bases let us give a small insight to the
area of the complexity of standard basis computations. For this, we restrict ourselves to the
polynomial case.

For algorithms one mostly measures the complexity in two di�erent types: time com-
plexity and space complexity. Let us introduce the so–called Landau–notation:

De�nition 1.9.1. Let g ∶ N → R be a function on the natural numbers. An algorithm A
has a complexity ofO(g(n)) if and only if a Turing machine can compute the result of an
input of A in c ⋅ g(n) steps for constant c , n ∈ N.
Example 1.9.2. Assume that the time complexity T(n) of an algorithm is given by T(n) =
687n5 + 123n4 + 12.�en we write T(n) = O(n5).

In complexity theory one de�nes so–called complexity classes to group algorithms. For
us, two of them are important:

(1) A problem is known to be P if the corresponding algorithm solving it, isO(g(n)),
where g is a polynomial in n.

(2) A problem is known to be Expspace if the corresponding algorithm solving it, is
O(2g(n)), where g is a polynomial in n.

Let us try to parametrize the computation of standard bases based on the corresponding
input. �ere exists a quite natural setting of parameters to de�ne a �nite set F = { f1 , . . . , fr}
of polynomials in P :

(1) the number n of variables in P ,

(2) the number r = #(F) of elements in F ,

(3) the maximal degree dmax ∶= max{deg(fi) ∣ fi ∈ F}, and
(4) the maximal coe�cient cmax ∶= max{ all coe�cients of fi ∣ fi ∈ F}.

42 1 An introduction to standard bases

Having this as input data, the complexity of computing the standard basis G relies on
them:

(1) �e maximal degree during the computation is bounded by a function in n, r and
dmax.

(2) Also #(G) is bounded by a function in n, r and dmax.

(3) �emaximal coe�cient appearing during the computation is bounded by a function
in n, r, dmax and cmax.

In some special situation these upper bounds can be given, e.g. [17, 86–88, 123, 125]. We
do not want to discuss this in detail and just give a feeling for “how hard” this problem
really is in general.

In [41,42] it is shown by Caniglia, Galligo and Heintz that the complexity of computing
a Gröbner basis w.r.t. the graded reverse lexicographical order <dp for the input set F ={ f1 , . . . , fr} is
(1) O(dn2

max) if #({a ∈ Kn ∣ fi(a) = 0 for all fi ∈ F}) <∞, and

(2) O(dn
max) if the solutions at in�nity are also �nite.

On the other hand, the same computations w.r.t. the lexicographical order <lp lead to

computations with a complexity of d
O(n3)
max .

In 1990 Doubé has presented an upper bound for the degree of elements in the reduced
standard basis. As already discussed above, it strongly depends on the input data.

�eorem 1.9.3 (Dubé). Let I = ⟨ f1 , . . . , fr⟩ ⊆ P be an ideal, < any monomial order on P .
�e degree of polynomials in the reduced standard basis for I has the upper bound

D ∶= 2(d2
max

2
+ dmax)2

n−1

.

Proof. See [53].

�is means that we have a doubly–exponential bound on the degrees of the elements
in the standard basis. In [124] the following is shown:

�eorem 1.9.4 (Mayr). Given an ideal I in a polynomial ring of n variables, generated by
�nitely many polynomials, the reduced standard basis G for I w.r.t. a monomial order < can
be computed in Expspace.

All in all we have to state the following:

Remark 1.9.5. �e complexity of standard basis computations can be doubly–exponential
in the number of solutions of the polynomial system.

�us the problem in focus of this thesis can be characterized as being “not so easy”.
With this premises in mind, it makes sense to think about how to improve the compu-

tations of standard bases. �is is the content of the following chapters.

2 Ways to improve standard basis

computations

In Chapter 1 we have introduced the topic of standard basis computations. Closing
Section 1.8 with an example of a Gröbner basis computation for an ideal we have seen
that, also the standard algorithm is quite easy to understand, it has one huge drawback:
redundant computations. Most of the computations in Example 1.8.9 generated new critical
pairs not needed for the Gröbner basis. �eir corresponding s–vectors are computed and
then the reduction process starts. In the end, these redundant reductions just tell us that
the s–vector we investigate already ful�lls the Buchberger Criterion (�eorem 1.8.3) and
we do not need to add something new to the intermediate Gröbner basis. �is is not what
we want to have. We would like to only compute new data needed for the basis. �us one
needs to think about ways to distinguish the useful and the useless data.

In this chapter we present ideas how to improve Std. �is can be done not only by
adding some criteria for the critical pairs, but also by di�erent implementations of Std. �e
main di�erences can be found in the decisions one has to take during the computations.
Other ideas related to speed–up the computational time of standard basis algorithms are

44 2 Ways to improve standard basis computations

given, too.
Besides considering criteria to reject useless critical pairs there have been other ideas

developed which try to improve the following important steps of Std:

(1) In Line 4 of Algorithm 4we have to choose the next critical pair Std shall investigate.
In the case of homogeneous elements as input one can always sort the pair set P by
the degree of the critical pairs, whereas in the inhomogeneous case the sugar degree
gives a good choice. It can be understand as “the degree the corresponding element
would have if we start with homogeneous elements as input” and was presented �rst
in [85]. �us we get some strategies how to order and how to choose critical pairs from
P.

(2) In Section 2.3 we present the two main criteria to pick out useless critical pairs in
advance, which go back to Buchberger, [34, 35, 109]. Di�erent attempts using these
criteria where developed. Subsequently we present the one being most in�uentual,
the Gebauer–Möller implementation ([81]) in Section 2.4.

(3) Another important point of Std is the normal form computation of the s–vectors.
In [114, 117] Lazard presented a new way describing the reduction steps with the
Sylvester matrix. �is method was improved in [61] by Faugère in 1999.

(4) Also the second possible choice in Std is investigated: If we have several possible
reducers, which one should be chosen? Some recent work is done in [61], but amuch
more comprehensive discussion can be found in [31]: �e main idea is to store the
intermediate reduced elements if they have some nice properties which can be useful
for upcoming reductions.

(5) One can use the Hilbert(–Poincaré) series to speed up the standard basis computa-
tion, as shown in [154]: Compute the standard basisG1 w.r.t. a “nice” order ≺1 and get
the Hilbert series. �en one can use the Hilbert series to get bounds for the number
of elements in intermediate versions of G2, the wanted standard basis w.r.t. ≺2. �is
idea is discussed in Section 2.7.

(6) Other ideas are related to the monomial order the computations are based on: If
you want to compute a standard basis G1 in a given order ≺1, but this is too hard
a problem, try to compute the standard basis G2 of your input w.r.t. some related
order ≺2 . A�erwards, compute G1 using G2. �ere are several attempts of doing this
([4, 38, 44, 67, 152, 159]). We discuss the most e�cient ones in Section 2.8

(7) A standard basis computation over the rationals as ground �eldK could be reduced
to several computations of the same input over ground �elds of characteristic p <∞,
p a prime number. �ose ideas have been evolved a lot over the last years, due to the
fact that thosemodular computations bene�t frommulti–core processors, which are
designed to compute several independent workloads in parallel ([6, 103, 153]). We
give a deeper insight in this topic in Section 2.9.

(8) A complete di�erent approach to compute standard bases is done using involutive
methods ([11, 24, 25]). Using a slightly di�erent de�nition of the term “division”

2.1 �e problem of zero reductions 45

instead of the normal one leads to a new normal form computation. Based on this
so–called involutive bases can be computed, which are related to standard bases.

�e intention of this chapter is to make the reader aware of how to improve standard
basis algorithms in the classical sense, i.e. without using signatures. �e knowledge and un-
derstanding of these ideas is essential to grasp the bene�ts and problems of the signature–
based approach.

2.1 The problem of zero reductions

�e main drawback we see for the standard basis algorithm Std as presented in Sec-
tion 1.8 is the vast number of reductions to zero. �ese reductions are in some sense uselss
for the standard basis computation.

Firstly, let us de�ne what the term “useless” means in our setting.

De�nition 2.1.1. Let f , g ∈M. A critical pair (f , g) in Std is called useless if and only if
η (S(f , g)) = 0. If a pair is not useless we call it useful.

�e concept behind this notation is the following: Wewant to compute a standard basis,
i.e. we need to get a setG = {g1 , . . . , gs} such that S(g i , g j) = 0 for all i , j ∈ {1, . . . , s}with
i > j:

Std starts with a set of elements, say F = { f1 , . . . , fr}. Some of the s–vectors S(fi , f j)
might reduce to zero w.r.t. F , others may not. On the one hand, those, which do not reduce
to zero, are important for us, for example, assume that S(fi , f j) reduces to an element
fi , j ≠ 0 w.r.t. F . We need to ensure that it reduces to zero, if we want to receive a standard
basis by �eorem 1.8.3. �us the only possibility to achieve this situation is to enlarge F ,
F ′ = F ∪ { fi , j}. By construction it is clear that S(fi , f j) reduces to zero w.r.t. F ′. Iterating
this process over all s–vectors, in the end, we receive a standard basis G. On the other
hand, those s–vectors reducing to zero w.r.t. F are not important at all. At the end of their
reduction we do neither enlarge F nor do we generate new critical pairs. �us, nothing
in our data set has changed when η (S(fk , f l)) = 0. We could compute G without even
considering the s–vector, its reduction is useless for our task.

In bigger computations more than 90 percent of the reduction steps done in Std lead
to zero reductions, even in Example 1.8.9, a very small example we have done by hand,
80 percent of the computed data does not in�uence the computation of G and produce
computational overhead. We want to avoid this; for bigger problems we even have to do
so as otherwise the standard basis is not computable even on super computers respectively
compute servers.

46 2 Ways to improve standard basis computations

2.2 Selection strategies for critical pairs

We have seen that there are two di�erent choices in the standard basis algorithm Std:

(1) How to choose the next critical pair (f , g) from the pair set P?

(2) How to choose the reducer in NF if there are di�erent possible ones?

A discussion giving some answers and heuristics for the second question can be found
in Section 2.6.

Here we focus our attention on the question how to choose the next critical pair from P
e�ciently. Whatwewant to do in terms of the pseudo code of Std is to improve Line 4 from
Algorithm 4. Instead of just picking a critical pair from P we want to select a special subset
of P and sort the included elements, such that the received order, in which to compute and
reduce s–vectors, is hopefully more e�cient for standard basis computations. We call the
algorithm to select a special subset of P Select, instead of Line 4 in Algorithm 4 we have
to be a bit more explicit:

Algorithm 5 Standard basis algorithm including selection strategy (Std)

Input: F = { f1 , . . . , fr} a subset ofM, NF a normal form
Output: G, a standard basis for ⟨F⟩ w.r.t. ≺
1: G ← F
2: P ← {(fi , f j) ∣ i > j}
3: while (P ≠ ∅) do
4: P′ ← Select(P)
5: P ← P/P′
6: while (P′ ≠ ∅) do
7: (f , g)← First element of P′

8: P′ ← P′/{(f , g)}
9: h ← S(f , g)
10: h ← NF(h,G)
11: if (h ≠ 0) then
12: P ← P ∪ {(g , h) ∣ g ∈ G}
13: G ← G ∪ {h}
14: return G

In Line 4 a special, ordered subset P′ ⊆ P is chosen. Next, only the elements of P′ are
taken into account (Line 6), whereas all elements of P/P′ are held back. So the “magic”
happens in Select. Let us give some examples of possible selection strategies for P′:

Assume the following situation: We have just computed the normal form of S(f , g),
possibly added a new element h = η (S(f , g)) ≠ 0 to G, generated new critical pairs with
h and added them to P. What is our next choice considering P? One could just choose the
oldest element from P, i.e. the element added to P before all other elements currently in
P have been added. Other choices could be: the youngest element, the element of lowest
lcm, the element of highest lcm, etc.

2.2 Selection strategies for critical pairs 47

�e choice of these elements is very important for the performance of Std: �e critical
pairs possibly become new elements in G, and thus new reducers for further normal form
computations. For example, assuming ≺ to be a global order, it is not helpful to get a new
element h from a normal form computation of an s–vector with deg(h) = 8, if there are
hundreds of critical pairs le� in P, whose s–vectors have degree < 8.

(1) Let us start with a special situation: Assume for the moment that the input F ={ f1 , . . . , fr} of Std is homogeneous, i.e. all fi are homogeneous. We note that the
s–vectors S(fi , f j) for any two elements fi , f j ∈ F are homogeneous, too, by con-
struction. Computing the normal form, we only have homogeneous reducers, thus
again, η (S(fi , f j)) is homogeneous. So no inhomogeneous elements are added to
G = {g1 , . . . , gs} during the computations of Std. Moreover, the following impor-
tant equation holds:

deg (τ(gk , g l)) = deg (S(gk , g l)).
If η (S(gk , g l)) ≠ 0 then even the following holds:

deg (τ(gk , g l)) = deg (S(gk , g l)) = deg (η (S(gk , g l))) . (2.2.1)

One of the most common and natural strategies to choose critical pairs is the nor-
mal selection: Select(P) takes all pairs such that the degree of their lowest com-
mon multiple is minimal, removes them from P and adds them to P′. Next P′ is
either ordered by increasing (resp. decreasing) lcm, or by the indices of the elements
generating the pair (i.e. the point, when the pair has been added to P), or just le�
unordered. If the input of Std is homogeneous, with each selection the degree of
elements in P′ increases. �is strategy was de�ned at �rst by Buchberger in [35].

(2) Assuming the normal selection if the input of Std is inhomogeneous, we see some
drawbacks of this method: Equation 2.2.1 does no longer hold, but only the inequal-
ities

deg (τ(gk , g l)) ≥ deg (S(gk , g l)) ≥ deg (η (S(gk , g l))) .
�us the situation d ∶= deg (τ(gk , g l)) > deg (η (S(gk , g l))) is rather possible.
�is implies that the lcm of pairs generated by g′ ∶= η (S (gk , g l)) can be lower
than d. �us selecting the next subset of P, P′ can consist of elements of degree
lower than d. As the drop of the degree during the reduction process of s–vectors
can be rather big, we end up computing lots of elements of lower degree a�er the
computation of elements of higher degree. �is is not really e�cient as explained in
the above discussion. �us to avoid the processing of elements of a degree d before
elements of degree < d are treated, in the inhomogeneous case, one just selects one
element from P at a time, namely the one whose lcm ful�lls the following property:

τ(gk , g l) = min{τ(g i , g j) ∣ (g i , g j) ∈ P}.
Although this increases the likelihood of taking the element of lowest possible de-
gree, it still has a big disadvantage: Assume a lexicographic order in the inhomoge-
neous case. �en Std could compute two elements with the variable x1 eliminated.

48 2 Ways to improve standard basis computations

In this situation the algorithm always processes the pairs generated by these two
elements until a standard basis of the ideal generated by these two elements is com-
puted. Not until this point the other elements are taken into account. �is could have
a really bad impact on the runtime and the memory consumption of the algorithm.

Note that the normal strategy is still much more e�cient than just choosing any
element of P arbitrarily. Grouping pairs of the same degree has a great impact on the
performance of the algorithm.

A commonly used idea to cope with those bad behaving inhomogeneous input is
to homogenize it as explained in Section 1.5. Computing the standard basis G of the
homogenized input1 with the normal strategy is safe and e�cient. In the end, one has
to dehomogenize G and receives a standard basis G′ of the initially inhomogeneous
input. Again, there is a big downside of this approach: G can be a lot larger than G′,
i.e. a lot of overhead / useless data for the original problem is computed.
Another possibility to handle such inhomogeneous input is to compute a standard
basis w.r.t. another order and deduce the basis one searches for from it. A short
overview of corresponding methods is given in Section 2.8.
A solution of this problem using just a di�erent selection strategy is explained next.

(3) �e so–called sugar selection was presented 1991 in [85]. �e main idea is to equip
each critial pair with another degree, the so–called sugar degree which is the degree
the pair would have if we would have homogenized the input in the beginning. �e
crucial point is now to order the pair set P in 3 di�erent steps by the following prop-
erties (in the given order):

a) sugar degree,

b) usual degree (w.r.t. the given order),

c) indices of the generators of the critical pair.

�is enables us to sort the pairs as they would be sorted in the case of a homoge-
nization, but without the drawbacks of the overhead a real homogenization would
raise.

Let us de�ne the sugar degree of a critical pair explicitly as it is also important for
signature–based algorithms computing with inhomogeneous data. We show the close af-
�liation between the sugar degree and the signature of an element in Section 7.1.

De�nition 2.2.1. Let the �nite subset F = { f1 , . . . , fr} of elements fi inM be the input for
Std, let t ∈ P be a term.

(1) �e sugar degree of an initial fi is de�ned by

s-deg(fi) ∶= deg(fi).
(2) For any element g ∈ G generated during the computations of Std and any term

t ∈M we de�ne
s-deg(tg) ∶= deg(t) + s-deg(g).

1Note, only the generators of F are homogenized, we do not homogenize I = ⟨F⟩.

2.3 Buchberger’s criteria 49

(3) Moreover, for any two elements g , h ∈ G we de�ne

s-deg(g + h) ∶= max{s-deg(g), s-deg(h)}.
�e above de�nition ensures that the sugar degree is the corresponding degree of the

computed elements, if we homogenize the input before Std starts its computations.
To end this section, let us state one last, nice fact about homogeneous standard basis

computations:

De�nition 2.2.2. A �nite set G = {g1 , . . . , gs} inM of homogeneous elements g i is called
a d–standard basis if for all i , j ∈ {1, . . . , s} with deg (τ(g i , g j)) ≤ d the corresponding
s–vectors S(g i , g j) have a standard representation w.r.t. G.

Proposition 2.2.3. Let F be a �nite set of homogeneous elements inM, equip Std with the
normal selection strategy. Denote the intermediate standard basis by G, let P′ ⊂ P be the
subset of all pairs of degree d during the computations of Std. At the moment all pairs of P′

are treated, i.e. P′ = ∅, G is a d–standard basis for F.

Proof. By construction, all s–vectors S(g i , g j)with deg (τ(g i , g j)) ≤ d have standard rep-
resentation w.r.t. G.

We postpone the discussion of selecting a “good” reducer to Section 2.6 as this problem
is strongly related to the topics of sections 2.3 – 2.5.

2.3 Buchberger’s criteria

Nextwe discuss themost obvious improvement of Std one can think of: Try to compute
the normal form of as few as possible s–vectors. �e problem is that if we take not enough
of them into account, or the wrong ones, we do not receive a standard basis at the end of
Std’s computations.

Note that we give proofs (or at least sketches of them) for the two criteria stated, al-
though they can be found in any introductory textbook about computer algebra. �e rea-
son for this is again that the reader should be able to compare the classical criteria to the
signature–based ones. It turns out that proving the correctness of signature–based stan-
dard basis algorithms is much harder than for their classical counterparts. �is is due to
the fact that all attempts presented in this chapter are only based on investigating the crit-
ical pairs resp. s–vectors themselves, whereas one has to take care of much more structure
in the signature–based situation.

For an easier notation we restrict ourselves to considering only polynomials in P w.r.t.
a well–order in this section.

�e easiest criterion is Buchberger’s 1st Criterion2 stated by Buchberger in [34]. It de-
pends only on the two elements f and g generating the s–vector S(f , g), but not on any

2Buchberger’s 1st Criterion is also known as Product Criterion.

50 2 Ways to improve standard basis computations

other element in P. �e crucial point is that if lm(f) and lm(g) have nothing in common,
then the normal form of the corresponding s–vector is zero.

Lemma 2.3.1 (Buchberger’s 1st Criterion). Let f , g ∈ P be two elements such that τ(f , g) =
lm(f) lm(g). �en S(f , g) has a standard representation w.r.t. { f , g}.
Proof. If τ(f , g) = lm(f) lm(g), then we get

S(f , g) = lc(g) lm(g) f − lc(f) lm(f)g .
As the leading terms of the two summands cancel each other by construction we get

S(f , g) = lc(g) lm(g) tail(f) − lc(f) lm(f) tail(g).
Now we can compute the normal form of S(f , g) in two steps:

(1) For all terms s i in tail(f) we subtract s i g from S(f , g). In the end we get a �rst
intermediate normal form η′ w.r.t. {g}:

η′ (S(f , g)) = lc(g) lm(g) tail(f) − tail(f)g´¹¹¸¹¹¶
tail(f) tail(g)

− lc(f) lm(f) tail(g)
= tail(g) f .

(2) Clearly, we reduce this to zero by subtracting ti f for all terms ti in tail(g).
All in all we have η (S(f , g)) = 0.

Using Buchberger’s 1st Criterion in Example 1.8.9 would delete the following critical
pairs: (p3 , p2), (p4 , p3), (p5 , p2), (p5 , p4), (p6 , p1), . . . , (p6 , p5).
�us 9 of the 12 s–polynomials which lead to zero are not computed if we use Buchberger’s
1st Criterion in Std when building new critical pairs, i.e. in lines 2 and 9. Checking the
greatest common divisor resp. least common multiple of lm(f) and lm(g) can be done in
much less computational steps than any reduction step in the example. �us this is a big
improvement of Std.

Needless to say, there are still 3 critical pairs le� in our example, which reduce to zero.
In practice, Buchberger’s 1st Criterion is an improvement of Std, but it does not �nd nearly
all useless critical pairs.

�eir detection can be optimized by

(1) improving Buchberger’s 1st Criterion and

(2) adding another criterion to Std.

For Case (1) we can de�ne an easy extension of Lemma 2.3.1:

Corollary 2.3.2 (Extended version of Buchberger’s 1st Criterion). Let f , g ∈ P , m a mono-
mial in Mon(x1 , . . . , xn) such that for all t ∈ supp(f) ∪ supp(g) it holds that m ∣ t. If

τ(f

m
,
g

m
) = lm(f)

m

lm(g)
m

, then S(f , g) has a standard representation w.r.t. { f , g}.

2.3 Buchberger’s criteria 51

Sadly, in Example 1.8.9 this extended version does not detect any other useless critical
pair besides the ones also detected by the one presented in Lemma 2.3.1.

Remark 2.3.3. Note that the extended version of Buchberger’s 1st Criterion does not need
much additional computations compared to the usual one: For any new element f we need
to compute the greatest common divisor of all terms t ∈ supp(f) once. Even assuming
dense3 elements the time needed to compute the gcd is very small compared to a reduction
step when computing, for example, a normal form.

ForCase (2)we use the idea developed in [34,109]: Buchberger stated a second criterion,
and most of the classical standard basis algorithms are based on it.

Lemma 2.3.4 (Buchberger’s 2nd Criterion4). Let f , g , h ∈ P , F a �nite subset ofP . Assume
that

(1) lm(g) ∣ τ(f , h), and
(2) S(f , g) and S(g , h) have a standard representation w.r.t. F. �en S(f , h) has a

standard representation w.r.t. F.

Proof. W.l.o.g. we can assume that lc(f) = lc(g) = lc(h) = 1. As lm(g) ∣ τ(f , h) there
exist monomials m f ,mh in P such that

m f τ(f , g) = τ(f , h) = mhτ(g , h).
�is gives us a rewriting for S(f , h):

S(f , h) = τ(f , h)
lm(f) f −

τ(f , h)
lm(h) h

= m f
τ(f , g)
lm(f) f −m f

τ(f , g)
lm(g) g +mg

τ(g , h)
lm(g) g´¹¹¹¸¹¹¹¶

=0

−mg
τ(g , h)
lm(h) h

= m f S(f , g) −mg S(g , h).
By assumption S(f , g) and S(g , h) have a standard representation w.r.t. F , thus S(f , h)
has a standard representation w.r.t. F , too.

Reconsidering Example 1.8.9 again we could use Buchberger’s 2nd Criterion to see that(p3 , p2) need not be computed: lm(p2) ∣ τ(p3 , p1) and the normal forms of S(p2 , p1) and
S(p3 , p1) are already computed. �us by Lemma 2.3.4 we can securely remove (p3 , p2)
from P.

Remark 2.3.5. Note that the e�ciency (and also the correctness) of Buchberger’s 2nd Cri-
terion depends highly on the order in which the critical pairs are checked. �us its imple-
mentation is not as easy as the one of Buchberger’s 1st Criterion. A very good implemen-
tation of both criteria is given by Gebauer and Möller in [81]. �is is discussed in more
detail in Section 2.4

3We have not de�ned this explicitly until now, just think of elements consisting of lots of terms.
4Buchberger’s 2nd Criterion is also known as Chain Criterion.

52 2 Ways to improve standard basis computations

Let us de�ne some more notations.

Convention.

(1) In the situation of Lemma 2.3.1 we say that (f , g) is detected by Buchberger’s 1st Cri-
terion.

(2) Similarly, in the situation of Lemma2.3.4 we say that (f , h) is detected by Buchberger’s
2nd Criterion.

Using Corollary 2.3.2 and Lemma 2.3.4 we can conclude an improved version of�eo-
rem 1.8.3:

Corollary 2.3.6. Let G = {g1 , . . . , gr} be a subset in P . �en the following are equivalent:

(1) G is a standard basis.

(2) For all i > j ∈ {1, . . . , r} one of the following hold:
a) S(g i , g j) has a standard representation w.r.t. G.

b) S(g i , g j) is detected by Buchberger’s 1st Criterion.

c) S(g i , g j) is detected by Buchberger’s 2nd Criterion.

Also the statement of Corollary 2.3.6 follows easily from the above discussion, imple-
menting it e�ciently is a hard task. Next we discuss a highly optimized implementation of
a standard basis algorithm using Buchberger’s criteria.

2.4 The Gebauer–Möller implementation

In this section we show in detail how the criteria presented in Section 2.3 can be imple-
mented in Std. Whereas Buchberger’s 1st Criterion is no problem, his 2nd Criterion is a
bit harder to integrate in Std. As in the last section, we describe the polynomial situation
w.r.t. a well–order only.

One possible problem is a two–out–of–three deletion: Assume f , g , h ∈ P such that
lm(g) ∣ τ(f , h). If two of the three lowest common multiples involved are equal, e.g.
τ(f , g) = τ(f , h), then one can choose which critical pair to be removed:

(1) Remove (f , h), but compute S(f , g) and S(g , h), or
(2) remove (f , g), but compute S(f , h) and S(g , h).

Both choices are possible, the problem is not to remove both at the same time, (f , h) by
g and then (g , h) by f . One way would be to always check that two of the corresponding
critical pairs have been investigated, before removing the third one. �is generates some

2.4 �e Gebauer–Möller implementation 53

overhead in the algorithm, but ensures the correctness. As we are interested in e�cient
standard basis algorithms, this is not an adequate solution.

In the following we state the so–called Gebauer–Möller implementation of a standard
basis algorithm ([81]). It removes critical pairs as early as possible, doing the criteria checks
in di�erent steps. Tounderstand its correctnessweneed the two following, easy statements:

Lemma 2.4.1. Let f , g , h ∈ F ⊂ P . �en the following are equivalent:

(1) lm(f) ∣ τ(g , h).
(2) τ(f , g) ∣ τ(g , h).
(3) τ(f , h) ∣ τ(g , h).

Proof. (1)⇒ (2) and (2)⇒ (3) are clear. Assuming that τ(f , h) ∣ τ(g , h), there exist mono-
mials λ, λ f ∈ P such that

λτ(f , h) = τ(g , h)
λλ f lm(f) = τ(g , h).

�us (3)⇒ (1).

Corollary 2.4.2. Let f , g , h ∈ F ⊂ P , λg , λh be two monomials inP such that λg > 1, λh > 1
and

λgτ(f , g) = τ(g , h),
λhτ(f , h) = τ(g , h).

�en τ(f , g) ∤ τ(f , h) and τ(f , h) ∤ τ(f , g).
Proof. Assume that τ(f , g) ∣ τ(f , h). �en by Lemma 2.4.1 lm(g) ∣ τ(f , h). Moreover,
τ(g , h) ∣ τ(f , h). �is contradicts the assumption that λh > 1. �e second statement
follows analogously.

�e Gebauer–Möller implementation, presented in the follwing, consists of two sepa-
rate algorithms:

�e only di�erence to Algorithm 5 from Section 2.2 is the usage of another algorithm,
called Update, when new elements are added: In Update the criteria of Section 2.3 are
used to check which pairs should enter the set of critical pairs P.

Let us have a closer look at Algorithm 7. Buchberger’s criteria are checked in 4 steps:

(1) In Line 1 all critical pairs (f , g)not being generated by h are checked byBuchberger’s
2nd Criterion w.r.t. h. But only those pairs are deleted where τ(f , g) ≠ τ(f , h) and
τ(f , g) ≠ τ(g , h). Only in this step elements of Pold can be removed from the set of
critical pairs. Later on only elements including h are checked and possibly deleted.

(2) In Line 5 we search in the set P′ of all critical pairs including h for pairs (f , h), (g , h),
whose least common multiples are multiples of each other: τ(f , h) ∣ τ(g , h). In this
situation we remove the pair (g , h) from P′. Note that by Corollary 2.4.2 for those(f , h), (g , h) the corresponding (f , g) is not deleted in the �rst step.

54 2 Ways to improve standard basis computations

Algorithm 6 Improved standard basis computation w.r.t. < (GM)

Input: F = { f1 , . . . , fr} a subset of P , NF a normal form
Output: G, a standard basis for ⟨F⟩ w.r.t. <
1: G ← f1
2: P ← ∅

3: for (i = 2, . . . , r) do
4: P ← Update(P,G , fi)
5: G ← G ∪ { fi}
6: l ← r
7: while (P ≠ ∅) do
8: P′ ← Select(P)
9: P ← P/P′
10: while (P′ ≠ ∅) do
11: (f , g)← First element of P′

12: P′ ← P′/{(f , g)}
13: h ← S(f , g)
14: h ← NF(h,G)
15: if (h ≠ 0) then
16: f l+1 ← h
17: P ← Update(P,G , f l+1)
18: G ← G ∪ { f l+1}
19: l ← l + 1
20: return G

(3) �e third step is very similar to the second one: In Line 10 we start deleting all those(g , h) from P′ where τ(f , h) = τ(g , h). With the same argument as above, the
corresponding pair (f , g) is not deleted in step 1.

(4) As the last step, we check all remaining pairs in P′ by Buchberger’s 1st Criterion and
delete those detected.

Remark 2.4.3. Note that a crucial point of any implementation of Buchberger’s 1st and 2nd
Criterion is to check the 2nd Criterion �rst, the 1st one later. Why is this so important?
Deleting one useless critical pair from the algorithm the 2nd Criterion needs three pairs,
say (f , g), (f , h) and (g , h). Assume that we have already considered (f , g) and (f , h),
then we can delete (g , h). Now let furthermore τ(f , g) = lm(f) lm(g). �en we can
also remove (f , g) and only need to compute (f , h). Doing this process the other way
around, we check the 1st Criterion �rst, whichmeans that we delete (f , g) before we check
the 2nd Criterion. �us (f , h) and (g , h) are le� and we cannot remove any of them.
�is should illustrate that the Gebauer–Möller implementation is highly e�cient checking
Buchberger’s 1st Criterion as last step in (4).

�is implementation is a very e�cient one: It does not depend on the selection strategy
of the pairs, it does not depend on the order <. Moreover, it checks critical pairs in the mo-
ment they are generated and does not keep them until they are selected; this saves memory

2.5 Normal form computations and their relation to Gaussian elimination 55

Algorithm 7 Updating the set of critical pairs (Update)

Input: Pold a set of critical pairs, G a subset of P , h ∈ F
Output: Pnew a set of critical pairs
1: for all (f , g) ∈ Pold do
2: if (lm(h) ∣ τ(f , g) and τ(f , h) ≠ τ(f , g) and τ(g , h) ≠ τ(f , g)) then
3: Pold ← Pold/{(f , g)}
4: P′ ← {(f , h) ∣ f ∈ G}
5: for all (f , h) ∈ P′ do
6: Fix (f , h) ∈ P′.
7: for all ((g , h) ∈ P′/{(f , h)}) do
8: if (∃λ > 1 s.t. τ(f , h) = λτ(g , h)) then
9: P′ ← P′/{(g , h)}
10: for all (f , h) ∈ P′ do
11: Fix (f , h) ∈ P′.
12: for all ((g , h) ∈ P′/{(f , h)}) do
13: if (τ(f , h) = τ(g , h)) then
14: P′ ← P′/{(g , h)}
15: for all (f , h) ∈ P′ do
16: if (τ(f , h) = lm(f) lm(h)) then
17: P′ ← P′/{(f , h)}
18: Pnew ← Pold ∪ P′

19: return Pnew

and overhead in the computational point of view. Singular’s standard basis algorithm is
based on a highly optimized version of the Gebauer–Möller implementation together with
a lot of computational tricks.

2.5 Normal form computations and their relation

to Gaussian elimination

In this section we show how normal form computations are related to Gaussian elimi-
nations. We give a very short overview of the main ideas as the topic is not in the focus of
this thesis. Nevertheless, every signature–based standard basis algorithm can be equipped
with a so–called F4–ish reduction, thus the importance of the knowledge of the main ideas
should be self–evident.

Note that we explain the main ideas only in terms of ideals resp. polynomials w.r.t. a
well–order onP , to keep this introduction as easy as possible and to not confuse the reader
with overwhelming notations.

56 2 Ways to improve standard basis computations

In the late 1970s Lazard was the �rst who discovered a relationship between the com-
putation of a standard basis and the computation of the resultant of the Sylvester matrix
([114, 116, 150]). In these days elimination theory got some new life and bigger examples
started to be computable.

In these �rst approaches the computation of the resultant was restricted to two polyno-

mials in only 1 variable. Having two polynomials f = ∑k
i=0 a ix

i , g = ∑l
j=0 b jx

j ∈ K[x] the
Sylvester matrix of f and g is de�ned to be

l times

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
k times

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0 . . . ak 0 . . . 0
0 a0 . . . ak 0 . . . 0

⋱

0 . . . 0 a0 . . . ak
b0 . . . b l 0 . . . 0
0 b0 . . . b l 0 . . . 0

⋱

0 . . . 0 b0 . . . b l

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
where k need not be equal to l . If we denote the above matrix by Syl(f , g) we have the
property that gcd(f , g) is not constant if and only if det (Syl(f , g)) = 0. �e main prob-
lems of this method are:

(1) It is only usable in the univariate case.

(2) It is only usable for two polynomials. One can use this method recursively on more
than two polynomials, but then the degree of the generated polynomials increases
exponentially, thus the performance is very bad.

A generalization of the Sylvestermatrix is theMacaulaymatrix, discovered �rst in [120]:
�is solves the above mentioned drawbacks of the Sylvester matrix: It can be used in the
multivariate case and for �nitely many polynomials at the same time. �us solving alge-
braic systems was possible with this construction.

Sadly, this was still not optimal, and Std has a way better performance computing
Gröbner bases to prepare the resolving of systems of algebraic equations. In 1999, Faugère
presented the F4 Algorithm([61]). �e main di�erences to Std are:

(1) F4 does several normal form computations simultaneously.

(2) F4 uses Gaussian elimination to compute the normal forms of s–polynomials.

(3) F4 precomputes all possible reducers for a bunch s–polynomials before any reduc-
tion step takes place.

F4 transforms the polynomial data into rows of matrices. �e reduction process itself is
nothing else but a special Gaussian elimination5 without swapping columns. We present
the pseudo code of F4 in Algorithm 8.

Let us assume F = { f1 , . . . , fr} as input for F4. We want to compute the standard basis
G for ⟨F⟩.
5In the following we always use “Gaussian elimination” as short notation for “Gaussian elimination without
column swaps”.

2.5 Normal form computations and their relation to Gaussian elimination 57

Algorithm 8 Faugère’s F4 Algorithm (F4)

Input: F = { f1 , . . . , fr} a subset of P w.r.t. <
Output: G, a standard basis for ⟨F⟩ w.r.t. <
1: G′ ← ∅, H ← ∅, M ← ∅, P ← ∅

2: G ← f1
3: for (i = 2, . . . , r) do
4: P ← Update(P,G , fi)
5: G ← G ∪ { fi}
6: l ← r
7: while (P ≠ ∅) do
8: P′ ← Select(P)
9: P ← P/P′
10: (H ,M)← SymPre(P′ ,G)
11: G′ ← F4Reduction(H ,M)
12: while (G′ ≠ ∅) do
13: h ← First element of G′

14: P ← Update(P,G , h)
15: G ← G ∪ {h}
16: G′ ← G′/{h}
17: return G

(1) First of all we build critical pairs (fi , f j), precomputing the corresponding multi-
pliers for the s–polynomial construction, i.e. terms ti , t j in P such that ti lt(fi) =
t j lt(f j). Note that using the algorithm Update de�ned in Section 2.4 we can avoid
some useless pairs.

(2) A�er having computed these data we select a bunch of critical pairs P′ out of the
pair set P by some selection strategy. Next the so–called symbolic prepocessing starts
in Line 10. �e pseudo code of this part is given in Algorithm 9.

�ere we need to prepare the data set a bit (Lines 1 – 8): We compute themultiples for
generating the s–polynomials corresponding to the critical pairs (Line 7) and store
the corresponding elements in a setH. Besides this, we store all includedmonomials
in another set called M (Lines 8 and 17). Note that the leading monomials are added
toM at the end of the algorithm: We do not need to search for reducers of λg lm(g)
and λ f lm(f), they reduce each other as they are equal (see also Remark 2.5.1 (3)).
Nevertheless, we need these monomials inM to be able to construct the matrix A as
explained in the following.

In Line 13 we search for reducers in G whose leading monomials divide any mono-
mial of the multiplied generators λ f i ⋅ fi of the critical pairs, which are stored in the
set H (Line 7), or the already found and multiplied reducers tredgred, also stored in
H (Line 15).

In the end we return both, H andM, the sets of all multiplied polynomials necessary
for the reduction (w.r.t. G) of the critical pairs in P′.

58 2 Ways to improve standard basis computations

(3) �is reduction process takes place in an algorithm called F4Reduction: We use the
cardinalities of the sets H and M to de�ne a matrix A ∈ K#(H)×#(M) including all
data necessary. For all i ∈ {1, . . . , #(H)} and j ∈ {1, . . . , #(M)} the entry

A i , j =
⎧⎪⎪⎨⎪⎪⎩
0 if m j ∉m-supp(hi),
lc(tk) if tk ∈ supp(hi) and lm(tk) = m j .

We can think of A as the matrix consisting of the coe�cients of all polynomials inH,
whereas each row corresponds to a polynomial in H and each column corresponds
to a monomial in M.

At that point the normal form computations of the s–polynomials corresponding to
the critical pairs in P′ are nothing else but the Gaussian elimination of A without
column swapping. �is means that we compute the row echelon form of A.

In Lines 10 – 15 of Algorithm 10 we retransform the rows of A′ to polynomials. From
the standard basis point of view we are only interested in those rows resp. polyno-
mials g i s.t. lm(g i) ∉ L(G).

(4) In the end, back in Algorithm 8, we generate new critical pairs, again using Buch-
berger’s criteria to �nd useless ones, and start again selecting a new bunch of critical
pairs in Line 8.

Remark 2.5.1.

(1) Algorithm 8 is not the basic F4 Algorithm presented in [61]: �e basic version of
F4 does not include the algorithm Update to detect useless pairs. Neither is Al-
gorithm 8 equivalent to the improved F4 from [61]: �is improved version includes
another optimization, the algorithm Simplify, which tries to choose better reducers.
�e discussion of this is postponed to the next section.

(2) Again note that in F4Reduction we are not allowed to swap columns when pro-
cessing the Gaussian elimination for A. �is would change the monomial order (the
monomials labelling the columns would not be in decreasing order w.r.t. < any-
more).

(3) Also note that we only need to search for reducers of the monomials in m-supp(f −
lm(f)) resp. m-supp (g − lm(g)) in SymPre due to the fact that the leading mono-
mials are equal, λ f lm(f) = λg lm(g). �us the corresponding leading coe�cients
are in one column. It follows that they reduce themselves and no further reducer
must be searched in G. �is is similar to the usual normal form computation: We
�rst build the s–polynomial. By this, the leading terms already cancel out each other,
and we search for reducers of the terms le� in S(f , g).
A similar argument holds for the intermediate added reducers in Line 16 of Algo-
rithm 9. Of course, these leading monomials need to be added to M to determine
the number of columns of A correctly in F4Reduction (Line 17 in Algorithm 9).

�e following theorem is proven in [61]:

2.5 Normal form computations and their relation to Gaussian elimination 59

Algorithm 9 Symbolic preprocessing of possible reducers (SymPre)

Input: P a set of critical pairs, G a set of reducers
Output: H a set of polynomials, M a set of monomials
1: H ← ∅, M ← ∅, D ← ∅

2: while (P ≠ ∅) do
3: (f , g)← First element of P
4: P ← P/{(f , g)}
5: λ f ←

τ(f ,g)
lm(f)

6: λg ←
τ(f ,g)
lm(g)

7: H ← H ∪ {lc(g)λ f f , lc(f)λg g}
8: M ← M ∪{λ fm f ∣ m f ∈ m-supp(f − lt(f))}∪{λgmg ∣ mg ∈ m-supp(g − lt(g))}
9: while (M ≠ ∅) do
10: Choose m ∈ M
11: M ← M/{m}
12: D ← D ∪ {m}
13: if (∃h ∈ G s.t. lm(h) ∣ m) then
14: λh ←

m
lm(h)

15: H ← H ∪ {λhh}
16: M ← M ∪ {λhmh ∣ mh ∈m-supp(h − lt(h))}
17: M ← D ∪ {lm(h) ∣ h ∈ H}
18: Sort M w.r.t. <, decreasing leading monomials.
19: return (H ,M)

�eorem 2.5.2. Let F ⊂ P be the input of F4. �en F4 is an algorithm computing a standard
basis G of ⟨F⟩ w.r.t. <.

Let us investigate the main di�erences between Std resp. GM and F4 a bit more closely:

(1) If we select only one critical pair at a time in Line 8 in Algorithm 8, F4 behaves
very similar to GM: It reduces one s–polynomial, possibly adds new data to P and
G, and then goes on to the next critical pair. �e di�erence lies in the symbolic
preprocessing: On the one hand, F4 searches for reducers and starts the reduction
process (Gaussian elimination) a�er all possible reducers have been found. GM, on
the other hand, searches for a reducer, and if one is found, the reduction immediately
takes place. �en the next reducer is searched for, and so on.
F4 needs to precompute all reducers �rst, since otherwise one would not know the
size of the matrix A. Other than that, it is a nice distinction between the di�erent
steps of the inner loop of a standard basis algorithm:

a) Generate critical pairs.

b) Search for reducers.

c) Reduce all preprocessed data.

60 2 Ways to improve standard basis computations

Algorithm 10 Reduction process in F4 (F4Reduction)

Input: G andH = {h1 , . . . , hr} sets of polynomials, M = {m1 , . . . ,ms} a set of monomials
Output: G′ a set of polynomials
1: F ′ ← ∅

2: A← 0r×s
3: for (i = 1, . . . , r) do
4: for (j = 1, . . . , s) do
5: if (lm(hi) = m j) then
6: A i , j ← lc(hi)
7: hi ← hi − lt(hi)
8: H ← ∅, M ← ∅

9: A′ ← Gauss(A)
10: for (i = 1, . . . , r) do
11: g i ← 0
12: for (j = 1, . . . , s) do
13: if (A i , j ≠ 0) then
14: g i ← g i + A i , jm j

15: F ′ ← F ′ ∪ {g i}
16: G′ ← {g i ∈ F ′ ∣ lm(g i) ∉ L(G)}
17: return G′

(2) �e real idea is not to select only one pair, but to get a subset P′ of P including
several elements and to precompute the whole reducer data beforehand, doing only
one Gaussian elimination for all these elements.

Of course, one needs to be careful with the size of P′: If P′ is too big the resulting
coe�cient matrix A could be too large to be computed, possibly even to be stored on
a computer. One needs to �nd a good choice which pairs should be taken. A more
detailed discussion on this is given in Section 2.2. �e best selection strategies for a
wide range of examples are the normal selection and the sugar selection.

Let us give a small example of how F4 works, using the normal selection strategy:

Example 2.5.3. Let F = { f1 , f2} ⊂ K[x , y, z]where
f1 = xy − z2

f2 = y2 − z2 .

We equipK[x , y, z]with the graded reverse lexicographical order<dp . Clearly,G = {g1 , g2}
where g i = fi for i ∈ {1, 2}. We generate the only possible critical pair and add it to P:

P ∶= {(g2 , g1)}.
Clearly, P′ = P and we enter the symbolic preprocessing: We �rst compute the multipliers

2.5 Normal form computations and their relation to Gaussian elimination 61

of g1 and g2, and generate the sets H and M:

λg1 g1 = yg1 = xy
2 − yz2

λg2 g2 = xg2 = xy
2 − xz2

⇒ H ∶ = {xy2 − xz2 , xy2 − yz2}
M ∶ = {xy2 , xz2 , yz2}.

Note that no reducer is found in G for xz2 as well as yz2, thus we compute the matrix A:

xy2 xz2 yz2

A1 ∶= (1 −1 0
1 0 −1

) xg2
yg1

Computing the row echelon form A′1 of A1 we get a new polynomial g3 for G:

xy2 xz2 yz2

A′1 ∶= (1 −1 0
0 1 −1

) xg2
yg1 − xg2

Retransforming the two rows we get the set F ′ consisting of

g′1 = xy
2 − xz2

g′2 = xz
2 − yz2

We see that lm(g′1) ∈ L(G), whereas lm(g′2) ∉ L(G). �us renaming g3 ∶= g′2 we get
G′ = {g3}. Only one new critical pair is generated, (g3 , g1), as τ(g3 , g2) = lm(g3) lm(g2)
and thus the pair (g3 , g2) is detected being useless by Buchberger’s 1st Criterion.
Again we have only one element in P′ = {(g3 , g1)}. Computing as in the �rst iteration we
get

λg1 g1 = z
2g1 = xyz2 − z4

λg3 g3 = yg3 = xyz
2 − y2z2

⇒ H ∶ = {xyz2 − y2z2 , xyz2 − z4}
M ∶ = {xyz2, y2z2 , z4}.

�is time there exists a reducer, namely g2, since lm(g2) = y2 ∣ y2z2. �is means that we
add z2g2 to H and the monomial part of z2(g2 − lt(g2)) = −z4 to M. At this point no
further reducers are found, thus we start again with F4Reduction:

xyz2 y2z2 z4

A2 ∶=
⎛⎜⎝

1 −1 0
1 0 −1
0 1 −1

⎞⎟⎠
yg3
z2g1
z2g2

xyz2 y2z2 z4

⇒ A′2 ∶=
⎛⎜⎝

1 −1 0
0 1 −1
0 0 0

⎞⎟⎠
yg3
z2g1 − yg3
z2g2 − (z2g1 − yg3)

62 2 Ways to improve standard basis computations

We see that none of the retransformed polynomials has a leading monomial not already in
L(G). So, no new critical pairs are generated, P = ∅ and F4 terminates. We have computed
the standard resp. Gröbner basis

G = {xy − z2 , y2 − z2 , xz2 − yz2}.
Remark 2.5.4.

(1) �e F4 Algorithm is implemented in several computer algebra systems: �e initial
implementation is done in Faugère’s Fgb package. �is package can be used in the
Maple system ([127]), too. Moreover, there exists a very e�cient implementation
of F4 by Allan Steel for Magma ([29]). Besides these low–level implementations
various high–level implementations in interpreted languages are available, one of
the most recent ones by Daniel Cabarcas ([36]).

(2) One of the most important advantages of F4 these days is the natural way of paral-
lelizing the Gaussian elimination. In [69] Faugère and Lacharte present a strategy
how to parallelize the matrix operations in polynomial rings over �nite �elds, e.g.
grouping the matrix into di�erent blocks, using di�erent attempts for sparse, semi–
sparse, and dense blocks6 , etc. For an 8–core architecture they achieve a speed–up
between 6–8 in big examples like Katsura-13 in characteristic 65,521.
Of course, one can also parallelize polynomial arithmetic, as shown in [128,129,156].
To achieve a good parallelization, this means a nearly linear one, in terms of the vast
majority of polynomial storage structures is much harder than to achieve a similar
result in F4.

In Section 5.1 we discuss signature–based criteria. We can easily change the algorithm
Update in Algorithm 8 to achieve a combination of signature–based standard basis al-
gorithms and linear algebra reduction processes. Moreover, the order of the rows in the
matrix A has a strong connection to the signatures attached to the polynomials.

Let us �nish the discussion of the basic ideas of F4 by giving a transition to the next
section: Although F4 already has an advantage over GMby using linear algebra to compute
normal forms of s–polynomials, the real enhancement can be found in the selection of the
best possible reducer in F4. �is is done using the algorithm Simplify. �e selection of
reducers is a very important topic, it is not only used in F4, but it can be applied to GM
and other variants of Std, too. It has a big impact on the performance of the algorithms,
not only considering timings, but also focussing on memory usage.

6Again just a sloppy note: �e sparsity of a block B of a matrix A is de�ned by the di�erence of the number of
elements in B and the number of zero entries in B.

2.6 Picking a good reducer 63

2.6 Picking a good reducer

In Section 2.5 we have seen how to use linear algebra to reduce several s–polynomials at
the same time using matrices. When starting the retransformation step in F4Reduction
we only use those g′ whose leading monomials are not already in L(G) for further com-
putations (see Line 16 in Algorithm 10). All the other computations which are done during
the Gaussian elimination of A are not used in any further step for the computation of the
standard basis, thus those steps are in some sense useless. �e topic of this chapter is to
give an overview of ideas how to prevent algorithms from useless computations.

�is timewedonot try to delete those useless computations beforehand, but try tomake
them useful for furhter reduction steps. Again, we restrict ourselves to the polynomial
situation w.r.t. a well–order on P .

Let us see how one can reuse already reduced elements, and how to choose a “good”
reducer. We introduce this topic using F4, but one easily sees that this is a general problem
of standard basis algorithms. �ere exist lots of papers on this topic, we restrict ourselves
to the ideas given by Faugère in [61], and as a follow–up by Brickenstein in [30, 31]. �is
restriction is justi�ed by the fact that the above methods are known to be applicable for the
most part to signature–based standard basis algorithms.

Let us start with a closer look at F4’s reduction process (Algorithm 10):

(1) We start storing all critical pairs and all possible reducers in the coe�cient matrix
A.

(2) Next we compute the row echelon form A′ of A.

(3) At the end we investigate all retransformed polynomials from F ′:

a) If lm(h) ∉ L(G) we use g in the following.

b) If lm(h′) ∈ L(G) we do not use g′ any more.

Step (3)b is the problematic one: h′ is some, possibly reduced, multiple of an element g i ∈
G = {g1 , . . . , gs}, i.e.

h′ =
s

∑
i=1

ui g i , where lm(h′) = lm(uk0) lm(gk0) for some k0 ∈ {1, . . . , s}. (2.6.1)

It is very probable that in an upcoming reduction, i.e. Gaussian elimination, lm(h′) is
needed to reduce. �en F4 would add the multiple lm(uk0)gk0 in Algorithm SymPre to
the set of reducers. But what happens next? SymPre adds all monomials of the product
lm(uk0) (gk0 − lt(gk0)) to the set M (Line 16). �us in the following also for these mono-
mials appropriate reducers are searched for. Most of these reducers will be the very same
as those already in the representation of h′ given in 2.6.1. �is means that we redo lots of
reduction steps we have already done in the Gaussian elimination, from whose resulting
matrix A′ the polynomial h′ was extracted.

�us using h′ as reducer instead of lm(uk0)gk0 saves us from doing stu� twice! More-
over, we only need to add the new reducers of h′ which are possibly available at this time

64 2 Ways to improve standard basis computations

of the algorithm. All the other reducers are not added to H and thus not to A. �is means
that we have two very important optimizations:

(1) We re–use already known reductions, thus as few as possible reduction steps are
done all in all. Moreover, reductions with the same reducers are preveneted as much
as possible from taking place multiple times during the computations of F4.

(2) Another big advantage is the fact that we construct and store a much smaller matrix
A in the following. Each new reducer added to H adds a new row to A. Using h′

instead of lm(uk0)gk0 and all its reducers g i means that we add only 1 line instead
of several ones. Moreover, it is possible that h′ is sparser than gk0 , which means
that it includes less monomials than lm(uk0)gk0 . �us even more #(M) does not
increase as much using h′ as it would otherwise. �is leads to less reducer searching
in SymPre and less columns in A.

�is idea of reusing as much as possible already done reduction steps is included in the
improved version of F47. Wemark the changes fromF4 to the improved F4 in Algorithms 11
– 13 in the pseudo code; Algorithm 14 is completely new.

Weneed to add somemore bookkeeping elements to the algorithms enabling F4 to keep
track of those elements in Algorithm 10 which are in F ′/G′. We need to store these in a set
B and check them for being possibly better reducers in the following steps. �e structure
of B can be characterized as follows:

(1) #(B) = #(G), this means that for every element g ∈ G there exists a corresponding
element Bg ∈ B.

(2) Every Bg itself is a set containing tuples of the type (mg , pg), wheremg is amonomial
inP , pg a polynomial. In general for an element g ∈ G wede�ne themap φg ∶ P → P

by

φg(mg) = ⎧⎪⎪⎨⎪⎪⎩
pg if (mg , pg) ∈ Bg ,

0 else.

(3) For every such element (mg , pg) the following holds:
a) mg g was considered in some previous Gaussian elimination as input row of A.

b) mg g reduced to pg where mg lm(g) = lm(pg).
�us, whenever the Gaussian elimination in Algorithm 13 has been �nished we check all
elements g i ∈ P (retransformed from A′) whether their leading terms are already in L(G)
or not. Based on this they are either added to G′ (Line 17) or the multiplier mg =

lm(g i)
lm(g)

is

computed and the tuple (mg , g i) is added to Bg , where lm(g) ∣ lm(g i) (Line 20).
We see that, besides storing information of previously done reductions in the set B,

the algorithm Simplify is called in SymPre. �is is the main optimization, described in
Algorithm 14.

7In the following chapters we always consider the improved version of F4. �us we keep the already introduced
notation for all algorithms being part of F4.

2.6 Picking a good reducer 65

Algorithm 11 Improved F4 Algorithm (F4)

Input: F = { f1 , . . . , fr} a subset of P w.r.t. <
Output: G, a standard basis for ⟨F⟩ w.r.t. <
1: B ← ∅, G′ ← ∅, H ← ∅, M ← ∅, P ← ∅

2: G ← f1
3: for (i = 2, . . . , r) do
4: P ← Update(P,G , fi)
5: G ← G ∪ { fi}
6: l ← r
7: while (P ≠ ∅) do
8: P′ ← Select(P)
9: P ← P/P′
10: (H ,M)← SymPre(P′ ,G , B)
11: (G′, B)← F4Reduction(H ,M , B)
12: while (G′ ≠ ∅) do
13: h ← First element of G′

14: P ← Update(P,G , h)
15: G ← G ∪ {h}
16: G′ ← G′/{h}
17: return G

Let us explain the important steps of Simplify: It receives three arguments, namely a
monomial m, a polynomial f and the set B. m and f have been selected by SymPre to
be added to the list of elements which build the coe�cient matrix A in F4Reduction. At
this point we do not add m ⋅ f to H and all monomials in m(f − lt(f)) to M, but we
search for possibly further reduced elements corresponding to m ⋅ f (Lines 7, 8, and 17 in
Algorithm 12).

So, how does this search works? It just implements our ideas from this section’s intro-
duction: We search for all possible divisors u of m and check if φ f (u) ≠ 0, i.e. the tuple(u, p) ∈ B f , where p = φ f (u) (Line 4). If this is the case we replace m resp. f by m

u
resp. p

(Line 6). �is process goes on recursively until no new replacement can be done8 .

Besides the clear improvement of

(1) doing less reductions multiple times,

(2) using possible reducers with sparser tails, and

(3) having smaller matrices A

we also need to understand the drawbacks of the improved version of F4:

(1) Sometimes the replacement of a reducer is not sparser at all. �us lots of checks in
SymPre have to be done and the column size of A does not strictly decrease.

8Of course, this is not an e�cient way to implement it. �e description focusses on the explanation of the idea.

66 2 Ways to improve standard basis computations

Algorithm 12 Improved Symbolic preprocessing of possible reducers (SymPre)

Input: P a set of critical pairs, G a set of reducers, B a set of sets of polynomal tuples
Output: H a set of polynomials, M a set of monomials
1: H ← ∅, M ← ∅, D ← ∅

2: while (P ≠ ∅) do
3: (f , g)← First element of P
4: P ← P/{(f , g)}
5: λ f ←

τ(f ,g)
lm(f)

6: λg ←
τ(f ,g)
lm(g)

7: f ′ ← Simplify(λ f , f , B)
8: g′ ← Simplify(λg , g , B)
9: H ← H ∪ {lc(g) f ′, lc(f)g′}
10: M ← M∪{m f ′ ∣ m f ′ ∈m-supp(f ′ − lt(f ′))}∪{mg′ ∣ mg′ ∈m-supp(g′ − lt(g′))}
11: while (M ≠ ∅) do
12: Choose m ∈ M
13: M ← M/{m}
14: D ← D ∪ {m}
15: if (∃h ∈ G s.t. lm(h) ∣ m) then
16: λh ←

m
lm(h)

17: h′ ← Simplify(λh , h, B)
18: H ← H ∪ {h′}
19: M ← D ∪ {mh′ ∣ mh′ ∈m-supp(h′ − lt(h′))}
20: M ← M ∪ {lm(h′) ∣ h′ ∈ H}
21: Sort M w.r.t. <, elements decreasing.
22: return (H ,M)
(2) Even though the matrices A are mostly of a smaller size, the memory consumption

of the algorithm can increase: Now we need to store all the data of the old matrices
in B.�ere is a lot of data in B that is possibly never used during the computations of
F4. �is can even result in the incomputability of examples due tomemory over�ow,
whereas these examples can be worked out by the basic F4 Algorithm.

(3) Sometimes the replacement chosen by Simplify is not the best one (w.r.t. sparsity,
coe�cient growth, etc.). �e problem is that the improved F4 Algorithm is not able
to dynamically choose another reducer depending on the actual data it is just com-
puting.

In [30, 31] Brickenstein discovered some improved version of the selection method,
which reducers to be used, during a deeper inspection of F4. His ideas are implemented as
the algorithm SlimGB in Singular ([49]) and PolyBoRi ([32]).
�e intention is to checkmore properties, or di�erent properties being related to the actual
problem (characteristic of the underlying �eld, sparsity of polynomials, degree, etc.), of the
possible reducers to decide which one is the best. Let us describe SlimGB in more detail,

2.6 Picking a good reducer 67

Algorithm 13 Reduction process in the improved F4 (F4Reduction)

Input: G andH = {h1 , . . . , hr} sets of polynomials, M = {m1 , . . . ,ms} a set ofmonomials,
B a set of sets of polynomial tuples

Output: G′ a set of polynomials, B a set of sets of polynomial tuples
1: F ′ ← ∅, K ← ∅

2: A← 0r×s
3: for (i = 1, . . . , r) do
4: for (j = 1, . . . , s) do
5: if (lm(hi) = m j) then
6: A i , j ← lc(hi)
7: hi ← hi − lt(hi)
8: H ← ∅, M ← ∅

9: A′ ← Gauss(A)
10: for (i = 1, . . . , r) do
11: g i ← 0
12: for (j = 1, . . . , s) do
13: if (A i , j ≠ 0) then
14: g i ← g i + A i , jm j

15: F ′ ← F ′ ∪ {g i}
16: if (lm(g i) ∉ L(G)) then
17: G′ ← G′ ∪ {g i}
18: else

19: mg ←
lm(g i)
lm(g)

where g ∈ G
20: Bg ← Bg ∪ {mg , g i}
21: return (G′ , B)
giving its pseudo code and explaining the replacement strategies of polynomials.

Remark 2.6.1. We use the pseudo code of F4 as basis for SlimGB. On the one hand, this is
due to the fact that SlimGB also reduces multiple s–polynomials at the same time. On the
other hand, SlimGB does not use linear algebra for the reduction, but an updated version
of the normal form algorithms presented in Section 1.7. We give the pseudo code of this
variant, called SlimNF based on the code of GNF. Of course, one can use the ideas given
here also updating GNFred or LNF, but for the purpose of this section we want to keep no-
tation as easy as possible and focus on the choice of polynomials in the normal form. Again
we highlight the lines which are newly inserted or updated w.r.t. the Algorithm 11. SlimNF
itself is completely new based on the fact that we do not only reduce several polynomials
at the same time, but also check for replacements.

We see the main change in SlimGB starting in Line 11: Besides using Algorithm 16
for the normal form computations of the set H of selected s–polynomials, it returns two
di�erent values:

(1) A set G′ of polynomials reduced w.r.t. G: �ose elements generate new critical pairs
and are added to G a�erwards.

68 2 Ways to improve standard basis computations

Algorithm 14 Simplifying the reduction process in F4 (Simplify)

Input: m a monomial in P , f a polynomial in P , B a set of sets of polynomial tuples
Output: h a polynomial in P
1: D ← {divisors of m}
2: while (u ∈ D) do
3: D ← D/{u}
4: if φ f (u) ≠ 0 then
5: if (u ≠ m) then
6: return Simplify (m

u
, φ f (u), B)

7: else
8: return φ f (u)
9: return m ⋅ f

(2) A set E of polynomial tuples for exchanging polynomials by better ones found during
the computations of SlimNF: For all these tuples (h, p) it holds that h ∈ G ∪ R and
lm(h) ∣ lm(p). Two di�erent situations can happen:

a) If deg(h) = deg(p), then lm(h) = lm(p). �is means that we exchange the
element h ∈ G∪R, since p has better properties than h (Line 16 of Algorithm 15).

b) If deg(h) < deg(p), then we add p to the list of reducers R (Line 18 of Algo-
rithm 15).

Remark 2.6.2.

(1) �e set R is only used for reduction purposes in SlimNF, we do not build any new
critical pairs with an element from R. For any r ∈ R there exists a g ∈ G such that

λ = lm(r)
lm(g)

. Assuming the situation of reducing an element h in SlimNF such that

lm(h) = λ lm(g) one should try to use r as a reducer instead of λg.

(2) Again, note that the presented pseudo code does not focus on e�ciency, but on ed-
ucational aspects. Of course, the way r is chosen in Line 5 of Algorithm 16 should be
implemented in the vein of Algorithm 14.

�e threemain di�erences between the ideas of the improved version of F4 and SlimGB
are:

(1) Not only the already computed s–polynomials are checked for replacements, even
the generators of the corresponding critical pairs are replaced. In later steps, critical
pairs generated by new polynomials use the replaced element, not the old one. �is
sometimes leads to a better performance of the algorithm.

(2) Algorithm 17, used in Line 1 of SlimNF, does not just compare r and h depending
on when they are computed, but on more properties, even �tted to the requirements
of the given input the standard basis should be computed of. See Example 2.6.3 for
more details.

2.6 Picking a good reducer 69

Algorithm 15 SlimGB Algorithm computing a standard basis w.r.t. < (SlimGB)
Input: F = { f1 , . . . , fr} a subset of P w.r.t. <
Output: G a standard basis for ⟨F⟩ w.r.t. <
1: E ← ∅, G′ ← ∅, P ← ∅, R ← ∅

2: G ← f1
3: for (i = 2, . . . , r) do
4: P ← Update(P,G , fi)
5: G ← G ∪ { fi}
6: l ← r
7: while (P ≠ ∅) do
8: P′ ← Select(P)
9: P ← P/P′
10: H ← {S(f , g) ∣ (f , g) ∈ P′}
11: (G′, E)← SlimNF(H ,G , R)
12: while (E ≠ ∅) do
13: (h, p)← First element of E
14: E ← E/{(h, p)}
15: if (deg(h) = deg(p)) then
16: h ← p
17: else
18: R ← R ∪ {p}
19: while (G′ ≠ ∅) do
20: h ← First element of G′

21: P ← Update(P,G , h)
22: G ← G ∪ {h}
23: G′ ← G′/{h}
24: return G

(3) Moreover, SlimGB only stores new reducers, if they are really better and necessary.
F4 on the contrary stores all data not having new leading monomials. �us a huge
amount of memory has to be allocated, whereas only a small part of it is really useful.

As we see in Algorithm 17 the whole check whether to replace an element resp. to add a
new reducer depends on the comparison of some property of the polynomials. �is prop-
erty can be determined problem–oriented. Let us give some possible and useful examples.

Example 2.6.3. Assume the polynomial p ∈ P . �e following properties can be of interest
when computing standard bases:

(1) Length strategy: Property(p) = #(supp(p)),
(2) Coe�cient–length strategy: Property(p) = lc(p) ⋅ #(supp(p)),
(3) Elimination strategy:

Property(p) = ∑
m∈m-supp(p)

(1 +max{deg(m) − deg (lm(p)), 0}) .

70 2 Ways to improve standard basis computations

Algorithm 16 Normal form w.r.t. G of SlimGB (SlimNF)

Input: H ⊂ P a �nite sequence, G ⊂ P a �nite sequence, R ⊂ P a �nite sequence
Output: G′ ⊂ P a �nite sequence, E a set of polynomial tuples
1: E ← ∅, G′ ← ∅

2: while (H ≠ ∅) do
3: h ← First element of H
4: while (h ≠ 0 and Dh ← {r ∈ G ∪ R ∪H ∣ lm(r) ∣ lm(h)} ≠ ∅) do
5: Choose any r ∈ Dh.
6: if (r ∈ G ∪ R and Replace?(r, h)) then
7: E ← E ∪ {(r, h)}
8: h ← h −

lt(h)
lt(r)

r

9: if (h ≠ 0) then
10: G′ ← G′ ∪ {h}
11: return (G′, E)
Algorithm 17 Replacement check for SlimGB (Replace?)

Input: f , g polynomials in P
Output: TRUE if a replacement should happen, FALSE otherwise

1: if (Property(f) > Property (lt(f)
lt(g)

g)) then
2: return TRUE
3: return FALSE

(4) Coe�cient–elimination strategy:

Property(p) = lc(p) ⋅ ∑
m∈m-supp(p)

(1 +max{deg(m) − deg (lm(p)), 0}) .
Of course, other strategies are possible, but these are useful for awide range of examples,

for example, the Coe�cient–length strategy gives a huge speed–up for computations over
function �elds and the Elimination strategy improves computations w.r.t. lexicographical
orders up to a factor of 1000 compared to the usage of the Length–strategy.

Let us give a last example, which tries to convince the reader, that the replacement of
polynomials in SlimGB really is advanced to the usage of Simplify in F4.

Example 2.6.4. Let us give a short comparison on the behaviour of the two replacement
strategies presented in this section: Assume the point of the computations at which we
want to reduce an element h. We see that lm(h) = λ1λ2 lm(gk) for somemonomials λ1 , λ2
and a possible reducer gk . In F4, it could be possible that Simplify changes λ1λ2gk to λ1g l ,
where lm(g l) = λ2 lm(gk), although g l is not sparser or better reduced than λ2gk . On
top of that, there can exist a much better element gm with lm(gm) = λ1 lm(gk), which is
blocked by g l . �is situation is nearly impossible to achieve in SlimGB, whereas it is rather
possible in F4.

Remark 2.6.5.

2.7 Using the Hilbert–Poincaré series 71

(1) Of course, one can combine both attempts of optimizing polynomial data in the
reduction process. �is should be done to get highly optimized standard basis algo-
rithms. In the end, the level of optimization mostly depends on the input data, i.e.
the ideal, the order, etc. Based on this one has to decide which is the best strategy
to be used and which reducers are replaced. As the behaviour of a standard basis
computation is highly not predictable, heuristics must be implemented.

(2) One must be aware that the check and possible storage of a new element in Line 1 in
SlimNF together with the whole bookkeeping done in the lines 12 – 18 in SlimGB
produces an overhead in memory and timings. Based on the input, this can lead to a
decline instead of an improvement. �us a good heuristic is needed to decide, when
to use which replacement and how strong the criteria for choosing the right reducer
should be.

One last note on optimizing the choice of a possible reducer in the case of using LNF:
In Algorithm 3 the ecart is used to ensure termination of the normal form computations,
even if ≺ is a local order. In [92] it is mentioned that using a weighted ecart to choose the
next reducer can speed up the computations for some good choice of the weight. As this
section is restricted to the polynomial case, we also give the following de�nition in this
setting. It should be clear how to generalize the de�nition to the more arbitrary situation
of modules.

De�nition 2.6.6. Let w ∈ (R+)nwhere m ≤ n. Let p = ∑α cαx
α ∈ P be a polynomial.

(1) We de�ne the weighted degree of p w.r.t. w by

degw(p) ∶= max{ n

∑
i=1

wi ⋅ αi ∣ cα ≠ 0} .
(2) Moreover, we de�ne the weighted ecart of p w.r.t. w by

ecartw(p) ∶= degw(p) − degw (lm(p)).
�is �nishes our discussion of improving the usage of reducers during a standard basis

computation. �e research in this �eld is of high importance for signature–based standard
basis algorithms, since we see in Chapter 5 that there the freedom of choice is restricted.

2.7 Using theHilbert–Poincaré series

In this section we present the idea of how to use the Hilbert polynomial to improve
standard basis computations. In Section 1.6 we have introduced the notions of the Hilbert–
Poincaré series and shown its connection to the Hilbert polynomial. Here we discuss the

72 2 Ways to improve standard basis computations

so–called Hilbert–driven standard basis algorithm, which was presented �rst by Traverso
in [154]. Note that the ideas discussed in Sections 2.8 and 2.9 are also in�uenced by the
Hilbert–Poincaré series. All of these attempts have in common that one needs to know the
Hilbert–Poincaré series beforehand to take advantage of it in an upcoming computation.
For example, some work of how to achieve it can be found in [20–22].

Again, we restrict ourselves to the situation of computing a standard basis for an ideal
I in P .

In some special situations, we even know the Hilbert–Poincaré series without any fur-
ther computations:

�eorem 2.7.1. Let < be an order on P , I ⊂ P a homogeneous ideal. �en

HPP/I(t) = HPP/L(I)(t).
Proof. See for example Section 5.2 in [97].

Using the above theorem one can conclude the following nice statement.

Corollary 2.7.2. Let I ∈ P be an ideal, let < a global order, and let G = {g1 , . . . , gs} ⊂ I.
�en the following properties for the corresponding Hilbert functions hold:

(1) HP/L(I)(d) ≤ HP/L(G)(d) for all d.
(2) IfHP/L(I)(d) = HP/L(G)(d) for all d, then G is a Gröbner basis for I.

Proof.

(1) �is follows from the fact that L(G) ⊂ L(I).
(2) Having L(G) ⊂ L(I) the equality of the Hilbert functions follows from the equality

of the leading ideals, i.e. L(G) = L(I). But this is just the de�nition of G being a
Gröbner basis for I.

Corollary 2.7.3. Let <1 and <2 be two global orders on P , I ⊂ P an ideal.

(1) If I is homogeneous, then HP/L<1 (I)(d) = HP/I(d) = HP/L<2(I)(d) for all d.
(2) If I is inhomogeneous, then HP/L<1 (I)(d) = HP/I(d) −HP/I(d − 1) = HP/L<2(I)(d)

for all d.

Proof. See for example [154].

Another very nice corollary from [154] gives us the possibility to use theHilbert–Poincaré
series even for improving the computations of Gröbner bases for inhomogenous input ide-
als. Whenever we have already computed a Gröbner basis G1 for I for an order <1, we can
compute a Gröbner basis G2 for I w.r.t. <2 without caring for any degree drop during the
computations.

2.7 Using the Hilbert–Poincaré series 73

Corollary 2.7.4. Let I ⊂ P be an ideal, <1 and <2 global orders onP , and let G1 be a Gröbner
basis for I w.r.t. <1. Starting the computation of a Gröbner basis G2 for I w.r.t. <2 with G1 as
input, we can use the following variant of a standard basis algorithm:

(1) Consider critical pairs by increasing degree.

(2) During a reduction step: Whenever the degree is decreased, the reduced element can
be deleted and the next pair can be computed.

�is is useful, considering that the computation of a Gröbner basis w.r.t. <1 could be
much easier than the computation w.r.t. <2 . �us using the easier computation as basis
for the harder computation enables us to improve the hard computation by applying the
variant described in Corollary 2.7.4.

Remark 2.7.5. �e usage of the equality of the Hilbert function in di�erent global orders is a
narrowed variant of the basic ideas behind the improvements of standard basis algorithms
presented in Section 2.8: Compute the standard basis w.r.t. to an easier order and try to
transform it into a standard basis w.r.t. the requested order without doing the complete
standard basis computation again. �is is just a combination of corollaries 2.7.3 and 2.7.4.

Using the notations from Section 1.6 we can present the crucial statement from [154].

�eorem2.7.6. Let I and J be two homogeneous ideals inP such that J ⊂ I. By�eorem 1.6.4
there exist polynomials p(t) = ∑v

i=0 pi t
i , q(t) = ∑w

j=0 q j t
j such that the corresponding

Hilbert–Poincaré series are

HSP/I(t) = p(t)(1 − t)n and HSP/J(t) = q(t)(1 − t)n .
�en the following conditions are equivalent:

(1) HP/I(t) = HP/J(t) for all 1 ≤ t ≤ d − 1 andHP/I(d) < HP/J(d).
(2) p(i) = q(i) for 1 ≤ i ≤ d − 1 and p(d) < q(d).

De�nition 2.7.7.

(1) �e height of a prime ideal Q in P is de�ned by

ht(Q) = sup{length(C) ∣ C are chains of prime ideals contained in Q}.
(2) �e height of an ideal I in P is de�ned by

ht(I) = inf{ht(Q) ∣ Q ⊃ I ,Q prime}.
(3) Let I = ⟨ f1 , . . . , fr⟩ in P such that r ≤ n and all fi are homogeneous of degree d i . If

the ideal has height r, then the so–called vanishing set

V(I) = {a ∈ Kn ∣ fi(a) = 0 for all i}
of I is called a complete intersection.

74 2 Ways to improve standard basis computations

(4) Let (p1 , . . . , pr) be a squence in P , F a �nitely generated module inM. We say that
the sequence (p1 , . . . , pr) is regular (forM) if for each 1 ≤ i ≤ r it holds that

pi is not a zerodivisor in F/⟨p1 , . . . , pi−1⟩F .
Example 2.7.8. Geometrically one can think of a complete intersection in the following
way: Let I = ⟨ f1 , . . . , fr⟩ be an homogeneous ideal in P . V(I) ∶= {a ∈ Pn−1 ∣ fi(a) =
0 for all 1 ≤ i ≤ r} where Pn−1 denotes the (n − 1)–dimensional projective space. Similarly
one can de�ne V(fi) ∶= {a ∈ Pn−1 ∣ fi(a) = 0} for all 1 ≤ i ≤ r. Now we say that V(I) is
a complete intersection if and only if V(I) = ∩r

i=1V(fi). �us the intersection of all those
hypersurfaces V(fi) in Pn−1 contains V(I) and nothing else.

Remark 2.7.9. In [60] it is shown that if V(I) is a complete intersection for I = ⟨ f1 , . . . , fr⟩,
then (f1 , . . . , fr) is a regular sequence. We see in the following chapters that signature–
based standard basis algorithms are in a strong connection to regular sequences. Further-
more, if the input of such an algorithm is a regular sequence, it is ensured that no zero
reduction takes place.

�e nice property of a complete intersection V(I) is that we know the corresponding
Hilbert–Poincaré series of I without the need of computing a standard basis for I before-
hand:

Lemma2.7.10. If V(I) is a complete intersection for I = ⟨ f1 , . . . , fr⟩where fi is homogeneous
of degree deg(fi) = d i for all 1 ≤ i ≤ r, then the Hilbert–Poincaré series is

HSP/I(t) = ∏r
i=1(1 − td i)(1 − t)n .

Next we describe theHilbert–driven standard basis algorithm. Using�eorem 2.7.6 one
can improve standard basis computations. For this, we give the pseudo code based on the
one of the Gebauer–Möller implementation (see Section 2.4): It is restricted to homoge-
neous input with the ideas presented here incorporated. �ose new parts of Algorithm 18
are again highlighted.

Let <1 be an order on P , and let I be the ideal we want to compute the standard basis
for. Assume furthermore that we already know the Hilbert function HP/I(t). �is could
be achieved by

(1) a previous Gröbner basis computation for I w.r.t. some other global order <2 ,

(2) the fact that I corresponds to a complete intersection (see Lemma 2.7.10), or

(3) the fact that I = ⟨ f1 , . . . , fr⟩, where r ≤ n. �en we can use the Hilbert–Poincaré

series HSP/I(t) = ∏r
i=1(1−t

d i)

(1−t)n
as an upper bound9 .

9If at some degree step in the Gröbner basis computation the bound does not hold any longer, the Gröbner basis
computation goes on without any additional checks of the Hilbert function.

2.7 Using the Hilbert–Poincaré series 75

Algorithm 18 Hilbert–driven variant of GM w.r.t. a global order < (HGM)

Input: F = { f1 , . . . , fr} a subset of P of homogeneous elements, NF a normal form,
H(t) ∶= HP/⟨F⟩(t) the Hilbert function of ⟨F⟩

Output: G a standard basis for ⟨F⟩ w.r.t. <
1: k ∶=∞
2: G ← f1
3: P ← ∅

4: d′ ← 0
5: for (i = 2, . . . , r) do
6: P ← Update(P,G , fi)
7: G ← G ∪ { fi}
8: l ← r
9: while (P ≠ ∅) do
10: d ← min{d ∣ d = deg (S(f , g)), (f , g) ∈ P}
11: P′ ← {(f , g) ∈ P ∣ deg (S(f , g)) = d′}
12: P ← P/P′
13: while (P′ ≠ ∅ and k > 0) do
14: (f , g)← First element of P′

15: P′ ← P′/{(f , g)}
16: h ← S(f , g)
17: h ← NF(h,G)
18: if (h ≠ 0) then
19: f l+1 ← h
20: P ← Update(P,G , f l+1)
21: G ← G ∪ { f l+1}
22: l ← l + 1
23: k ← k − 1
24: if (HP/L(G)(t) = H(t) for all t) then
25: return G
26: else

27: d′ ← min{t ∈ N ∣ HP/L(G)(t) > H(t)}
28: k ← HP/L(G)(d′) −H(d′)
29: P′′ ← {(f , g) ∈ P ∣ deg (S(f , g)) < d′}
30: P ← P/P′′
31: return G

Let us denote H(t) = HP/I(t) the known Hilbert function of I. In the following situa-
tions one can use the information stored in HSP/I(t).
(1) If I is homogeneous and <1 is a global order on P , then we can assume that we

compute the Gröbner basis G for I by increasing degree (see Section 2.2). �us, let
us assume that we have already computed an intermediate Gröbner basis G, a d–
Gröbner basis for I for some degree d ≥ 0. At this point we compute the Hilbert

76 2 Ways to improve standard basis computations

function HP/L(G)(t). It holds that
HP/L(G)(t) = H(t) for all t ≤ d .

Furthermore, we have the correspondence that

HP/L(G)(t) = H(t) +mt for all t,mt ≥ 0.

In the pseudo code the variable k is equivalent to mt . In the beginning it is set to
in�nity as we do not have any information about G (Line 1). A�er the �rst degree
step of reductions is done, the Hilbert function HP/L(G)(t) is computed and k is
possibly adjusted (Line 28).

a) If mt = 0 for all t, then G is a Gröbner basis for I (Line 25).

b) Otherwise we know from �eorem 2.7.6 that there exists some d′ > d such
that mt = 0 for all t < d′ and md′ ≠ 0. �is means that in order to become
a d′–Gröbner basis for I G needs md′ more elements in degree d′. �us we
know that exactly md′ critical pairs are useful. If we have added md′ elements
of degree d′ to G, we can stop treating any more critical pairs of degree d′. In
Algorithm 18, k is checked whenever a new critical pair is treated for reduction
purpose from P′ (Line 13). As long as k > 0 the computations go on, otherwise
enough critical pairs of degree d′ are found and we can �nish this degree step
reduction.
A�er adding those md′ elements to G we recompute HP/L(G)(t) and go on
with the next higher degree.

(2) If I is inhomogeneous and <1 is a global order on P , we cannot really use the ideas
presented in Situation (1). If one has already computed a Gröbner basis G2 of I w.r.t.
another global order <2 on P , then the ideas of Corollary 2.7.4 can be used.
Another idea would be to homogenize the generators of I, compute the Gröbner
basis Ghof the homogenized input according to Situation (1), and dehomogenize Gh

in the end in order to receive the requested Gröbner basis (Gh)deh.
(3) If I is inhomogeneous and <1 is a local order on P , one can again homogenize the

generators of I and go on as in Situation (2). Other ideas, again using the Hilbert–
Poincaré series, can be found in Chapter 5 of [154].

Remark 2.7.11.

(1) Note that in Situation (1)b from above the improvements highly depends on the or-
der, in which the critical pairs are computed: If the �rst critical pairs are the useful
ones, the optimization is best. If those are at the end of the list of pairs to be reduced
we still compute the zero reductions of the useless pairs investigated before them.

(2) One can think of the Hilbert–driven standard basis algorithm in the homogeneous
case as a wrapper around any standard basis algorithm we already know: We select
a bunch of critical pairs of lowest degree, compute all the normal forms of their cor-
responding s–polynomials as usual. A�erwards we compare the Hilbert functions.
From this we get to know how many new elements of the next degree step we need
to compute.

2.8 Going the indirect way 77

Using the presented ideas to switch from the computations over the rationals to com-
putations over �elds of �nite characteristic p is postponed to Section 2.9. �ere we give an
in–depth introduction to that topic.

2.8 Going the indirect way

In Section 2.7 we have seen that sometimes it has some bene�ts to compute a standard
basis G2 w.r.t. an order <2 di�erent from the one the origin problem is based on, say <1 .
�ere we have used the Hilbert function to improve the computations w.r.t. the initial
order. Moreover, we have seen in Corollary 2.7.4 that for computing G1 w.r.t. <1 starting
from G2 we can leave out some steps of the standard basis algorithm.

Moreover, recall the crucial di�erences in the complexity of the algorithms when com-
puting w.r.t. lexicographical order resp. graded reverse lexicographical order we have seen
in Section 1.9.

In this section we present more general attempts of this idea: In [133, 143] the notion
of a Gröbner fan is introduced. All algorithms discussed here have one base frame: �ey
compute a Gröbner basis G1 w.r.t. a given order <1 by computing a Gröbner basis G2 w.r.t.
another order <2 �rst and transform G2 to G1.

Remark 2.8.1. We have noted in Section 1.8 that for some orders the computation of a stan-
dard basis can be done much faster and easier than for others. On the one hand, the order
<dp is much better for standard basis computation than <lp . On the other hand, a standard
basis w.r.t. <lp can be used way better in further applications than the one computed w.r.t.
<dp. �us the usage of the following algorithms is quite clear: We want to compute a stan-
dard basis w.r.t. an order for which the computation itself is pretty hard. Instead of going
the direct way, we calculate the basis w.r.t. a much easier order and then transforming the
result to a basis w.r.t. the requested order.

�us the transformation at the end should not cost too much, otherwise the bene�t of
the computation w.r.t. the better order is lost.

Convention. Although there are attempts de�ning Gröbner fans for modules ([13]), we
just want to explain the basic ideas behind the presented algorithms, which can be done
much easier in the polynomial case with a well–order on P , thus we restrict ourselves to
this situation.

In [38] Caboara introduced a �rst attempt changing the examined order dynamically
during ongoing Gröbner basis computations. We state the pseudo code of this algorithm
based on the Gebauer–Möller implementation, called DGM, which stands for dynamic
Gebauer–Möller implementation.

We see that Caboara’s idea is plainly to dynamically adjust the order w.r.t. which the
normal form of the next considered s–polynomial is computed. �is adjustment is done in
the very beginning (Line 1) and a�er each addition of a new element to G (Line 20). Both

78 2 Ways to improve standard basis computations

Algorithm 19 Dynamic variant of GM w.r.t. a global order < (DGM)

Input: F = { f1 , . . . , fr} a subset of P of homogeneous elements, NF a normal form,
H(t) ∶= HP/⟨F⟩(t) the Hilbert function of ⟨F⟩

Output: G a standard basis for ⟨F⟩ w.r.t. σ0
1: σ ← InitialOrder(f1 , . . . , fr)
2: G ← f1
3: P ← ∅

4: for (i = 2, . . . , r) do
5: P ← Update(P,G , fi)
6: G ← G ∪ { fi}
7: l ← r
8: while (P ≠ ∅) do
9: P′ ← Select(P)
10: P ← P/P′
11: while (P′ ≠ ∅) do
12: (f , g)← First element of P′

13: P′ ← P′/{(f , g)}
14: h ← S(f , g)
15: h ← NF(h,G)
16: if (h ≠ 0) then
17: f l+1 ← h
18: P ← Update(P,G , f l+1)
19: G ← G ∪ { f l+1}
20: σ ← NewOrder(σ ,G)
21: l ← l + 1
22: G ← Reduce(G , σ0)
23: return G

of these algorithms, InitialOrder and NewOrder, try to keep the expected values of the
Hilbert function HP/Lσ(G)(t) as small as possible. Let us discuss this for a moment:

Let I ∶= ⟨F⟩. It always hold thatHP/Lσ(G)(t) ≥ HP/I(t). So the idea is to keep the values
of HP/Lσ(G)(t) as low as possible by choosing a good order σ . �us for an input order
σ for InitialOrder resp. NewOrder a new order, say τ, is returned, with the relation
Lτ(G) = Lσ(G). For the idea of keeping the Hilbert function minimal we note two things:

(1) What is meant byminimal? One can think of minimal in terms of lexicographically
minimal when considering HP/Lσ(G)(t) as a function. Another way would be to
think about the Hilbert polynomial, demanding it to have minimal degree.
Caboara suggests amix of these possibilities using heuristics, but is not giving a clear
implementation of that.

(2) Note that whenever we change σ , not only HP/Lσ(G)(t) changes, but clearly also
HP/I(t) changes. �us the behaviour of algorithmNewOrder selecting σ to always
minimize HP/Lσ(G)(t) in the above mentioned sense is not predictable, and can be

2.8 Going the indirect way 79

even worse than the behaviour of the basic Gebauer–Möller algorithm.

Considering the second remark above, one needs to �nd a good heuristic for the choice
of σ . With the presented one we could at least hope for a better detection of useless critical
pairs by Update, which should lead to less zero reductions.

In the end, we compute the reduced Gröbner basis G w.r.t. σ0. As all changes between
di�erent orders σ used during the computations preserve the leading ideal, it is enough to
just reduce all elements g ∈ G w.r.t. G/{g}, throw awaymultiples and normalize all leading
coe�cients. �is is done in Reduce in Line 22. With this the Gröbner basis computation
of G w.r.t. σ0 �nishes.

Asmentioned, DGM’s performance does highly depend on the choice of the next order,
whose impact on the subsequent computations cannot be predicted besides some, rather
naive, heuristics on the Hilbert function. A much more generalized variant of Gröbner
basis computations using di�erent orders is presented in the so–called Gröbner walk, �rst
mentioned in [44]. For this we need some more notation, largely of plain combinatorial
character:

De�nition 2.8.2.

(1) Let V ∶= {v1 , . . . , vr} ⊂ Rn be a �nite set of vectors. �e set

C(V) ∶= { r

∑
i=1

a iv i ∣ a i ∈ R+, v i ∈ V}
is called a (convex polyhedral) cone in Rn .

(2) �e dimension dim(C) of a cone C is the dimension of the linear space C spans.

(3) �e dual of a cone C is de�ned by

Č ∶= {w ∈ Rn ∣ ⟨w, v⟩ ≥ 0, for all v ∈ C}
where ⟨⋅, ⋅⟩ denotes the dual pairing.

(4) A face τ of a cone C is de�ned by

τ ∶= {v ∈ C ∣ ⟨u, v⟩ = 0}
for some u ∈ Č. A face τ of C with dimension dim(τ) = dim(C) − 1 is called facet.

(5) A fan ∆ is a �nite collection of (convex polyhedral) cones such that the following
properties hold:

a) If C ∈ ∆ and τ is a face of C, then τ ∈ ∆.

b) If C1 ,C2 ∈ ∆, then C1 ∩ C2 is a face of C1 and of C2.

80 2 Ways to improve standard basis computations

C1

C3

C2

τ0

τ2

τ3

τ1

Č2

Č1

Č3

τ̌2,2

τ̌1,2

τ̌1,1 τ̌3,1

τ̌2,1

τ̌3,2

Figure 2.8.1: An example of fans, cones and faces

Example 2.8.3. We give an easy example in R2. Let v1 = (10), v2 = (01), and v3 = (−1−1),
illustrated in Figure 2.8.1. We have the fan ∆ consisting of the cones C1, C2, and C3, where

C1 ∶= {av1 + bv2 ∣ a, b ∈ R+},
C2 ∶= {av2 + bv3 ∣ a, b ∈ R+},
C3 ∶= {av1 + bv3 ∣ a, b ∈ R+}.

Moreover, we have the following faces:

τ0 ∶= {0⃗},
τ1 ∶= {av1 ∣ a ∈ R+},
τ2 ∶= {av2 ∣ a ∈ R+},
τ3 ∶= {av3 ∣ a ∈ R+}.

Clearly, the faces τ1, τ2 resp. τ3 are facets of the corresponding cones C1, C2 resp. C3

including them, whereas dim(τ0) = dim(C i)− 2 for i ∈ {1, 2, 3}. However, treating τ0 as a
face of the other τ i it is a facet of each τ i .

On the right side of the picture we see the dual structures. Having the vectors w1 = (10) ,

2.8 Going the indirect way 81

w2 = (01) , w3 = (11) , w4 = (−10) , w5 = (0−1) , and w6 = (1−1) we see that
Č1 ∶= {aw1 + bw2 ∣ a, b ∈ R+},
Č2 ∶= {aw3 + bw4 ∣ a, b ∈ R+},
Č3 ∶= {aw5 + bw6 ∣ a, b ∈ R+},
τ̌1,1 ∶= {aw5 ∣ a ∈ R+},
τ̌1,2 ∶= {aw2 ∣ a ∈ R+},
τ̌2,1 ∶= {aw1 ∣ a ∈ R+},
τ̌2,2 ∶= {aw4 ∣ a ∈ R+},
τ̌3,1 ∶= {aw6 ∣ a ∈ R+},
τ̌3,2 ∶= {aw3 ∣ a ∈ R+}.

All in all, we can build the corresponding dual faces for τ1, τ2, and τ3, and get

τ̌1 ∶= τ̌1,1 ∪ τ̌1,2 ,

τ̌2 ∶= τ̌2,1 ∪ τ̌2,2 ,

τ̌3 ∶= τ̌3,1 ∪ τ̌3,2 .

Proposition 2.8.4. �e following statements hold:

(1) Any face is a convex polyhedral cone.

(2) Any intersection of faces is a face.

(3) Any face of a face is a face.

(4) Any proper face is contained in a facet.

�ere is a wide range of good literature covering these structures, namely in the �eld
of toric geometry, for example, see [75, 145, 147]. We refer to these for the reader interested
in more details about those geometric structures and focus on our purpose of improving
Gröbner basis computations using the above de�nitions.

De�nition 2.8.5. Let v ,w ∈ Rn , < a well–order on P , p = ∑α cαx
α a polynomial in P and

F = { f1 , . . . , fr} ⊂ P �nite.

(1) �e initial monomial of p w.r.t. v is de�ned by inv(p) = max{degv(xα) ∣ cα ≠ 0}.
(2) p is called v–homogeneous if p = inv(p).
(3) �e initial ideal of F is given by inv(F) ∶= ⟨ inv(f1), . . . , inv(fr)⟩.
(4) vw ∶= {(1 − λ)v + λw} denotes the line segment between v and w.

82 2 Ways to improve standard basis computations

(5) �e order (v , <) on P de�ned by

xα(v , <)xβ ∶⇐⇒degv(xα) <nat degv(xβ) or
degv(xα) =nat degv(xβ) and xα < xβ

is a re�nement of v by <. (v , <) re�nes v in the sense that whenever degv(xα) <
degv(xβ), then xα(v , <)xβ .

Remark 2.8.6.

(1) Note that a v–homogeneous polynomial p is homogeneous for v = (1, . . . , 1).
(2) �ere is a strong connection between L<(F) and inv(F) as we have already noted a

strong connection between vectors inRn resp. matrices in GL(n,R) and monomial
orders in Lemma 1.3.9. Note that whereas every element in L<(F) is amonomial this
need not be true for the elements in inv(F). For example, let F = {z4 − xy + 1} ∈
K[x , y, z,] and v = (2, 2, 1), then inv(F) = ⟨z4 − xy⟩.

With this we are able to de�ne the cones resp. fans we are interested in.

De�nition 2.8.7. Let < be a well–order on P , F = { f1 , . . . , fr} ⊂ P �nite, I = ⟨F⟩, and let
G = {g1 , . . . , gs} ⊂ P be the reduced Gröbner basis for I w.r.t. <.

(1) For F we de�ne the cone

C<(F) ∶= {w ∈ (R+)n ∣ L<(inw(f)) = L<(f) for all f ∈ F}.
�e Gröbner cone of G w.r.t. < is de�ned by C<(G).

(2) �eGröbner fan is the fan ∆G consisting of a collection of C<(F)where < runs over
all well–orders on P .

Remark 2.8.8. Note that there are only �nitely many well–orders not equivalent to each
other, see [133]. �us the above de�nition of a Gröbner fan is well–de�ned.

�e following lemma enables us to do a walk in the Gröbner fan without losing previ-
ously computed data.

Lemma 2.8.9. Let I be an ideal in P .

(1) Let <1 , <2 be two well–orders on P , G<1 the reduced Gröbner basis for I w.r.t. <1. �en
C<1(I) = C<2(I) if and only if lm<1(g) = lm<2(g) for all g ∈ G<1 .

(2) Let u, v ∈ Rn such that the well–order < re�nes v. �en there exists a w ∈ uv such that
uw ⊆ C(v ,<)(I).

In particular, Statement (2) of Lemma 2.8.9 enables us to walk around in the di�erent
cones of the Gröbner fan ∆G , and in the special situation ofw being on a facet of two cones,
we can move into an adjacent cone.

2.8 Going the indirect way 83

Lemma 2.8.10. Let <1 , <2 be two di�erent well–orders on P , let I = ⟨ f1 , . . . , fr⟩ be an ideal
in P , and let w ∈ Rn such that w ∈ C<1(I) ∩ C<2(I). �en inw(I) is not a monomial ideal.

Proof. On the one hand, there must exist at least one generator fi of I such that lm<1(fi) ≠
lm<2(fi). On the other hand, lm<1 (inw(fi)) = lm<1(fi) as well as lm<2 (inw(fi)) =
lm<2(fi). It follows that inw(fi)must consist of at least two monomials, namely lm<1(fi)
and lm<2(fi).
Convention. In the following rStd denotes any of the Gröbner basis algorithms we have
already discovered with the condition that it returns the unique, reduced Gröbner basis at
the end.

Algorithm 20 Gröbner walk to compute a reduced Gröbner basis (GBWalk)

Input: G<1 = {g1 , . . . , gr} a reduced Gröbner basis (for some ideal I) w.r.t. <1, u ∈ C<1(I)
current weight vector, v ∈ C<2(I)

Output: G<2 a reduced Gröbner basis (for the ideal I) w.r.t. <2
1: Compute λ0 ∈ R such that (1 − λ0)u + λ0v ∈ C<1(I) ∩ C<2(I).
2: w ← (1 − λ0)u + λ0v
3: Re�ne w by <2 ⇒ (w, <2)
4: Mw ← rStd (inw(G<1), (w, <2)) such that m j = ∑r

i=1 hi j inw(g i) for all m j ∈ Mw

5: p j ← ∑
r
i=1 hi j g i such that inw(p j) = m j for all j

6: G′ ← {p1 , . . . , p#(Mw)}
7: G(w ,<2) ← Reduce (G′, (w, <2))
8: Convert G(w ,<2) to a reduced Gröbner basis G<2 .
9: return G<2

We assume that we have already computed a reduced Gröbner basis G<1 for some ideal
I w.r.t. <1. �us we have a weight vector u ∈ C<1(I) given and want to enter the adjacent
cone C<2(I).�ere we have a weight vector v, already precomputed. Doing this we need to
cross the border of the two cones: We compute a weight vector w ∈ C<1(I)∩C<2(I)which
is in both cones, as illustrated in Figure 2.8.2. It follows by Lemma 2.8.10 that inw(G<1)
is not a monomial ideal. At this point we compute the reduced Gröbner basis Mw for
inw(G<1) w.r.t. (w, <2) in Line 4. Note that all elements in inw(G<1) are w–homogeneous,
thus all generated s–polynomials and all computed normal forms are so, too. �us we �nd
w–homogeneous elements hi j which ful�ll that

m j =
r

∑
i=1

hi j inw(g i) for all m j ∈ Mw .

A�er that we can easily get a Gröbner basis for I w.r.t. (w, <2) out of Mw by replacing all
inw(g i) by g i (Line 5). �is has to be reduced to G(w ,<2) and then further transformed to
receive the reduced Gröbner basis G<2 for I w.r.t. <2.

Remark 2.8.11.

84 2 Ways to improve standard basis computations

C<1(I)
C<2(I)

w
v

u

Figure 2.8.2: Crossing the border of two Gröbner cones

(1) �e crucial point of GBWalk is the Gröbner basis computation for inw(G<1) in
Line 4: �e assumption is that inw(G<1) surely is not a monomial ideal, but quite
near to it, this means that most of the generators should have very few monomials.
�us the computation of Mw should be quite fast and lightweight. If this is not the
case, then we have a bottleneck. �e idea is that if one choosesw rather generic, then
it is quite possible that we get a “good” initial ideal inw(G<1). �ere are attempts im-
proving this step by Fukuda et al. ([73]). Other improvements of dynamic Gröbner
basis algorithms are ongoing, see, for example, [89].

(2) Note that Algorithm 20 is just a part of the computations that have to be done for
computing the requested, reduced Gröbner basis with a Gröbner walk algorithm.
We just present how to come from one cone C<1(I) to the adjacent cone C<2(I). In
a real computation, one has to make several crossings, depending on the starting
order <1 and the target order <2 . As this is the most di�cult part of the algorithm
and the other Gröbner basis computations before and a�er the crossing are clear, we
focus on this.

(3) Moreover, Figures 2.8.1 and 2.8.2 should be understood as the easiest possible geo-
metric interpretation of the problem. In general, having more than two variables in
your polynomial ring the search for a good path from one order to another can be
quite hard. As this not in the focus of this thesis, we remain with the presentation
of the basic idea and keep the problems being not directly linked to Gröbner basis
computations out of our way.

(4) In [107] Kalkbrener shows that for the conversion of a Gröbner basis G<1 to an adja-
cent (w.r.t. the Gröbner fan) Gröbner basis G<2 the maximal degree of elements in
G<2 is bounded by

D(G<2) < 2 ⋅ D(G<1)2 + (n + 1) ⋅ D(G<1).

2.8 Going the indirect way 85

�is is a huge improvement to the possible doubly–exponential growth of degree
when transforming between two non–adjacent Gröbner bases.

(5) A complete so�ware package dealing with Gröbner cones and Göbner fans is Gfan
by Anders Jensen ([105]). �e area of fans and cones also has a strong connection
to toric and tropical geometry, for example, they are used for the computation of
tropical varieties ([27]).

Another method for computing a Gröbner basis G<1 for an ideal I w.r.t. a well–order
<1 and transform it to a Gröbner basis G<2 for the same ideal w.r.t. a well–order <2 is the
FGLM Algorithm by Faugère, Gianni, Lazard and Mora ([67]). Instead of the attempt of
GBWalk, FGLM does not need to pass each adjacent cone C<(I), but it gives us a direct
transformation of G<1 to G<2 , regardless whether C<1(I) ∩ C<2(I) = ∅ or not.

�e main idea of FGLM is to de�ne 3 di�erent sets w.r.t. a leading ideal L(I):
De�nition 2.8.12. Let I be an ideal I in P . �en we can de�ne the following sets:

(1) N(I) ∶= {m ∈Mon(x1 , . . . , xn) ∣ m ∉ L(I)}, the set of all monomials, which are not
reducible by L(I).

(2) E(I) ∶= {m ∈ L(I) ∣ for all xi such that xi ∣ m, m
x i
∉ L(I)}, the set of edges of L(I).

(3) S(I) ∶= {m ∈ L(I) ∣ ∃xi , x j such that xi ∣ m, x j ∣ m, m
x i
∉ L(I), m

x j
∈ L(I)}, the set

of sides of L(I).
(4) �e disjoint union B(I) = E(I) ∪̇ S(I) is called the boundary of L(I).
Having a Gröbner basis G for I, the sets N(I), E(I) and S(I) can be computed easily.

Let us give an example for this.

Example 2.8.13. Assume the ideal I = ⟨x2 y2 − x2 , x4 − y3⟩ ⊂ K[x , y]. A Gröbner basis for
I w.r.t. <dp is

G = {x2y2 − x2 , x4 − y3 , y5 − x4}.
�en we can illustrate N(G), E(G), and S(G) easily in Figure 2.8.13.

Remark 2.8.14. �e nice fact is that N(G) ∩ E(G) ∩ S(G) = ∅ and any monomial m ∈
Mon(x1 , . . . , xn), which is not a proper10 mulitple of an element of L(G), is in exactly one
of those three sets. In the following we also talk about elements outside these three sets,
thus we introduce the following notation:

O(G) ∶=Mon(x1 , . . . , xn)/(N(G)∪ E(G) ∪ S(G)).
�e idea of FGLM is to compute the three sets N , E, and S to receive the corresponding

reduced Gröbner basis.

Proposition 2.8.15. Let I be an ideal in P , G a Gröbner basis for I w.r.t. <. If G is reduced,
then ⟨E(G)⟩ = L(G).
10In the sense that m

x i
∉ L(G) for all variables xi .

86 2 Ways to improve standard basis computations

N(G) = { }
E(G) = { }
S(G) = { }

y

x

Figure 2.8.3:�e classi�cation of K[x , y] by N , E and S

Proof. �is is clear by the de�nition of E(G).
For the algorithm presented in the following it is of great importance that the sets N(G)

and E(G) are �nite. �is has consequences on the ideals, for which the reduced Gröbner
basis can be computed by FGLM.

De�nition 2.8.16. Let I be an ideal in P . We say that I is zero–dimensional if and only if
the vector space dimension dimK(P/I) <∞.

Proposition 2.8.17. Let I = ⟨ f1 , . . . , fr⟩ be an ideal generated by polynomials in P . �e
following statements are equivalent:

(1) I is zero–dimensional.

(2) #({a ∈ Cn ∣ fi(a) = 0 for 1 ≤ i ≤ r}) <∞.

(3) For each i ∈ {1, . . . , n} there exists an element k i ∈ N/{0} such that xk i
i ∈ L(I).

(4) dimK(P/I) = #(N(G)) for a Gröbner basis G for I w.r.t. <.

Proof. For example, see�eorem 15 of [159].

Proposition 2.8.17 states one big drawback of FGLM, whose pseudo code is presented
in Algorithm 21: Since FGLM is constructing the sets N and E successively its termination
is based on the fact that #(N) <∞. �us it follows that the basic version of the algorithm
presented in [67] (and also given in Algorithm 21) can only be applied to zero–dimensional
ideals.

Let us describe the functioning of FGLM: Assume an already computed Gröbner basis
G<1 for an ideal I w.r.t. <1. Now we switch all computations to be done w.r.t. the desired
order <2 . We begin to check all possible monomials m ∈ Mon(x1 , . . . , xn). If m ∣ m′ and

2.8 Going the indirect way 87

m ≠ m′ for some m′ ∈ E(G<2), then m > m′ and m ∈ S(G<2) ∪ O(G<2). �ose m are not
interesting for us (Line 4). �us, in Line 5, we can decide whether they are part of N(G<2)
or E(G<2). Whenever we �nd an element for E(G<2) we also compute the corresponding
polynomial h, which ful�lls lm(h) = m, and add h to G<2 . A�er adding all multiples xim
to M, we choose the minimal element of M w.r.t. <2 for the next iteration round. In the
end, G<2 is the reduced Gröbner basis for I w.r.t. <2 , and E(G<2) = L<2(I).

Let us have a closer look at how we decide whether m is in N(G<2) or E(G<2): How do
we know where to put m by just checking the linear independency in Line 5?

Assume there exist such constants cλ such that not all cλ = 0 and

NFred(m,G<1) + ∑
λ∈N

cλ NFred(p,G<1) = 0. (2.8.1)

Clearly, h = m +∑λ∈N cλλ is an element of I, thus in this situation we also know that
there exists an element g ∈ G<1 with lm(g) ∣ lm(h), this means that lm(h) ∈ L(I). As we
compute the monomials m by increasing order, lm(h) = m and m is added to the set E,
which is equal to L(I), when FGLM terminates. On the other hand, if Equation 2.8.1 holds
only if cλ = 0 for all λ ∈ N , then clearly m ∉ L(I) and thus m is added to N .

Algorithm 21 Gröbner basis conversion algorithm (FGLM)

Input: G<1 a Gröbner basis for an ideal I in P w.r.t. <1
Output: G<2 the reduced Gröbner basis for I in P w.r.t. <2
1: G<2 ← ∅, E ← ∅, N ← ∅, M ← ∅

2: M ← M ∪ {1}
3: while M ≠ ∅ do

4: if (∄m′ ∈ E such that m′ ∣ m and m′ < m) then
5: if (∃cλ ∈ K ∶ NFred(m,G<1) + ∑λ∈N cλ NFred(λ,G<1) = 0 and not all cλ = 0)

then
6: h ← m +∑λ∈N cλλ
7: G<2 ← G<2 ∪ {h}
8: E ← E ∪ {m}
9: else

10: N ← N ∪ {m}
11: M ← M ∪ {xim ∣ 1 ≤ i ≤ n}
12: m ← min<2{m′ ∈ M}
13: return G<2

All in all, any monomial neither in E nor in N is a proper multiple of an element of E.
�us,

(1) the normal form of an element w.r.t. G<2 is a linear combination of elements of N ;

(2) the normal form of an element from ⟨G<1⟩ is zero.
It follows that G<2 is a Gröbner basis for I w.r.t. <2 . Since no multiple of elements of E

are considered, it is even the corresponding, reduced Gröbner basis.

88 2 Ways to improve standard basis computations

Besides the above discussion, we do not give a proof of correctness and termination of
FGLM as this is not in focus of this thesis and can be found in [67]. From the pseudo code
presented it should be clear that termination strongly depends on the fact that N is a �nite
set. As mentioned before, this restricts the class of considered ideals to zero–dimensional
ones.

�e transformation process presented in Algorithm 21 is pretty fast, which means that
computing a Gröbner basis for I in a “good” well–order <1 and then using FGLM can be
much faster and less memory consuming than a direct computation of the Gröbner basis
w.r.t. <2.

Some last remarks on FGLM and its impact on the �eld of computer algebra in the last
years.

Remark 2.8.18.

(1) In [67] it is shown that due to the low complexity of the conversion algorithm FGLM
the complexity of the computation of a Gröbner basis w.r.t. <lp can be lowered from

dO(n
3) to dO(n

2).

(2) In [159] Wichmann generalized the FGLM Algorithm to be useable also if the ideals
are not zero–dimensional. For this he uses Hilbert functions to determine various
bounds for the computation. �e problem with this attempt is that one needs to
check the Buchberger Criterion (�eorem 1.8.3) manually to get a criterion for ter-
mination. It is clear that this testing leads to awayworse performance than the initial
FGLM Algorithm.

(3) In [67] they did not just present the above algorithm, but showed how to reduce
the check of linear dependency of polynomials to just linear algebra with vector and
matrix computation. Another improvement, which can be understood as an impact
for the ideas incorporated in F4 by Faugère (see Section 2.5).

(4) Recently, Faugère and Mou presented new ideas for order–changing Gröbner basis
algorithms (again restricted to the zero–dimenstional case) with sparse multiplica-
tion matrices in [70].

With this we �nish our discussion on order–changing, dynamic, and indirect Gröbner
basis algorithms. We have seen that using these attempts one has to deal with the drawback
of some restrictions (well–order, zero–dimensional ideals), but one can get a performance–
improved way of computing Gröbner bases, where these restrictions are ful�lled anyway.
Which approach to be used is highly depending on the initial data, using these techniques
without good heuristics can lead to bad results, hence they should be used with care.

2.9 Modular standard basis computations

Coe�cient growthduring the computation of standard bases over a �eld of characteristic

2.9 Modular standard basis computations 89

zero has a very strong in�uence on the overall computation. In each single reduction step,
the leading coe�cient c1 of the reducer p1 must be adjusted tomatch the leading coe�cient
c2 of the element to be reduced. For this not only the fraction c2

c1
must be computed, but

also every coe�cient in p1 must be multiplied by this fraction. �is can lead to enormous
numbers, whose calculations slow down the standard basis computation tremendously. In
this section we discuss modular standard basis computations, in�uenced by [28, 54] and
initially presented 1988 by Traverso in [153] and Winkler in [160].

�e idea is to not compute one standard basis over a �eld of characteristic zero, but
to compute many standard bases over �elds of prime characteristic p < ∞. In the end,
combined with algorithms for the reconstruction of rational numbers ([45, 110, 136, 157,
158]), we merge these modular standard bases together and li� the coe�cients using the
Chinese Remainder�eorem (�eorem 1.1.26).

Also the ideas are rather old, these days the method becomes the fashion again due to
the development of multicore resp. multiprocessor computers, on which the independent
modular computations can be done in parallel ([5, 6, 103]). Even in the area of algebraic
cryptanalysis modular Gröbner basis computations are on vogue these days ([106]).

Convention. We are working over the rationals, thus let us assume P = Q[x1 , . . . , xn] for
thewhole of this section. As in the previous sectionswe restrict ourselves to the polynomial
case. Moreover, let < be local or global, but not mixed.

For our task to give a description of a modular standard basis algorithm we need to
de�ne some more tools in the following.

De�nition 2.9.1. Let N > 0 be an integer.

(1) �e set of m–Farey fractions Fm is de�ned by

Fm ∶= { a
b
∣ gcd(a, b) = 1, 0 ≤ a ≤ m, 0 < ∣ b ∣ ≤ m} .

(2) �e m–Farey rational map φm is de�ned by

φm ∶ Fm Ð→ Zp

a

b
z→ (a +mZ)(b +mZ)−1

for some prime number p.

Proposition 2.9.2. Assuming the same notation as in De�nition 2.9.1 the m–Farey rational

map φm ∶ Fm → Zp is bijective if and only if m is the largest integer satisfying m ≤
√

p−1
2
.

Proof. See [110].

De�nition 2.9.3. Let I = ⟨ f1 , . . . , fr⟩ ⊂ P be an ideal, G a standard basis of I w.r.t. <.
Moreover, let p be any prime number in N such that p does not divide the denominator of
any coe�cient of fi for i ∈ {1, . . . , r}.

90 2 Ways to improve standard basis computations

(1) �e ideal Ip = ⟨ f1 + pZ, . . . , fr + pZ⟩ ⊂ Zp[x1 , . . . , xn] is the ideal11 corresponding
to I modulo p.

(2) Gp ⊂ Zp[x1 , . . . , xn] denotes the standard basis for Ip.

(3) A prime number p is called lucky for I if and only if L(Gp) = L(G).
(4) A prime number p is called Hilbert–lucky for I if and only if HI = HIp .

Lemma 2.9.4. For any prime p, any ideal I in P and any degree d it holds that

HI(d) ≤ HIp(d).
Proof. See�eorem 5.3 in [6].

Nowwe are ready to describe theworkings ofmodStd (Algorithm22) in detail. Assume
in the following the task to compute a standard basis G for I = ⟨ f1 , . . . , fr⟩ in P :

(1) First of all we generate a set Q of prime numbers p which do not divde the denomi-
nator of any coe�cient of the elements fi (Line 2).

(2) For each p ∈ Q we compute the modular standard basis Gp for Ip in Zp[x1 , . . . , xn]
(Line 7).

(3) A�er these modular standard bases are computed and stored inG, we search in algo-
rithm RemoveNotLucky for those Gp whose p are clearly not lucky for I (Line 9).
As we do not know G at this point, we cannot use the de�nition of “luckiness”
from 2.9.3. �us we have to choose the lucky ones with a high probability out of
G. For this we build sets Sp in the following way:

Take the �rst element p of Q. �en we de�ne

Sp ∶= {q ∈ Q ∣ L(Gp) = L(Gq)}.
Next we choose the �rst element p′ ∈ Q which is not in Sp . We build the set Sp′

analogously to Sp . �is process goes on until all elements of Q are added to exactly
one set Sp . Let S be the set containing all these Sp. �en we keep in G only those
standard bases Gp, whose index prime is in the set Sp0 ∈ S where

#(Sp0) ≥ #(Sp) for all Sp ∈ S .
With this we get the standard bases corresponding to lucky primes for I with a high
probability. A wrong decision here is trapped in the tests in Step (5).

Assume G = {Gp1 , . . . ,Gps} a�er this step.
(4) �en we li� the results in two steps:

a) Using the Chinese Remainder�eorem we get a standard basis GN in the po-
lynomial ring ZN[x1 , . . . , xn] where N = ∏s

i=1 pi :

11Possibly the fi are previously multiplied by the least common multiple of all denominators of all coe�cients.

2.9 Modular standard basis computations 91

Zp1 [x1 , . . . , xn] × . . . × Zps [x1 , . . . , xn] Ð→ ZN[x1 , . . . , xn]
Gp1 × . . . × Gps z→ GN .

b) From ZN[x1 , . . . , xn] we get back to P using the Farey rational map φk , where

k ≤
√

N−1
2
.

�ese computations are done in the algorithm Lift (Line 10) which returns the set
G.

(5) Next we need to check if G really is a standard basis of I w.r.t. <. �is has to be done,
since we do not know whether we have computed enough modular standard bases
Gp or not.

Of course, there exists an upper bound for the number of primes to be considered:
Assume that the Gröbner basis G for I w.r.t. < would have been already computed
beforehand. �en the primes p ∈ Q would be enough if

∏
p∈Q

p ≥ max{2⋅ ∣ c ∣2 ∣ c any coe�cient of an element g ∈ G}.
Sadly we do not know G beforehand, as our task plainly is to compute G. �us we
do not know, at which point of the computations we have enough modular standard
bases computed and li�ed. �us we need to test if the setG constructed in Step (4) is
the requested standard basis or not. For this, G = {g1 , . . . , gt}must pass 3 di�erent
tests in the algorithm Test (Line 11):

a) We choose some prime q randomly such that q does not divide the numerator
or denominator of any coe�cient of the generating polynomials fi for I such
that q ∉ Q.�e test is passed if {g1+qZ, . . . , gt +qZ} is a standard basis for Iq .
Note that this test is not su�cient for checking if G is a standard basis of I, but
it is very fast compared to the following two necessary tests. IfG does not pass
this test, we can go on with more modular computations, without the need of
losing too much time doing the next two, very expensive tests.

b) Next we check if I ⊂ ⟨G⟩.
c) Last we check if G is a standard basis for ⟨G⟩. Note that this test is done in

P and it can be very expensive to test this if we have not considered enough
modular standard bases Gp.

(6) If G passes Test, then G is the standard basis for I w.r.t. < and modStd terminates.
Otherwise, we need to consider more primes and compute more modular standard
bases. We are back at Step (2).

Remark 2.9.5.

(1) Of course, the pseudo code presented in Algorithm 22 is not optimized, but focusses
on the general idea of modStd. In a real implementation one re–uses the already
computed standard basesGp and the standard basisGN , already li�ed by theChinese
Remainder �eorem. �us, if Test does not return a positive answer, in the next
round of modular computations we do compute only those Gq where q ∈ R.

92 2 Ways to improve standard basis computations

Algorithm 22Modular standard basis computation (modStd)

Input: I an ideal in P , < an order on P
Output: G a standard basis for I in P w.r.t. <
1: G ← ∅, b ← 1
2: Q ← {p prime numbers ∣ p chosen heuristically }
3: while (b = 1) do
4: while (Q ≠ ∅) do
5: Choose p from Q.
6: Q ← Q/{p}
7: Gp ← Std(Ip , NF)
8: G ← G ∪ {Gp}
9: RemoveNotLucky(G)
10: G ← Lift(G)
11: if (Test(G , I ,Q)) then
12: return G
13: R ← {p prime numbers ∣ p ∉ Q and p chosen heuristically }
14: Q ← Q ∪ R

(2) A highly optimized version of the presented variant of modStd is implemented in
Singular byHashemi, P�ster, Schönemann and Steidel in the library modstd.lib.
�is implementation provides also the possibility to do computations in parallel. See
below for more information on this.

(3) Not so long ago modStd was restricted to either homogeneous input or to a local
order on P . Recently Idrees, P�ster, and Steidel have proven in [103] the correctness
and termination of modStd for the inhomogeneous case also for global orders.

(4) Note that if one does not test the computed set G to be a standard basis for ⟨G⟩
over the rationals, G must not be a standard basis for I w.r.t. <, but it is with a high
probability. In some applications this probabilistic answer is su�cient, but amodular
standard basis computation without tests at the end cannot guarantee that its result
is the requested standard basis.

(5) If the inital problem is given inP equipped with amixed order < one could homoge-
nize the ideal and compute the homogenized standard basisGh inU−1K[x0 , . . . , xn]
w.r.t. <h (see Section 1.5 for more information about the connection between < and
the homogenized order <h). A�erwards, a dehomogenization ofGh results in the re-
quested standard basis G. But note that the computation of Gh can be much harder
than the one in the inhomogeneous case.

Having understood themodular computations the idea of parallelizingmodStd is quite
easy.

�e following steps of modStd can be parallelized easily:

(1) the modular standard basis computations, and

2.9 Modular standard basis computations 93

GenerateQ

Gp1 Gp2

Chin. Rem. �eorem

Farey Rational Map

Test in parallel

. . . Gp#(Q)Gp#(Q)−1

Figure 2.9.1: Parallelized modStd

(2) the tests:

a) Test whether Gq ∶= {g + qZ ∣ g ∈ G} is a standard basis for Iq for some prime
q ∉ Q: For this, show that

fi + qZ ∈ ⟨Gq⟩ and Gq ⊆ Std(Ip , NF),
b) Test whether I ⊆ ⟨G⟩ or not:

I ⊆ ⟨G⟩⇐⇒ fi ∈ ⟨G⟩ for all fi generating I ,

c) Test whether G is a standard basis for ⟨G⟩ or not: Check, if all s–polynomials,
not detected by the Buchberger criteria (see Section 2.3), reduce to zero w.r.t.
G.

Of course, this parallelization pattern is based on the fact that all parallelized compu-
tations are done in a similar timespan, e.g. the timings of the computations of Gp1 and Gp2

should not di�er widely. �e very same holds for the inclusion checks for the generators
of I and the s–polynomials.

Remark 2.9.6.

(1) To keep Figure 2.9.1 readable, we abandon to illustrate the parallelization of the tests
in detail.

94 2 Ways to improve standard basis computations

(2) �e process of parallelizing the test should be clear, but from the implementational
point of view, a signi�cant distinction has to be done: Whereas the modular stan-
dard basis computations of the Gp can be parallelized easily using one process per
computation, one needs to use multiple threads doing the parallelized tests. Other-
wise the overhead of sending and receiving data from one process to the other takes
longer than the complete reduction itself.

(3) Let us clarify that the above presented attempt to parallelize modStd is just a �rst
approach, but it is still too static and based on the ideas of sequential computations.
�e Singular team is recently optimizing the implementation of modStd, includ-
ing many ideas to make the distributed computations more dynamic, even on dif-
ferent computers in connected networks. For example, depending on the relation
between the still–to–be–computed modular standard bases and the number of cpu
cores resp. processors available the Chinese Remainder�eorem can be used to li�
already computed modular bases meanwhile others are still computed concurrently.
It is nearly not possible to utilize multicore resp. multiprocessor computers to the
full by just parallelizing parts of known sequential algorithms. New ideas leading to
new concepts of algorithms must be developed and implemented for this task.

In 1988, Traverso presented the so–called Gröbner trace algorithm ([153]). On the one
hand, his algorithm is in some sense the origin of the already presented modStd, as there
the idea of lucky prime numbers andmodular attempts are noted �rst in a connection with
Gröbner basis computations. On the other hand, the Gröbner trace algorithm is a much
more aggressive realization of those ideas.

WhereasmodStd uses only the idea of �nding lucky primes pmodulo whose the stan-
dard basis computations are done independently, the Gröbner trace algorithm enforces
upon all modular computations the same setting, the trace, and worms them in a tight
corset.

De�nition 2.9.7. Let I = ⟨ f1 , . . . , fr⟩ be an ideal inP , < amonomial order onP . When we
are computing a Gröbner basis G = {g1 , . . . , gs} for I w.r.t. <with fi = g i for i ∈ {1, . . . , r},
we de�ne the Gröbner trace T(t,S , n, λ)where
(1) m is a �nite sequence of the leading monomials of G: m = (m1 , . . . ,ms),
(2) S is a �nite sequence of all generated critical pairs: S = (S r+1 , . . . ,S s),
(3) n is a �nite sequence of �nite sequences of integers n j ,k : n = (nr+1 , . . . , ns) such that

n j = (n j ,1 , . . . , n j ,k j
) where n j ,k < j for all j ∈ {r + 1, . . . , s}, and

(4) λ is a �nite sequence of �nite sequences of terms λ j ,k : λ = (λr+1 , . . . , λs) such that
λ j = (λ j ,1 , . . . , λ j ,k j

) for all j ∈ {r + 1, . . . , s}.
Sowhat is the deal? During the computation of theGröbner basisG we store all essential

information in the Gröbner trace:

(1) We store for each element in G its leading monomial in m.

(2) Each computed s–polynomial is stored in S .

2.9 Modular standard basis computations 95

(3) Every reduction step is uniquely determined by each entry in n and λ: n j ,k is the
index of the reducer in G for the k–th reduction of the the j–th element. λ j ,k is the
corresponding multiplier for this reduction step.

So in the end we know each reduction step of each s–polynomial.

With this we are ready to present the Gröbner trace reconstruction algorithm: Assume
that we want to compute a Gröbner basisG for an ideal I w.r.t. <. Moreover, assume that we
have already given a Gröbner trace T , for example by another Gröbner basis computation
for I12. �en we can use Algorithm 23 for the computation of G:

Algorithm 23 Gröbner trace reconstruction algorithm (GBTrace)

Input: I = ⟨ f1 , . . . , fr⟩ an ideal in P , T = (m,S , n, λ) a Gröbner trace for I
Output: G a set of polynomials including { f1 , . . . , fr}, R, E integer values
1: R ← 0, E ← 0
2: G ← { f1 , . . . , fr}
3: for (i = r + 1, . . . , s) do
4: h ← S i

5: for (j = 1, . . . , j i) do
6: if (lm(f) = λi , j lm(gn i , j

)) then
7: f ← lc(gn i , j

) f − lc(f)λi , j gn i , j

8: else if (lm(f) < λi , j lm(gn i , j
)) then

9: R ← 1
10: else
11: E ← 1
12: return (G , R, E)
13: if (lm(f) = mi) then
14: g i ← f
15: G ← G ∪ {g i}
16: else if (lm(f) > mi) then
17: E ← 1
18: else
19: E ← 2
20: return (G , R, E)
21: return (G , R, E)
Let us have a closer look at the pseudo code:

A set G is computed using the Gröbner trace T . �e important point is that we do not
really compute anything besides some reduction steps, everything else is prede�ned by the
Gröbner trace:

(1) In Line 4 we choose the s–polynomials from T .

(2) In Line 6 we choose the corresponding reducers already stored in T by n i , j and λi , j .

12For example, think of di�erent modular computations as in modStd.

96 2 Ways to improve standard basis computations

(3) In Line 15 we do not compute new critical pairs, since the whole set of s–polynomials
to be investigated is already given by T in S .

�is has several advantages to a usualGröbner basis computation: Wedonot need to search
for any element, we do not need to generate for the multipliers of the reducers, and we do
not need to check new critical pairs by criteria. One of the most important optimizations
is that, besides some coe�cient size and polynomial length di�erences, we know quite
accurately the memory consumption of the computation.

Of course, Algorithm23 pays dearly for this simpli�cationwith a static behaviour, which
cannot react on changes resp. unforeseen steps as dynamically as Std can do.�us we need
to add two boolean variables R and E, which keep track of problems happening during the
computations of GBTrace:

(1) R is set to 1 if a redundancy has happened. �is means that at some reduction step
the leading term of f is lower than expected (Line 8). At this point we do not need
to interrupt the computations, it is possible that lt(f) is equal to the leading term
of the next reducer/multiplier pair stored in T . So even if a redundancy takes place,
lt(g i) = ti can still be ful�lled in Line 13.

(2) E is set to 1 or 2 if an error has happened. �is can happen at exactly two points of
Algorithm 23:

a) If lm(f) > λi , j lm(gn i , j
), then the computation cannot go on from this point

(Line 10). All following reducers, generated by the lists n i and λi in theGröbner
trace T , have a leading monomial smaller than λi , j lm(gn i , j

), thus no further
reduction for f takes place. At this point the algorithm returns the already
computed set G and marks the error with E = 1.

b) If in Line 16 lm(f) ≠ ti , then the last reduction step went wrong. In this sit-
uation the algorithm must terminate with an error, too, as the following s–
polynomials in S ∈ T would be no longer valid. Here we distinguish between
two possible errors: If lm(f) > mi then E = 1, otherwise E = 2. �e reason
why we need to distinguish these situations is explained in the discussion for
TraceModStd below.

Remark 2.9.8.

(1) How tohandle errors inAlgorithm23 is not obvious. �inking about usingGBTrace
during a modular Gröbner basis computation the e�ects of one such error on the
other computations must be handled with great care: Shall all computations stop?
Shall we just kill this one computation and go on with the next prime number? Here
we need again a good heuristic, but mostly one would perhaps decide to just kill the
defective computation and to go on, awaiting not so many errors to follow.

(2) Be cautious that GBTrace does not claim to return a Gröbner basis for I. If the
algorithm terminates without an error it is highly probable that G is a Gröbner basis
for I w.r.t. <, but it is not ensured. �us, whenever using GBTrace in a Gröbner
basis computation we need to add tests at the end, similar to those in modStd.

2.9 Modular standard basis computations 97

Traverso gives di�erent approaches of how to use GBTrace in Gröbner basis compu-
tations in [153], we restrict ourselves to the one most obvious, the modular Gröbner trace
computation.

Algorithm 24Modular Gröbner trace algorithm (TraceModStd)

Input: I an ideal in P , < an order on P
Output: G a Gröbner basis for I w.r.t. <
1: G ← ∅, R ← 0, E ← 0, b ← 1
2: Q ← {p prime numbers ∣ p chosen heuristically }
3: Choose p0 from Q.
4: Q ← Q/{p0}
5: (Gp0 , T)← tStd(Ip0 , NF)
6: G ← G ∪ {Gp0}
7: while (b = 1) do
8: while (Q ≠ ∅) do
9: Choose p from Q.
10: Q ← Q/{p}
11: (Gp , R, E)← GBTrace(Ip , T)
12: if (E = 0) then
13: G ← G ∪ {Gp}
14: else if (E = 1) then
15: G ← ∅

16: (Gp , T)← tStd(Ip , NF)
17: RemoveNotLucky(G)
18: G ← Lift(G)
19: if (Test(G , I ,Q)) then
20: return G
21: R ← {p prime numbers ∣ p ∉ Q and p chosen heuristically }
22: Q ← Q ∪ R

�e whole “modular wrapper” in Algorithm 24 should be clear, it is very similar to
modStd. �e main di�erences are:

(1) In Line 5 a �rst modular Gröbner basis is donemodulo the prime number p0 .�ere,
tStd denotes any standard basis algorithm equipped with the feature that it also
stores all neccessary data for the corresponding Gröbner trace T .

(2) Next the other modular computations are performed (Line 11), but this time no stan-
dard basis computation is done. We use GBTrace to compute the corresponding
sets Gp . �is speeds–up the computations tremendously.

(3) If an error is reported from GBTrace we must have a closer look:

a) If E = 1 (Line 14), then at some point the leading monomial of an element
computed for Gp is greater than the corresponding one stored in T . At this
point we must assume that p is lucky and all beforehand used primes were not

98 2 Ways to improve standard basis computations

lucky. �us we delete all previously computed Gröbner basis from G (Line 15)
and compute a new Gröbner trace using the (hopefully lucky prime number
p).

b) If E = 2 we just discard the computed modular Gröbner basis Gp and go on
with the computations. We can hope that the previous prime numbers are
lucky and p is not lucky.

�is is exactly the reason, why we have to distinguish the di�erent types of errors in
GBTrace.
Clearly, if no error is reported, we addGp toG and go onwith the next primenumber.

Let us close this topic with two remarks on implementational aspects considering the
Gröbner trace.

Remark 2.9.9.

(1) As already noted in Remark 2.9.5 the pseudo code of Algorithm 24 is given focussing
on comprehension, not on e�ciency. It is clear that one has to think about how to
recover T in Line 16 possibly without a complete Gröbner basis computation. More-
over, Traverso gives other possible implementations using di�erent computation–
test–balances and error handling.

(2) An attempt of using the ideas of tracing together with the improved reduction pro-
cess of F4 are given in [106]. �ere it is used for algebraic attacks on cryptosystems.
In this setting one needs to compute Gröbner bases of polynomial systems having
the same shape, di�ering only in coe�cients which are either random or depend on
a small number of parameters.

�is �nishes our discussion aboutmodular standard basis algorithms. One should keep
in mind that there is a lot of space optimizing the parallel attempt, explicitly the balance
between computing and testing shall be investigated in more detail to receive a better per-
formance.

2.10 Involutive bases

As a last, but quite di�erent attempt to improve standard basis computations, we give a
short overview of involutive methods. �e main idea is to de�ne an involutive monomial
division and to show the correspondences to the usual division. Using this fact, involu-
tive normal forms can be de�ned. With these so–called involutive bases can be computed,
which ful�ll the Buchberger Criterion (�eorem 1.8.3). �us any such involutive basis is a
standard basis, too.

Note that we introduce the notion of involutive bases only over the polynomial ring P
equipped with a well–order <. �is is, again, due to the fact that the involutive approach is
not in the focus of this thesis and we want to keep notation as simple as possible.

2.10 Involutive bases 99

�is topic is discussed in depth in various publications, for example, [11,24,25,40,82,84].

De�nition 2.10.1. Let u, v ,w ∈ P be monomials. We de�ne the involutive (monomial)
division by the relation ∣I , which has the following properties:

(1) u ∣I v⇒ u ∣ v.
(2) u ∣I u for all monomials u ∈ P .

(3) u ∣I uv and u ∣I uw⇔ u ∣I uvw.
(4) If u ∣I w and v ∣I w, then u ∣I v or v ∣I u.
(5) If u ∣I v and v ∣I w, then u ∣I w.

Remark 2.10.2. Note that the usual monomial division satis�es Property (4) only in the
univariate case, i.e. if P = K[x]. For example, assume P = K[x , y]. �en

x ∣ xy and y ∣ xy but x ∤ y and y ∤ x .

Important examples of involutive divisions are the Janet division ([104]), the Pommaret
division ([139]), and the�omas division ([151]).

De�nition 2.10.3.

(1) A subset M of the set of all monomials in P is called involutive if for any element
u ∈ M it holds that

⋃
u∈M

{um ∣ m any monomial in P} = ⋃
u∈M

{v ∈ M ∣ u ∣I v}.
(2) A subset M of the set of all monomials in P is called involutively autoreduced if for

any two elements u, v ∈ M it holds that

u ∤I v and v ∤I u.

(3) A �nite set F in P is called involutively autoreduced if lt(F), the set of the leading
terms of elements in F , is involutively autoreduced and no f = ∑α cαx

α ∈ F has a
term cα0x

α0 = cα0u ≠ lt(f) where
u ∈ ⋃

t∈lt(F)

{v ∈ P monomial ∣ t ∣I v}.
Using the relation ∣I one can introduce the notion of an involutive normal form ηI(p,G)

which corresponds to the usual normal form (see De�nition 1.7.12). Altogether, the main
object to study in this area can be de�ned:

De�nition 2.10.4. A �nite set G = {g1 , . . . , gs} in P is called an involutive basis for the
ideal ⟨g1 , . . . , gr⟩, r ≤ s, if

100 2 Ways to improve standard basis computations

(1) G is an involutively autorreduced set, and

(2) for all g i ∈ G and all monomials u ∈ P it holds that ηI(ug i ,G) = 0.
�eorem 2.10.5. If G is an involute set, then for all p ∈ P it holds that

η(p,G) = ηI(p,G).
Using this equivalence we can easily follow:

Corollary 2.10.6. Let G be a �nite set in P . If G is an involutive basis for ⟨G⟩, then G is a
standard basis for ⟨G⟩.

�e proof of �eorem 2.10.5 and a more extensive introduction on this topic can be
found in [24].

Over the last couple of years, the ideas of how to parallelize the computation of invo-
lutive bases are developed (see [84]), a variant of FGLM has been implemented (see [83]),
and lots of other improvements in this area of computational algebra have been made.

2.11 Concluding remarks

In this chapter we have presented a wide range of improvements or variants of Std, us-
ing classicalmethods. Some of them use theHilbert–Poincaré series, others di�erent orders
on the sets of critical pairs, still others transform the normal form computations to matrix
operations. For most of these approaches we have seen lots of bene�ts, but o�en draw-
backs, too. For example, one has to consider restrictions on the input and the e�ciency
of the methods is highly dependent of the behaviour of the data during the computations,
which cannot be known beforehand. �us there is not the one and only best way to com-
pute standard bases. To get a standard basis in an e�cient way, one needs to implement
and combine most of the presented ideas, bind together by well–elaborated heuristics.

In the same way the signature–based computations we present in the following are not
the utility knife of standard basis algorithms. On the one hand we see that in most situa-
tions they �nd more useless critical pairs than Buchberger’s Criteria. In some situations,
examples beforehand intractable, evenwith the improvements of this chapter, can be solved
using the signature–based approach. On the other hand we get some restrictions on the
reduction process and overhead is generated due to how aggressive the signature–based
criteria are chosen. �us it is not the question of getting the one best algorithm, but even
more about how to combine the signature–based world with already highly e�cient im-
provements of the classic world.

Clearly, ideas like the Gröbner walk, the FGLM transformation or modular approaches
can be used straightforwardly with signature–based algorithms. �ose improvements can
be understood as wrappers around random standard basis algorithms, thus we only have

2.11 Concluding remarks 101

to guarantee that the result is a standard basis with the requested properties, for exam-
ple, being reduced. Other improvements are not as easy to apply to signature–based algo-
rithms, some of them even cannot be combined or harm performance by interfering with
signature–based criteria.

With these considerations in mind the motivation for our research on signature–based
ideas is clear:

(1) Improve timings, memory usage, and performance of already e�cient and improved
computations.

(2) Combine new ideas with as many as possible improvements presented in this chap-
ter.

(3) Try to merge ideas of both worlds to gain an even better insight into the underlying
theory, which could lead to more improvements in the future.

3 Syzygy modules and standard

bases

�is chapter can be somewhat understood as connecting link between everything al-
ready stated in chapters 1 and 2, and the signature–based attempt, whose introduction fol-
lows in Chapter 4.

Facing all the discussions and problems understanding signature–based standard basis
algorithms, in particular Faugère’s F5 Algorithm, which started this �eld of research, this
chapter can be also seen as amissing link. Starting the discussion of signature–based algo-
rithms with this interlude makes it a lot easier for us to understand the way things work
there. Moreover, some disparities to ideas presented in Chapter 2 appear here for the �rst
time, e. g. the restriction of reducers in Algorithm 30, which uses so–called syzygies to
improve the computation of standard bases.

So what are these syzygies? Loosely speaking they can be understood as relations be-
tween elements. Having given a �nite set F = { f1 , . . . , fr} ∈ P k the question arises if there
are any dependencies and connections between the di�erent fis. Moreover, the nice fact is
that these syzygies again build a module in some P l . A generalization of a syzygy module

104 3 Syzygy modules and standard bases

is the so–called free resolution. It stores a lot of data about the structure of F and is useful,
and even essential, for lots of applications in algebraic geometry. Furthermore, syzygies are
very useful in theory, for example one can give quite a nice proof of Buchberger’s Criterion
(�eorem 1.8.3) using them.

Clearly, computing these patterns is a lotmore di�cult than to compute a standard basis
of F . Otherwise, computing a standard basis of F can help to compute the syzygy module
of F . Even more astonishing is the fact that intermediately computed syzygies can improve
the performance of standard basis algorithms deeply.

In Section 3.1 we introduce the notion of a staggered linear basis, which can be also used
to improve standard basis computations. We see that this points directly to syzygies and
their computations, which are covered in Section 3.2. In Section 3.3 we show how syzygies
can be exploited to give new criteria for the detection of useless data in a standard basis
computation. �is is exactly the point at which the signature–based world in computer
algebra starts.

3.1 Staggered linear bases

In 1986 Gebauer and Möller presented a new idea for detecting useless critical pairs in
a Gröbner basis computation ([80]). For this they introduced a new kind of basis, the
so–called staggered linear basis. Later on, due to some problems with the initial attempt,
Mora has presented a revised version of their idea in [131]. In 2009, based on the previous
work, Dellaca has outlined both attempts, has revised them, and has shown their respective
advantages / problems ([52]).

We see in the following that the idea of staggered linear bases can be seen as an initial
spark for the development of signature–based standard basis algorithms.

In this chapter we again restrict ourselves to the polynomial case, and always assumeP
to be equipped with a well–order <.

De�nition 3.1.1. Let I be an ideal in P . A Gauss generating set B for I is de�ned by the
following properties:

(1) B ⊂ I,

(2) B = spanK(I).
Moreover, if B also ful�lls

(3) lm(f) = lm(g)⇒ f = g for all f , g ∈ B,

then B is called a Gauss basis for I.

In the following we characterize Gauss bases, and derive from this discussion easily the
connection between Gauss bases and Gröbner bases.

3.1 Staggered linear bases 105

Lemma 3.1.2. Let I be an ideal in P , and let B = {g1 , . . . , gs} ⊂ I �nite such that B =
spanK(I) . �en B is a Gauss basis for I if and only if for each f ∈ I there exists a represen-
tation1

f =
s

∑
i=1

c i g i , such that c i ∈ K, lm(f) ≥ lm(g i) for all i .
Proof. See Proposition 3.4 in [52].

Corollary 3.1.3 (Lemma 22.2.2 in [131]). Let I be an ideal in P , and let G be a �nite subset
of I. �en the following conditions are equivalent:

(1) G is a Gröbner basis for I.

(2) B ∶= {mg i ∣ g i ∈ G ,m ∈Mon(x1 , . . . , xn)} is a Gauss basis for I.
Proof. �is follows easily from the fact that L(B) = L(G).

As a consequence of Corollary 3.1.3 one can easily construct a Gauss basis, whenever a
corresponding Gröbner basis is already given. �e other way around is more interesting
for us: When we have computed a Gauss basis for an ideal I, can we construct a Gröbner
basis for I out of it?�e answer to this question lies in the process of “staggering” the Gauss
basis.

De�nition 3.1.4. Let I be an ideal in P . �en the set

S ∶=
s

⋃
i=1

{(g i ,M i) ∣ M i ⊂Mon(x1 , . . . , xn)}
is called a staggered linear basis for I if

BS ∶=
s

⋃
i=1

{mg i ∣ m ∈Mon(x1 , . . . , xn)/⟨M i⟩}
is a Gauss basis for I.

�e idea is to have a Gauss basis with di�erent levels at which themonomials multiplied
to the generating polynomials are restricted. �ese restrictions, represented by M i , are
local to every generator g i .

With this de�nition we get a practical solution for constructing Gröbner bases out of
staggered linear bases.

�eorem 3.1.5. With the staggered linear basis S for I as in De�nition 3.1.4 and the corre-
sponding Gauss basis

BS ∶=
s

⋃
i=1

{mg i ∣ m ∈Mon(x1 , . . . , xn)/⟨M i⟩}
1Such a representation is sometimes called a Gauss representation.

106 3 Syzygy modules and standard bases

the set G ⊂ I de�ned by

G ∶=
s

⋃
i=1

{g i ∣ lm(g j) ∤ lm(g i) for all j < i}
is a Gröbner basis G for I.

Proof. See Lemma 25.4.4 of [131].

Let us give a small example showing how all this di�erent kinds of bases are related
to each other. Moreover, this example outlines the ideas behind the staggered linear basis
algorithms presented in the following.

Example 3.1.6. Let I = ⟨ f1 , f2⟩ ⊂ K[x , y, z], using <dp, where f1 = x2 y − z2 , f2 = yz4 − x3.
We can easily de�ne a Gauss generating set, namely

B ∶= {mf1 ∣ m ∈Mon(x1 , . . . , xn)} ∪ {mf2 ∣ m ∈Mon(x1 , . . . , xn)}.
Clearly, B is not a Gauss basis for not ful�lling the third property of De�nition 3.1.1:

z4 lm(f1) = x2 lm(f2), but z4 f1 ≠ x2 f2 .
Next one could think about including the idea of staggered linear bases, i.e. restricting the
possible multiples of lm(f2). �us we would set M2 = {x2} since this is the �rst multi-
plier for which the multiplied leading monomials of f1 and f2 interfere. Hence we could
construct the set

B′ ∶= {mf1 ∣ m ∈Mon(x1 , . . . , xn)} ∪ {mf2 ∣ m ∈Mon(x1 , . . . , xn)/⟨M2⟩}.
�e problem with this approach is that B′ is no longer a Gauss generating set since B ≠
spanK(I): For example, there is no representation for x2 f2 with elements in B′. Accord-
ingly we need to add some element to B′. Since y4 lm(f1) is already represented by y4 f1,
the element f3 we need to addmust ful�ll lm(f3) < lm(f1). In particular, f3 must ful�ll the
following equation:

x2 f2 = y4 f1 +m1 f1 +m2 f2 + f3

x2 f2 − y4 f1 −
2

∑
i=1

mi fi = f3

S(f2 , f1) − 2

∑
i=1

mi fi = f3 .

In other words, we need to compute the s–polynomial of f1 and f2 and compute its normal
form w.r.t. { f1 , f2}. It follows that S(f2 , f1) does not reduce to zero, but results in a new
polynomial f3 which must be added to B′. Performing the computations we end up with
f3 ∶= z6 − x5. Adding f3 to B′ we receive a Gauss generating set

B′ ∶= {mf1 ∣ m ∈Mon(x1 , . . . , xn)} ∪ {mf2 ∣ m ∈Mon(x1 , . . . , xn)/⟨M2⟩}
∪ {mf3 ∣ m ∈Mon(x1 , . . . , xn)}.

3.1 Staggered linear bases 107

We are still not �nished, since one sees easily that

z6 lm(f1) = x2 y lm(f3) as well as z6 lm(f2) = yz4 lm(f3).
To get a Gauss basis B′′ for I we need to restrict some of these polynomial multiples to
ensure uniqueness of leading monomial and corresponding polynomial in B′′. Here we
have a choice: On the one hand we can restrict M1 and M2, and on the other hand we can
restrict M3. We decide us to go the easier way, namely restricting only the multiples of f3 :

M3 ∶= { lm(f1), lm(f2)},
B′′ ∶= {mf1 ∣ m ∈Mon(x1 , . . . , xn)} ∪ {mf2 ∣ m ∈Mon(x1 , . . . , xn)/⟨M2⟩}

∪ {mf3 ∣ m ∈Mon(x1 , . . . , xn)/⟨M3⟩}.
With this B′′ is a staggered linear basis for I, since one clearly sees that G = { f1 , f2 , f3} is a
Gröbner basis for I (from the above discussion it follows that S(f3 , f1) as well as S(f3 , f2)
are detected by Buchberger’s 1st Criterion).

Accordingly, we need an algorithm to compute a staggered linear basis in the vein of
the construction presented in Example 3.1.6. �is algorithm was given initially by Gebauer
and Möller in [80].

Let us discuss the corresponding pseudo code given in Algorithm 25 in more detail:

�e �rst main di�erence to already known standard basis algorithms, for example use
GM for comparisons, can be found in the lines 1 – 3. �ere the initial values of the sets M i

for each fi of the input F are computed:

M1 = ∅,

M2 = { lm(f1)},
⋮

Mr = { lm(f1), . . . , lm(fr−1)}.
A�er the reduction has taken place, the setM i is extended by

τ(f i , f j)

lm(f i)
(Line 24) and the

set M l+1 for the newly generated element f l+1 is constructed (Lines 19–20) by

⟨M l+1⟩ = ⟨M i⟩ ∶ ⟨ τ(fi , f j)
lm(fi) ⟩ + ⟨ f1 , . . . , f l ⟩.

Based on the above constructions of the M i we see a completely new criterion for the
detection of useless critical pairs in Line 12: A pair (fi , f j) is deleted whenever

mi ∣ τ(fi , f j)
lm(fi) for some mi ∈ M i .

Let us discuss this:

108 3 Syzygy modules and standard bases

Algorithm 25 Initial staggered linear basis algorithm (StagGB1)

Input: F = { f1 , . . . , fr} a set of polynomials in P
Output: G a Gröbner basis for ⟨F⟩, B a Gauss basis for ⟨F⟩
1: P ← ∅,M1 ← ∅

2: for (i = 2, . . . , r) do
3: M i ← M i−1 ∪ { lm(fi−1)}
4: G ← f1
5: for (i = 2, . . . , r) do
6: P ← P ∪ {(fi , f j) ∣ f j ∈ G , j < i}
7: l ← r
8: while (P ≠ ∅) do
9: P′ ← Select(P)
10: P ← P/P′
11: while (P′ ≠ ∅) do
12: (fi , f j)← First element of P′

13: P′ ← P′/{(fi , f j)}
14: if (τ(f i , f j)

lm(f i)
∉ ⟨M i⟩) then

15: h ← S(fi , f j)
16: h ← NF(h,G)
17: if (h ≠ 0) then
18: f l+1 ← h

19: ⟨Q⟩← ⟨M i⟩ ∶ ⟨ τ(f i , f j)lm(f i)
⟩

20: M l+1 ← { lm(f1), . . . , lm(fr)} ∪ Q

21: P ← P ∪ {(f l+1 , f j) ∣ f j ∈ G , j < l + 1}
22: G ← G ∪ { f l+1}
23: l ← l + 1

24: M i ← M i ∪ { τ(f i , f j)lm(f i)
}

25: B ← ⋃r
i=1 {mfi ∈ G ∣ lm(f j) ∣ m lm(fi)⇒ j ≥ i ,m ∈Mon(x1 , . . . , xn)}

26: return (G , B)
(1) �e initial construction of the M i adds the leading monomials of all previous el-

ements, i.e. elements of index < i. Assume we build an s–polynomial S(fi , f j)
such that τ(fi , f j) = lm(fi) lm(f j). �en we know by Buchberger’s 1st Criterion

that we can discard this s–polynomial. Clearly, in this situation
τ(f i , f j)

lm(f i)
∈ ⟨M i⟩ as

lm(f j) ∈ M i .

(2) IfS(fi , f j) is rejected byBuchberger’s 2ndCriterion, then there exists someS(fi , fk)
such that τ(fi , fk) ∣ τ(fi , f j), which is computed before S(fi , f j) in Algorithm 25.

But then
τ(f i , fk)
lm(f i)

∈ M i , and thus S(fi , f j) can be rejected here, too.

�e main idea of StagGB1 is to enhance the criteria checks of critical pairs, i.e. to �nd
more useless critical pairs than GM. As seen in the short discussion above, whenever a

3.1 Staggered linear bases 109

critical pair is detected by one of Buchberger’s criteria, StagGB1 also detects it.

Two main problems occur investigating Algorithm 25 a bit more closely:

Remark 3.1.7. As a matter of fact, StagGB1 has two drawbacks:

(1) �e checks for useless criteria are not e�cient enough. With an easy optimization
we can �x this (as shown in Algorithm 26).

(2) �e algorithm does not always return a Gröbner basis G for its input. Dellaca has
shown in [52] that using the Noon-3 example from [93] as input, StagGB1 returns
the set2 G = {g1 , . . . , g10}, which is not a Gröbner basis. �is is due to the fact that
S(g4 , g9) does not reduce to zero w.r.t. G. �is error is inherited from the fact that
during the computations of the algorithm the critical pair (g4 , g9) is detected being
useless, and thus the corresponding s–polynomial, which would not reduce to zero,
is not added to G.

Clearly, part (2) of Remark 3.1.7 must be solved, otherwise the idea of computing stag-
gered linear bases to receive corresponding Gröbner bases is obsolete.

Mora resp. Dellaca gave a revised version of the algorithm including minor changes
on the detection of useless critical pairs, which improves the �rst drawback mentioned in
Remark 3.1.7. Moreover, a small restriction for the reducers computing the normal forms
is introduced, which is the key point to ensure correctness of Algorithm 26.

In Line 14 we see the easy improvement of checking bothmultipliers ofS(fi , f j), τ(f i , f j)lm(f i)

w.r.t. M i as well as
τ(f i , f j)

lm(f i)
w.r.t. M j.

�e change having a larger impact on the computations is the new algorithm called
StagNF used in Line 16. Let us have a closer look at the corresponding pseudo code given
in Algorithm 27:

In Line 3 we see the di�erence to other normal form algorithms: Not all possible reduc-
ers gk ∈ G are allowed to reduce h, but only those for which the multiple m ∉ ⟨Mk⟩.

Using this revised version of the algorithm one can prove the following:

�eorem 3.1.8. If Algorithm 26 terminates, then the result is correct.

Proof. See�eorem 3.9 in [52].

Sadly, the proof for termination of StagGB2 cannot be given, as it is not ensured any-
more due to the restriction of the possible reducers in StagNF. A non–terminating exam-
ple can be found in Chapter 3 of [52].

Remark 3.1.9.

(1) One should also be very careful on how to choose the next pair to be computed.
In [80] the normal selection strategy is used. Mora, on the contrary, sorts the crit-
ical pairs by increasing degrees of the least common multiples of the pairs. In the
following the idea behind this attempt, in�uenced by Faugère, becomes clearer.

2We use the corresponding notation from [52].

110 3 Syzygy modules and standard bases

Algorithm 26 Revised staggered linear basis algorithm (StagGB2)

Input: F = { f1 , . . . , fr} a set of polynomials in P
Output: G a Gröbner basis for ⟨F⟩, B a staggered linear basis for ⟨F⟩
1: P ← ∅,M1 ← ∅

2: for (i = 2, . . . , r) do
3: M i ← M i−1 ∪ { lm(fi−1)}
4: G ← f1
5: for (i = 2, . . . , r) do
6: P ← P ∪ {(fi , f j) ∣ f j ∈ G , j < i}
7: l ← r
8: while (P ≠ ∅) do
9: P′ ← Select(P)
10: P ← P/P′
11: while (P′ ≠ ∅) do
12: (fi , f j)← First element of P′

13: P′ ← P′/{(fi , f j)}
14: if (τ(f i , f j)

lm(f j)
∉ ⟨M j⟩ and τ(f i , f j)

lm(f i)
∉ ⟨M i⟩) then

15: h ← S(fi , f j)
16: h ← StagNF(h,G)
17: if (h ≠ 0) then
18: f l+1 ← h

19: ⟨Q⟩← ⟨M i⟩ ∶ ⟨ τ(f i , f j)lm(f i)
⟩

20: M l+1 ← { lm(f1), . . . , lm(fr)} ∪ Q

21: P ← P ∪ {(f l+1 , f j) ∣ f j ∈ G , j < l + 1}
22: G ← G ∪ { f l+1}
23: l ← l + 1

24: M i ← M i ∪ { τ(f i , f j)lm(f i)
}

25: B ← ⋃r
i=1 {mfi ∈ G ∣ lm(f j) ∣ m lm(fi)⇒ j ≥ i ,m ∈Mon(x1 , . . . , xn)}

26: return (G , B)
(2) An in–depth discussion on the problem of the dependencies of termination and cor-

rectness of the algorithms StagGB1 and StagGB2 is given in [57].�ere the problem
of termination of Faugère’s F5 Algorithm is brought to light and di�erent attempts
to ensure termination are presented. See Section 6.5 for more details on this topic.

(3) Note that in [51] a quite similar attempt of computing a Gröbner basis is given. �ere
it is proven that, if we have just added a new element fi toG, it is enough to consider

only those s–polynomials S(fi , f j), j < i, such that
τ(f i , f j)

lm(f i)
involves some element

of M i ∶= ⟨ lm(f1), . . . , lm(fi−1)⟩ ∶ lm(fi). All other s–polynomials are useless and
need not be computed.

All in all, the following roundup can be done according to staggered linear bases and

3.2 Syzygies and free resolutions 111

Algorithm 27 Normal form computation for staggered linear bases (StagNF)

Input: f a polynomial in P , G = {g1 , . . . , gs} a set of polynomials in P
Output: h the staggered normal form of f w.r.t. G
1: h ← f
2: while (h ≠ 0) do
3: if (Dh ∶= {(m, gk) ∈Mon(x1 , . . . , xn)/⟨Mk⟩ ×G ∣ m lm(gk) = lm(h)} ≠ ∅) then
4: Choose any (m, g) ∈ Dh.

5: h ← h −
lc(h)
lc(g)

mg

6: else
7: return h
8: return h

how to compute them:

(1) A new criterion to detect useless critical pairs is introduced.

(2) Correctness of the computation using this new criterion is based on a restriction of
possible reducers.

(3) �is restriction as well as the sorting of the critical pairs in�uence if the algorithm
terminates or not.

It is quite amazing that all these facts, which are the hard parts understanding Faugère’s
F5 Algorithm and related signature–bases algorithms, pop up already at this point. Clearly,
staggered linear bases have kicked o� the ideas behind the algorithms in focus of this thesis.

Note that we do not try to give any proof of the above presented facts. �is is based
on the problem that understanding the ideas in full can be done much nicer with another
structure we need to introduce, namely syzygies. Using syzygies our view on the ideas
presented in this section changes dramatically and enables us to get a deeper insight.

3.2 Syzygies and free resolutions

A syzygy is a very important structure in commutative algebra storing the relationships
between elements. Having some elements f1 , . . . , fr ∈ M the question how independent
they are from each other arises quite naturally. �e syzygymodule stores exactly these infor-
mation. �is procedure can be repeated by searching for relations between the generators
of the syzygy module, which leads to a so–called free resolution, another very important
concept in commutative algebra.

In this section we introduce the notions of syzygies and free resolutions. We see that
whenever we want to compute the generators of the syzygy module of some module M,
the standard basis for M is used for this attempt.

112 3 Syzygy modules and standard bases

As we have already noted in Section 3.1 we are interested in the other way around: How
can we use information about the (partially computed) syzygy module to improve standard
basis computations?

De�nition 3.2.1. A complex C of P–modules M i is a (in–)�nite sequence

. . . Ð→ Mk+1

ϕk+1
Ð→ Mk

ϕk
Ð→ Mk−1 Ð→ . . .

where ϕk ○ ϕk+1 = 0 for all k.

(1) C is called exact at Mk if ker(ϕk)/ im(ϕk+1) = 0.
(2) C is called an exact sequence if it is exact at every Mk .

Let us see how we get a free presentation of an arbitrary P–module M. We choose
generators { fi} of M, as well as generators {e i} of a free P–module F0. Next we consider
the module homomorphism π de�ned by

π ∶ F0 Ð→ M
e i z→ fi .

We can reproduce this step again exchanging M by ker(π) and F0 by another free P–
module F1. Rewriting

F1 Ð→ ker(π)Ð→ F0

by σ we get an exact sequence

F1
σ
Ð→ F0

π
Ð→ M Ð→ 0.

Repeating this process, one receives a possibly in�nite exact sequence

. . .Ð→ Fk+1

ϕk+1
Ð→ Fk

ϕk
Ð→ Fk−1 . . . Ð→ F1

ϕ1

Ð→ F0
π
Ð→ M Ð→ 0. (3.2.1)

De�nition 3.2.2. With the notations as above we de�ne the following:

(1) Every such exact sequence as in 3.2.1 is called a free resolution of M.

(2) If there exists an integer l such that Fi = 0 for all i > l , then the free resolution is
called to be �nite of length l .

(3) �e images im(ϕk) are called the k–th syzygy module of M. We denote them by
Syzk(M) ∶= Syzk(f1 , . . . , fr).

(4) IfM = ⟨ f1 , . . . , fr⟩ is an ideal inP , then any element f je i − fi e j , where j < i, is called
a principal syzygy of M.

Convention. We are mostly interested in the �rst syzygy module of somemoduleM.�us
let us agree on the shorthand notation Syz(M) = Syz1(M) for the rest of this thesis. More-
over, “syzygy module” always means “�rst syzygy module”.

3.2 Syzygies and free resolutions 113

Remark 3.2.3. Besides this a bit abstract de�nition one can think of syzygies in a rather
vivid way:

(1) One can think of a syzygy of M as a relation (g1 , . . . , gk) ∈ P k of elements f1 , . . . , fk
such that

k

∑
i=1

g i fi = 0.

�us the �rst syzygy module de�ned above can be understood as Syz(M) = ker(π).
(2) Note that, de�ning Syz0(M) = M, we can also de�ne the k–th syzygy module of M

recursively by
Syzk(M) ∶= Syz (Syzk−1(M)), k ≥ 0.

In the following, let us sum up some of the main properties of syzygies resp. free reso-
lutions of a �nitely generated module M over P . You can �nd proofs of these statements
in any introductory book on commutative algebra or computer algebra, e.g. [51, 97, 112].

One remarkable theorem proved by Hilbert in 1890 is stated in the following. It can be
seen as the initial point of homological algebra.

�eorem 3.2.4 (Hilbert’s Syzygy �eorem). Every �nitely generated P–module M has a
�nite free resolution of �nitely generated, free P–modules, which has length at most n.

Example 3.2.5. Let P = K[x , y, z] with <dp . Consider the polynomials

f1 = xy2 − xz,

f2 = 3x2 − yz,

f3 = 2z4 − xy2 .

On the one hand it is easy to give some syzygies of F = { f1 , f2 , f3}. For example, one could
only consider two out of the three elements by multiplying the third by 0:

g1 f1 + g2 f2 + 0 f3
!= 0.

One solution for the above equation is to set g1 = f2 and g2 = − f1 , as f2 f1 − f2 f1 = 0. �is
process can be done for all (3

2
) combinations:

f2 f1 − f1 f2 − 0 f3 = 0,

f3 f1 − 0 f2 − f1 f3 = 0,

0 f1 − f3 f2 − f2 f3 = 0.

Even if it is easy to state the principal syzygies of { f1 , f2 , f3}, the real problem lies in �nding
the generators of a basis for Syz(f1 , f2 , f3).

We already know that the kernel of a module homomorphism is again a module. �us
searching a set of generators of Syz(M) is nothing else but the question about the com-
putation of a standard basis for Syz(M). For this, di�erent algorithms are known. Let us
assume in the following that F = { f1 , . . . , fr} ⊂ P k , M = ⟨F⟩.

114 3 Syzygy modules and standard bases

(1) One method is presented in Algorithm 28: First a standard basis G′ for the module⟨F ′⟩ is computed (Line 3), where

F ′ ∶= { f1 + er+1 , . . . , fk + er+k} ⊂ P r+k .

�e elements e1 , . . . , er+k are the canonical generators of P
r+k . From this computa-

tion we can extract three di�erent, but related elements:

a) �e syzygy module Syz(M) is constructed by taking all elements g′ from G′

for which the �rst k entries are zero and extract the last r entries (Line 4):

g′ = (0, . . . , 0´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
k-times

, h1 , . . . , hr´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
r-times

) ∈ P r+k

⇒ h = (h1 , . . . , hr) ∈ Syz(M).
b) We also get the standard basis G = {g1 , . . . , gs} of M w.r.t. ≺ (Line 5): Here we

take all elements g′ ∈ G′ such that the �rst k entries are not zero.

g′ = (g1 , . . . , gk , h1 , . . . , hr) ∈ P r+k

⇒ g = (g1 , . . . , gk) ∈ G .

c) Moreover, we also get a third important structure, the transformation matrix
T , which ful�lls the equation

(g1 , . . . , gs)t = T ⋅ (f1 , . . . , fr)t .
We do not give a proof of this concept, you can �nd a discussion on this algorithm
and its theoretical basics in Section 2.5 of [97].

Algorithm 28 Standard basis algorithm for the �rst module of syzygies (Syz1)

Input: F = { f1 , . . . , fr} a �nite subset of P k , {e1 , . . . , er+k} a set of canonical generators
of P r+k , ≺ a module order on P k

Output: G a standard basis for F w.r.t. ≺, S a �nite subset of P k such that ⟨S⟩ = Syz(F)
w.r.t. ≺, T a matrix in P s×r where s = #(G)

1: F ′ ← { f1 + er+1 , . . . , fr + er+k}
2: ≺′← generalization of ≺ to P r+k

3: G′ ← Std(F ′, η, ≺′)
4: S ← {h ∣ h ∈ P r , (0, h) ∈ G′}
5: G ← {g ∣ g ∈ P k , (g , h) ∈ G′ , g ≠ 0}
6: s ← #(G)
7: T ← 1s×r
8: for (i = 1, . . . , s) do
9: row Ti of T ← hi where (g i , hi) ∈ G′
10: return (G , S , T)
(2) �e second approach we want to mention in this thesis is a bit more straightforward

and can be found in several publications (e.g. [112, 135, 155]).

3.2 Syzygies and free resolutions 115

�e main idea of Syz2, presented in Algorithm 29, is to compute the standard ba-
sis for F and the standard basis for Syz(F) at the same time. It computes the the
standard basis for F directly and not with some detour over a higher dimensional
computation as presented in Algorithm 28. For an easier notation, we restrict our-
selves to the case F = { f1 , . . . , fr} ⊂ P in the following. Whereas the standard basis
for F is stored in G, the standard basis for Syz(F) is stored in S. So, in some sense
we just use the Gebauer–Möller implementation GM and add some overhead to it:
Whenever we compute the normal form of an s–vector S(fi , f j)we need to do some
bookkeeping and store all reducers resp. corresponding multipliers λk needed to get
from S(fi , f j) to h (see Line 18). In the end two situations are possible:

a) If h ≠ 0, then we need to add h to G in order to compute a standard basis for
F .

b) If h = 0, then we do not need to add anything to G, but we need to add the
syzygy corresponding to this zero reduction to S. For this we need to store
the bookkept data from the normal form computation in some elemente em+1
(Line 19) and add it to S (Line 27). Note that we have to rewrite any element ek
corresponding to a reducer fk in em+1 where k > r by its corresponding relation
such that in the end all k′ ≤ r.

It was �rstly proved by Wall in [155] that one can use the Buchberger criteria, which
detect useless critical pairs, also for computing syzygies. In particular one can im-
plement the algorithm in exactly the same way we have presented Algorithm 29: A
Gebauer–Möller implementation with some overhead for the storage of the syzy-
gies. Note that whereas it is shown in [155] that the 2nd Buchberger Criterion does
not in�uence the computation of Syz(F), the 1st Buchberger Criterion does. For this
matter of fact we need to add all syzygies f je i − fi e j for j < i in lines 5 – 6. Every s–
vector that ful�lls Buchberger’s 1st Criterion (and thus reduces to zero) corresponds
to a multiple of such a syzygy. It follows that we can add these elements to S.

Remark 3.2.6. Let us have a closer look at the computational aspects of the di�erent, above
presented algorithms constructing a standard basis for Syz(M).
(1) Syz1 goes the indirect way, i.e. it does not compute a standard basis ofM or Syz(M),

but extracts them froma related computation: On the one hand, we need to compute
a standard basis inP r+k which can be much harder than a corresponding computa-
tion in P k . On the other hand, this is the only “real” computation that needs to be
done. All other results can be obtained from G′ by extracting special elements.

(2) Syz2 has the advantage to not compute a standard basis for a module of higher rank,
but it has the drawback of storing and remembering all the di�erent reducers and
their multiples during a normal form computation of some s–vector. �is overhead
can be the determining part of running time and memory consumption; it can even
render the computation of a basis for the syzygy module of an ideal, for which the
standard basis computation is straightforward, impossible.

(3) In [10] Ars and Hashemi give an attempt of using the matrix version of the F5 Al-
gorithm to compute a basis for the module of syzygies of F in the vein of Syz2. �is

116 3 Syzygy modules and standard bases

matrix version does not use the full strengths of F5. We see in Section 7.6 that one
can do even better, using some improved variant of F5 to compute Syz(M).

Algorithm 29 Standard basis algorithm for the �rst module of syzygies (Syz2)

Input: F = { f1 , . . . , fr} a �nite subset of P , ≺ a module order over P
Output: G a standard basis for F w.r.t. ≺, S a �nite subset of P s such that ⟨S⟩ = Syz(G)
1: S ← ∅

2: P ← ∅

3: for (i = 2, . . . , r) do
4: P ← Update(P,G , fi)
5: for j = 1, . . . , i − 1 do
6: S ← S ∪ { f je i − fi e j}
7: G ← G ∪ { fi}
8: l ← r
9: m ← #(S)
10: while (P ≠ ∅) do
11: P′ ← Select(P)
12: P ← P/P′
13: while (P′ ≠ ∅) do
14: (fi , f j)← First element of P′

15: P′ ← P′/{(fi , f j)}
16: h ← lc(f j) τ(f i , f j)lm(f i)

fi − lc(fi) τ(f i , f j)lm(f j)
f j

17: em+1 ← lc(f j) τ(f i , f j)lm(f i)
e i − lc(fi) τ(f i , f j)lm(f j)

e j

18: h ← NF(h,G) such that h = S(fi , f j) −∑l
k=1 λk fk

19: em+1 ← em+1 −∑r
k′=1 λk′ ek′

20: if (h ≠ 0) then
21: f l+1 ← h
22: P ← Update(P,G , f l+1)
23: G ← G ∪ { f l+1}
24: l ← l + 1
25: m ← m + 1
26: else
27: S ← S ∪ {em+1}
28: m ← m + 1
29: return (G , S)

Example 3.2.7 (Example 3.2.5 revisited). Let us reconsider the previous example, let us
assume ≺i on P 3. We have already given some syzygies of F = { f1 , f2 , f3}, namely the
principal ones. We try to compute a basis for Syz(F) using Syz2 in the following. Clearly,
S(f3 , f1) as well as S(f3 , f2) reduce to zero due to Buchberger’s 1st Criterion. Let us reduce

3.2 Syzygies and free resolutions 117

S(f2 , f1):
f4 ∶ = −y3z + yz2 = 3x2 y2 − y3z − 3x2 y2 + 3x2z´¹¹¸¹¹¶

S(f2 , f1)

− (3x2z − yz2)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
z f2

,

e4 ∶ = (y2 − z)e2 − 3xe1 .

Next we need to compute S(f4 , f1) and S(f4 , f3):
0 = −xy3z + xyz2 + xy3z − xyz2´¹¹¹¸¹¹¹¶

S(f4 , f1)

,

e5 ∶ = xe4 + yze1

= (xy2 − xz)e2 − (3x2 − yz)e1.
0 = −2z3z4 + 2yz5 + 2y3z4 − xy5´¹¹¹¸¹¹¶

S(f4 , f3)

+ xy5 − xy3z´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
y3 f1

− (2yz5 − xy3z)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
yz f3

,

e6 ∶ = 2z3e4 + (y3 − yz)e3 + y3e1

= (y3 − yz)e3 + (2y2z3 − 2z4)e2 + (−6xz3 − y3)e1 .
At this point the standard basis computation stops and we have G = { f1 , f2 , f3 , f4}. More-
over, we can state a basis S for Syz(F): �is is done in the easiest way using a so–called
syzygy matrix, in which the ith row can be understood as the ith computed syzygy and
the jth column represents the jth canonical module generator e j. With this the following
notation is quite clear:

⎛⎜⎜⎜⎝
−3x2 + yz xy2 − xz 0
−2z4 + xy2 0 xy2 − xz

0 −2z4 + xy2 3x2 + yz
−6xz3 + y3 2y2z3 − 2z4 y3 − yz

⎞⎟⎟⎟⎠
⎛⎜⎝
f1
f2
f3

⎞⎟⎠ =
⎛⎜⎜⎜⎝
0
0
0
0

⎞⎟⎟⎟⎠
Note that e5 computed above coincides with the principal syzygy f1e2 − f2e1, thus we

only have 4 generators of the basis S of Syz(F).
Remark 3.2.8.

(1) In the following we see that the principal syzygies correspond exactly to one of the
criteria used in signature–based standard basis algorithms. From this it follows that
standard bases for ideals having only these relations of their generators can be com-
puted without any zero reduction.

(2) Using the above methods recursively to compute syzygies of syzygies one can com-
pute free resolutions of a free module M ∈M to a given length l .

�is �nishes our introduction to syzygies and their computations. We have seen that,
given a module M, the computation of a standard basis for M is used to improve the cal-
culations for a standard basis for Syz(M).

�e other way around is just the starting point for signature–based standard basis at-
tempts: How canwe use simultaneously computed syzygies of M (or parts of them) to improve
the computation of a standard basis for M?

118 3 Syzygy modules and standard bases

3.3 Computing standard bases using syzygies

Until nowwe have a one–way connection between standard bases and syzygies: Use the
standard basis computation to obtain a basis for the syzygy module from it. �is attempt
is presented in Section 3.2 and pretty well known over the last couple of years.

In this section we try to go the other way around: How to use information from syzygies
to make standard basis computations more e�cient?

Again we restrict the discussion to the polynomial situation, i.e. F = { f1 , . . . , fr} is a
�nite subset of polynomials in P .

Algorithm 30 Standard basis algorithm using syzygies to improve computations (SyzStd)

Input: F = { f1 , . . . , fr} a �nite subset of P , ≺ a module order over P
Output: G a standard basis for F w.r.t. ≺
1: G ← ∅, P ← ∅, S ← ∅

2: for i = 1, . . . , r do
3: G ← G ∪ { fi}
4: P ← P ∪ {uet ∣ ∃k < i and u =min{u ∈ P ∣ u lm(fi) = τ(fi , fk)}}
5: t ← r
6: while (P ≠ ∅) do
7: P′ ← Select(P)
8: P ← P/P′
9: while (P′ ≠ ∅) do
10: me j ← First element of P′

11: Reduce(S)
12: P′ ← P′/{me j}
13: if ((∄s ∈ S such that lm(s) ∣ me j) or (some other criterion for me j)) then
14: h ← mf j
15: et+1 ← me j
16: (h, et+1) ← SyzNF(h, et ,G)
17: if (h ≠ 0) then
18: t ← t + 1
19: ft ← h
20: P ← P ∪ {uet ∣ ∃k < t and u = min{u ∈ P ∣ u lm(ft) = τ(ft , fk)}}
21: G ← G ∪ { ft}
22: Add to S further known syzygies if possible.
23: else

24: s ← et+1
25: S ← S ∪ {s}
26: return (G , S)

�e initial idea was given in 1992 by Möller, Mora, and Traverso in [126]. Based on the
discussions of Section 3.1 currently computed syzygies are used to detect useless critical
pairs in the standard basis computation.

3.3 Computing standard bases using syzygies 119

We present the algorithm given in [126] in a slightly di�erent notation, which �ts better
to the further discussions on signature–based algorithms. �e pseudo code of it is divided
into two parts: �e main part is Algorithm 30, which represents the overall computations.
In there SyzNF is called (Algorithm 31), which is a special version of already presented
normal form algorithms (see Sections 1.7 and 2.6).

Remark 3.3.1.

(1) Note that in [126] di�erent versions of SyzStd are given. We concentrate on the
standard version, as we discuss the other variants described there in the signature–
based setting later on. Moreover, we focus on the explanation why the algorithm
works and what are the crucial improvements that can be done.

(2) �e algorithm presented here also di�ers from the presentation in [126]. In our dis-
cussion we focus on the connection to signature–based standard basis algorithms.
�us we have adjusted some small pieces to �t better in that picture. Nevertheless,
the changes are minor and do not in�uence the behaviour of the algorithm funda-
mentally.

Algorithm 31 Normal form w.r.t. G of SyzStd (SyzNF)

Input: fi a polynomial in P , e l a module element in Pm , G ⊂ P a �nite sequence
Output: h the normal form of fi w.r.t. SyzStd, e in P

m

1: e ← e l
2: h ← fi
3: while (h ≠ 0 and Dh ← { f j ∈ G ∣ lm(f j) ∣ lm(h) and (j ≠ i or e ≠ e l)} ≠ ∅) do
4: Choose any f j ∈ Dh .

5: h ← h −
lt(h)
lt(f j)

f j

6: e ← e −
lt(h)
lt(f j)

e j

7: return (h, e)
Algorithm 30 looks quite similar to Algorithm 29, but di�ers in some crucial points:

(1) First of all, SyzStd does not handle s–vectors, but only multiples of elements mfi in
G. �ose can be understood to be one of the generators of an s–vector, whereas the
2nd generator is dynamically chosen by SyzNF as the �rst allowed reducer (Line 4).

(2) SyzStd does not use algorithm Update (introduced in the Gebauer–Möller imple-
mentation in Section 2.4), which detects useless critical pairs and generates useful
ones in Syz2. Instead, new criteria are used, which are in some sense quite similar
to the ideas presented in Section 3.1: We see in Line 13 that only those elements mfi
are considered, if there exists no syzygy s ∈ S already such that lm(s) ∣ me i . More-
over, other possible variants of this syzygy criterion can be used, for more details on
this see [126]. We consider such more sophisticated criteria in the follwing chapters,
when we are discussing signature–based attempts.

120 3 Syzygy modules and standard bases

We see in lines 4 and 20 that only those new multiples ue j are added to P and are
then further reduced, which are minimal in the sense that there exists an element
fk ∈ G, k < j such that

u lm(f j) = τ(f j , fk) where u is minimal with this property.

�is is essentially the same idea as given in the staggered linear basis setting. All
other possible multiples of mf j are useless and would be rejected by the criterion in
Line 13 either way.

(3) In Line 11 a procedure Reduce is called with S as a parameter. We do not de�ne
Reduce, butwe just explain away how this can be implemented. �emain idea is the
following: Assume that there are two syzygies s1 and s2 in S, added during previous
computations, which leading monomials are multiples of each other, that means that
there exists m ∈ Mon(x1 , . . . , xn) such that m lm(s1) = lm(s2). In SyzStd those
syzygies are only used to detect useless elements in Line 13. �is detection is only
based on the leading monomial of the syzygies, thus it is useful to compute

s2 ∶= s2 −ms1 .

A�er this computation, lm(s2) ≺ m lm(s1) and thus possibly more useless elements
are detected. In other words, Reduce could be implemented as an interreduction of
S such that as a result all elements remaining in S have di�erent leading monomials.

(4) In a very similar manner Line 22 can be understood: Sometimes one has somemore
data about themodule by somebackground informationwhich can lead to new syzy-
gies that can be added during the computations. Of course, more syzygies in S cause
more possible detections of useless elements in Line 13.

(5) In Line 16 the new normal form SyzNF is called. Its pseudo code is described in
Algorithm 31: �e main di�erence between a usual normal form computation and
this one is that in SyzNF only some elements of G are allowed to reduce. Other
elements are not allowed because they do not only come from the same e i , but also
have the very same me i as leading monomial. If such reductions would be allowed
one could for example reduce mfi by mfi , which is something we clearly do not
want. �us for the allowed reducer of an element h = m ⋅ π(e i) the following hold:
a) Either the reducer r comes from another e j than h,

b) or the reducer r comes from the same e i , butmr e i ≠ me i formr lm(r) = lm(h).
With the above discussion, termination and correctness of SyzStd follow easily, thus

the following theorem holds:

�eorem 3.3.2. Let F ⊂ P be the input of SyzStd. �en SyzStd is an algorithm computing
a standard basis G for ⟨F⟩ w.r.t. ≺.
Proof. See the above discussion and [126].

3.3 Computing standard bases using syzygies 121

Remark 3.3.3.

(1) See Section 5 of [126] for more information on possible implementations of further
criteria indicated in Line 13 of SyzStd. Moreover, more variants of the algorithm are
given there, too.

(2) Note that the selection of which new elements have to be added to P in Line 20 of
Algorithm 30 is also known from other settings than the staggered linear basis one,
for example see [51].

(3) Also the choice of the order of elements in P′ must be done with lots of care: One
no longer orders the elements mfi by increasing leading monomials, but the corre-
sponding elements me i . Since the syzygy module is the kernel of the map π ∶ P t

→

P k , the module order on P t is decisive. Clearly, the me i are just the leading mono-
mials of the possibly later on added syzygies s ∈ S. �us it is senseless to compute an
element ue i before an element ve j with ue i ≻ ve j, since ue i cannot add some new
information for a possible rejection of ve j in the following, whereas this can happen
the other way around.

(4) In [126] the authors suggest quite a lot of optimizations, for example di�erent im-
plementations of the more vaguely described subalgorithms like Reduce or other
criteria to be used. Other ideas cover computations of the syzygies modulo a prime
p or even storing only parts of the syzygy. �is speeds up the computations quite a
lot.

(5) Note that Reduce(S) in Line 11 could not only add new criteria for rejection of
useless elements when computing s2 ∶= s2 − s1 for two elements s1 , s2 ∈ S with the
same leading monomial, but it alsomakes the criteria checkmore e�cient: �inking
about having multiple elements with the same leading monomial ve j in S and an
element ue i to be checked, but which is not detected to be useless, one would do
these checks several times, whereas we know already a�er the �rst check that it is
not detected by this leading monomial. �us Reduce(S) does also make the criteria
checks more e�cient, even if s2 − s1 leads to no new leading monomial in S (and
reduces to zero in further iterations of the reduction step).

As we have already noted in Remark 3.3.3 (3), one must be careful with the choice of the
module order on P t , in which P, P′, and S live. Also we have already given some module
orders in Example 1.4.5, namely ≺m and ≺i, those lack a connection between the module
and the ring world. Considering syzygies, we have a connection via the map π ∶ P t

→ P k

such that π(e i) = fi for all elements fi ∈ G. �is is achieved in the following way: In the
beginning, assuming F = { f1 , . . . , fr} it holds for all elements fi ∈ F where π ∶ P r

→ P k .
Adding a new element fr+1 to G, we generalize π to π′ ∶ P r+1

→ P k by

π′(e i) ∶= ⎧⎪⎪⎨⎪⎪⎩
π(e i) if 1 ≤ i ≤ r,
fr+1 else.

Doing this iteratively we get a connection between the e is and the fis for all elements inG.
�us it makes sense to de�ne a new module order, which incorporates these relations:

122 3 Syzygy modules and standard bases

Example 3.3.4 (Schreyer order). Let G = { f1 , . . . , fs} be a subset of P . Moreover, let
π ∶ P s

→ P be a map between �nitely generated, free P–modules such that {e1 , . . . , es} is
a basis of P s , and π(e i) = fi for all fi ∈ G. �en we can de�ne a module order ≺lm on P s

by

mi e i ≺lm m je j ∶⇐⇒ mi lm(fi) < m j lm(f j) or,
mi lm(fi) = m j lm(f j) and i < j.

�is order prefers the leading monomial of the image under π to the index of the element.
Clearly, as we want to use this order in SyzStd for a standard basis computation in P such
a privilege makes absolutely sense.

�emain improvement of SyzStd is that it �ndsmore useless elements during the stan-
dard basis computation than GM does. �is is achieved by using the criterion in Line 13 of
Algorithm 30 instead of Buchberger’s criteria. Let us illustrate this in an example:

Example 3.3.5. Let us give an example computation of a Gröbner basis for some ideal.
Assume that P = K[x , y, z] is equipped with <dp, and let F = { f1 , f2 , f3} where

f1 = x2 y − z2 ,

f2 = xz2 − y2 ,

f3 = yz3 − x2 .

Moreover, let us use the module order ≺lm de�ned in Example 3.3.4 on P 3 (and on each
intermediate P s during the Gröbner basis computation, de�ned as explained in Exam-
ple 3.3.4). For the selection strategy in P we always choose the smallest element w.r.t. ≺lm.
Furthermore note that we compute a normal form as reduced as possible with the restric-
tions given in SyzNF.

In the beginning we start with P = {e1 , e2 , e3}, S = ∅. Clearly, e1 ≺lm e2 ≺lm e3, thus f1 is
the �rst element added to G. As there are no other elements in G to generate critical pairs
with at this moment, we go on with adding f2 to G, but at this point we add xye2 to P.
Next f3 is added to G and the elements xe3 and z2e3 are possible new elements for P. We
see in Line 20 that only the smaller one of these two, xe3 needs to be added to P. Note that
at this point we already have some elements in S, namely the principal syzygies

s2,1 = f1e2 − f2e1 ,

s3,1 = f1e3 − f3e1 ,

s3,2 = f2e3 − f3e2 .

Right now P = {xe3, xye2} and we go on with x f3 . It reduces to an element

f4 = y3z − x3 ,

e4 = xe3 − yze2.

Using s3,2 and e4 together we can get another syzygy representation for S:

s3,2 = xz2e3 − yz3e2 − y2e3 + x2e2

⇒ s4 = z2e4 − y2e3 + x2e2 .

3.3 Computing standard bases using syzygies 123

So f4 is added to G and P = {xye2 , z2e4 , xze4 , x2e4} a�er constructing new elements.
Moreover, clearly we have s4,1 , s4,2 , and s4,3 in S, too. xy f2 reduces to an element

f5 = −xy3 + z4 ,

e5 = xye2 − z2e1 .

Similarly to above we add a syzygy s5 = xe5 + y2e1 − z2e2 (computed out of s2,1) and the
principal syzygies s5,1 , . . . , s5,4 to S. Two new elements are added to P,

P = {ze5 , xe5, z2e4 , xze4 , x2e4}.
Reducing z f5 we receive a sixth element for G and new representation for s5,4 (plus the
principal syzygies) for S:

f6 = z5 − x4 ,

e6 = ze5 − xe4 ,

s6 = ye6 − z2e3 + x2e1 .

Now P = {xe5, ye6 , xe6 , z2e4 , xze4 , x2e4} and when we check xe5 by the criteria we see
that lm(s5) ∣ xe5 and because of this, we can reject this element and go on with ye6. �is
element is also divisible by lm(s6) and deleted. Fortunately, xe6 gives rise to a new element:

f7 = −x5 + z2 ,

e7 = xe6 − z3e2 − ye3 − e1 ,

s7 = z2e7 + x4e2 + x2 ye1 + z2e1(from s6,2).
Two new elements are added to P = {z2e4 , xze4 , x2e4 , ye6 , z2e6}, z2e4 is detected to be
useless by lm(s4) = z2e4. So the computations for xz f4 follow:

f8 = y5 + x4z,

e8 = xze4 − y3e2 ,

s8 = ze8 − y2e4 + x3e2(from s4,2).
�is adds the elements ze8 and xe8 to P, but the next element in the row is x2e4. For
detecting its uselessness some further known syzygy can be used: Combining s5 and the
the syzygy e6 − ze5 − xe4 we get

s′ = x(e6 − ze5 + xe4) − z (xe5 + y2e1 − z2e2)´¹¹¸¹¹¶
s5

= x2e4 + y2ze1 + e7 + ye3 + e1 .

Whereas ze8 is also detected by s8, xe8 is not detected at all and reduces to zero. �e
remaining two elements in P, ye7 and z2e7 are discarded by syzygies in S and thus the
computations stops with the Gröbner basis

G = {x2 y − z2 , xz2 − y2 , yz3 − x2 , y3z − x3 , xy3 − z4 , z5 − x4 , x5 − z2 , y5 − x4z}.
During this computation only 1 zero reduction has happened (x f8). As noted in [126], a
Gebauer–Möller implementation would compute 7 zero reductions for this example.

124 3 Syzygy modules and standard bases

Remark 3.3.6. Let us comment shortly on the fact why Example 3.3.5 is exactly the same as
the one given in [126] and [62]: First of all the example is well–suited for showing the main
ideas, both for the syzygy and for the signature–based attempt. Moreover, Faugère used
this example in [62] to show the di�erent behaviour of the F5 Algorithm in comparison to
SyzStd. In an even more important situation, namely the discussion of termination of the
F5 Algorithm, we can use this example to show the di�erences between several signature–
based standard basis algorithms. �us deciding to state exactly this example again is justi-
�ed and reasonable.

At this point we are ready to enter the world of signature–based algorithms. It will turn
out that the main step from the syzygy–based attempt to the signature–based one has been
already mentioned in Remark 3.3.3 (4): On the one hand, try to keep the overhead caused
by the lengthy computations of the syzygies as small as possible, and, on the other hand,
keep the range of the criteria to detect useless elements as big as possible.

4 An introduction to

signature–based standard basis

algorithms

Although the starting point of signature–based standard basis algorithms can be found
in [126], as already mentioned in Chapter 3, the �rst “real” algorithm based thoroughly on
signatures is Faugère’s F5 Algorithm presented in [62].

Also this is the source of nearly everything presented in the following of this thesis, it is
not the best point to start with: �e F5 Algorithm is a rather “aggressive” implementation
of the main ideas behind signature–based computations.

On the other hand, theG2VAlgorithmbyGao, Guan, andVolny, see [76], has a straight-
forward implementation, but it lacks performance. Note that there are some rumours
about G2V being multiple times faster than F5. We have an in–depth discussion on this
topic, in which we do not only compare both algorithms with each other, but also show
comparable implementations of both.

�e main new idea behind the usage of signatures is to introduce new criteria to detect

126 4 An introduction to signature–based standard basis algorithms

useless critical pairs during a standard basis computation. Instead of using Buchberger’s
criteria by checking the leading monomials of critical pairs, we take the signature of an
element into account. In some sense, de�ned in detail in Section 4.1, one can ask for the
minimal signature of an element. Keeping only those elements, whose corresponding sig-
natures areminimal, leads to a high–performance standard basis algorithm, which in some
specialized, but still rather usual setting does not compute any zero reduction at all.

Note that until now the signature–basedworld of standard basis computations is limited
to the computation of bases for ideals in P . �is is due to the fact that one does not have
essential structures like principal syzygies in theworld ofmodules (sinceP is anK–algebra,
whereas P s , for s > 1, is not). �us in the following when speaking about computations
and algorithms, we always work in the polynomial setting.

�is chapter has to be understood as an introduction to the topic, presenting the foun-
dations for more e�cient implementations discussed in detail in the following chapters. It
is structured in the following way:

(1) In Section 4.1 we give the de�nition of signatures. Instead of copying the already
known, but also sometimes di�ering de�nitions, we give a more general one, which
give us more �exibility. It turns out that the usual signature, as de�ned in [62], is just
a special case of our de�nition.

(2) Having some knowledge about signatures we give a generic signature–based stan-
dard basis algorithm in Section 4.2. �is algorithm is the counterpart to Std given
in Section 1.8, as it gives just the general structure, but does not deliver an e�cient
algorithm. Using it to explain the basic ideas of the signature–based criteria to reject
useless critical pairs builds a ground for understanding highly optimized implemen-
tations as F5 or G2V in the following.

(3) We �nish this chapter with an in–depth discussion on various restrictions of the
reduction process in signature–based algorithms. Based on this an example compu-
tation of the generic algorithm is given.

With the ideas of this chapter in mind signature–based criteria to detect useless critical
pairs can be understood much easier.

4.1 Basic ideas behind signatures and labeled

polynomials

In this section we give the de�nition of a signature of a polynomial g ∈ I = ⟨ f1 , . . . , fk⟩,
an ideal in P . Doing this we point out the connections to syzygies (see Chapter 3). It turns
out that a signature is nothing else but a part of a module element h ∈ P k corresponding
to g.

4.1 Basic ideas behind signatures and labeled polynomials 127

Besides de�ning signatures for the initial generators f1 , . . . , fk , we also show how s–
vectors, generated during the standard basis computation, are equipped with signatures.

Note that this is the �rst time signatures are de�ned in such a general way. �e bene�ts
and drawbacks of using di�erent variants of signatures are explained in more detail in the
following.

De�nition 4.1.1. Let F = { f1 , . . . , fk} be a �nite subset inP , I = ⟨F⟩be a �nitiely generated
ideal in P , and let e1 , . . . , ek be the canonical generators of P

k such that

π ∶ P k
Ð→ I

e i z→ fi for all 1 ≤ i ≤ k

is a surjective module homomorphism. Let ≺ be a well–order on P k , and let g ∈ I, h ∈ P k .
We de�ne the set of all labels of g by

labels(g) = {h ∈ P k ∣ π(h) = g}.
It is clear that, by construction, for any element g ∈ I = ⟨ f1 , . . . , fk⟩ there exists an

element h ∈ P k such that π(h) = g. �e crucial point is that there exist in�nitely many
such elements h.

Example 4.1.2. Let I = ⟨ f1 , f2⟩ be an ideal inK[x , y, z]with <dp where
f1 = xy + x ,

f2 = y2 − 1.

Moreover, let e1 and e2 be the canonical generators of P
2 equipped with ≺i. In this set-

ting we easily construct the labels:e1 for f1 and e2 for f2. Besides them we can construct
in�nitely many di�erent labels, for example by adding the principal syzygy f1e2 − f2e1 to
the corresponding labels:

p(f1e2 − f2e1) + e1 ∈ labels(f1),
q(f1e2 − f2e1) + e2 ∈ labels(f2).

where p, q ∈ P are some polynomials. Even other, not so obvious, labels can be easily
constructed:

xe2 − ye1 ∈ labels(f1) as f1 = y f1 − x f2 .

We conclude that for any element f ∈ I there exist in�nitely many di�erent h ∈ P 2 such
that π(h) = f .

Most of the time, we are only interested in some special part of the labels, namely the
so–called signatures:

De�nition 4.1.3. Let the setting be the same as in De�nition 4.1.1. Furthermore, let ≺ be a
well–order on P k , and let g ∈ I, h ∈ P k .

(1) �e signature of h is de�ned by sig(h) = lt≺(h).

128 4 An introduction to signature–based standard basis algorithms

(2) �e set of all signatures of g is given by

signatures(g) ∶= { sig(h) ∣ h ∈ labels(g)}.
(3) �e (minimal) signature of g is denoted

sig(g) ∶= sig (min
≺

labels(g)).
De�nition 4.1.4. We call an element r = (l , g) ∈ P k × P a labeled polynomial of g i�
sig(l) ∈ signatures(g). Moreover, we de�ne

(1) the polynomial part of r, poly(r) = g,
(2) the label of r, label(r) = l , and
(3) the signature of r, sig(r) = sig(l).

We de�ne the relation between two labeled polynomials f and g in P k × P by

f = g ∶⇐⇒ label(f) = label(g) and poly(f) = poly(g).
Remark 4.1.5.

(1) Our de�nition of a labeled polynomial has the key advantage to previously given
de�nitions: We only assume sig(l) ∈ signatures(g).�us l can be anything between
a complete label h of g, i.e. from π(l) = g, to l = sig(h). �is allows much more
�exibility and is pretty useful when distinguishing between theoretical and practical
aspects as well as generalizing ideas. See Section 4.3 for more information on this
topic.

(2) Note that whereas we have seen in Example 4.1.2 that there exist in�nitely many
di�erent elements h ∈ P k such that π(h) = g for g ∈ I, sig(r) is uniquely de�ned for
a labeled polynomial r. Assume h1 ≠ h2 ∈ P k such that

π(h1) = g = π(h2).
�is de�nes two di�erent labeled polynomials:

r1 = (h1 , g), and
r2 = (h2 , g).

From the point of view of labeled polynomials it is clear that if lt(h1) ≠ lt(h2), then
sig(ri) = lt(h j) if and only if i = j for 1 ≤ i , j ≤ 2.

(3) �e reader should be careful with our de�nition of a labeled polynomial, which is
also a generalization of other de�nitions in the literature. For a labeled polynomial
r = (l , p)we only assume that

sig(l) ∈ signatures(p),

4.1 Basic ideas behind signatures and labeled polynomials 129

whereas a labeled polynomial as de�ned in [57–59, 144] ful�lls the inclusion

l ∈ signatures(p).
In some situations it is quite useful to havemore data stored in l besides the signature
of r in theoretical considerations. But also in practice this can have a positive e�ect
on the e�ciency of the implementation. We give a deeper insight in this topic in
Section 7.3.

(4) Our de�nition of a signature is more general than the ones given in any publication
about signature–based algorithms, e.g. [62, 76]:

a) In Section 7.3 we generalize our de�nition of signatures, giving them di�erent
lengths. �e signatures presented in De�nitions 4.1.3 and 4.1.4 are a special
case, namely a signature of length 1. No longer consisting of a module leading
term only, one can try to reduce two signatures for a length j > 1. �is idea is
�rst mentioned in [126], see also Remark 3.3.3 (4).

b) Secondly, we de�ne sig(r) to be a leading term of an element in P k , i.e. we
allow coe�cients in our signatures. �is is di�erent to the signatures intro-
duced in [62], but �ts to the corresponding de�nition in [76]. So the leading
monomial of sig(r) corresponds to Faugère’s signature. We see in the follow-
ing, when comparing G2V and F5, that this distinction need not been made
when using only signatures of level 1. Using more general signatures of length
j > 1 we need to take care of the coe�cients.

From Remark 4.1.5 one could conclude that De�nitions 4.1.1 and 4.1.4 are quite useless
and that the notion of a labeled polynomial is more or less a tautological expression. �e
real idea behind a labeled polynomial r = (l , p) gets clear with De�nition 4.1.3: We have
in�nitely many di�erent labeled polynomials r of a polynomial p, but we are searching for
those with sig(l) = sig(p).
Example 4.1.6. Reconsidering Example 4.1.2 we can easily construct the labeled polyno-
mials r1 = (e1 , f1) and r2 = (e2 , f2). Besides them we can construct in�nitely many dif-
ferent labeled polynomials, for example by adding the principal syzygy f1e2 − f2e1 to the
corresponding labels:

r1,p = (p(f1e2 − f2e1) + e1 , f1),
r2,q = (q(f1e2 − f2e1) + e2 , f2).

where p, q ∈ P are some polynomials. De�ning

r′1 = (xe2 − ye1 , f1) as f1 = y f1 − x f2 ,

as already seen above, r′1 is again a di�erent labeled polynomial of f1
Reviewing Example 4.1.2 we see that sig(fi) = sig(ri) = e i for 1 ≤ i ≤ 2. Having a closer

look at sig(f1) = e1, on the one hand, we get that sig(r1) = sig(r1,p) if and only if p = 0.
Whenever p ≠ 0 sig(r1,p) ≻ sig(r1). On the other hand, comparing r1 and r

′
1 it clearly holds

that sig(r1) ≺ sig(r′1). Certainly, all of these signatures are elements of signatures(f1)

130 4 An introduction to signature–based standard basis algorithms

Remark 4.1.7.

(1) By ensuring ≺ to be a well–order on P k the minimal signature of a polynomial p is
uniquely de�ned. �us we can �nd a labeled polynomial r = (l , p) with sig(l) =
sig(p).

(2) Let us give a short outlook on why we are doing this: In the following we show that
whenever a signature–based algorithm wants to �nd out if a critical pair is useful or
not, it just checks the corresponding signatures. In the algorithm we always consider
labeled polynomials, not the polynomials itself. �us the question if the label of r is
also the label of poly(r) arises. If this is not the case, then such an element need not
be computed at all.

(3) �e labels of those labeled polynomials we construct in our algorithms are strongly
related to the reduction process during a standard basis computation. Moreover,
the initial labels are prede�ned by the input of our algorithms. �is prevents an
ambiguity of di�erent labels with equal leading terms for one polynomial to appear
and it enables a strong criterion for detecting useless critical pairs.

As we want to consider labeled polynomials in our algorithms we need to de�ne some
notions, important when computing standard bases, also for labeled polynomials.

First of all let us make notation easier with the following:

De�nition 4.1.8. Let I = ⟨ f1 , . . . , fk⟩ be an ideal in P , p ∈ I, let f = (l , p) be a labeled
polynomial in P k × I, and let π as de�ned before.

(1) We extend the following operators:

a) lc(f) = lc(p),
b) lm(f) = lm(p),
c) lt(f) = lt(p), and
d) deg(f) = deg(p).

Moreover, assuming a second labeled polynomial g = (t, q)we de�ne
e) τ(f , g) = τ(p, q).

(2) Some special parts of the label of f are of interest for us:

a) �e index of f is denoted index(f) = index (lt(l)).
Moreover, assuming lt(l) = aλe i , a ∈ K, λ a monomial in P we can de�ne

b) the leading monomial of the label of f , siglm(f) = λe i ,
c) the monomial part of the signature of f , slm(f) = λ,
d) the coe�cient of the signature of f , slc(f) = a,
e) the term of the signature of f , slt(f) = aλ, and
f) the degree of the signature of f sig-deg(f) = deg(λ)+ deg (π(e i)).

4.1 Basic ideas behind signatures and labeled polynomials 131

(3) Last we de�ne multiplications with labeled polynomials. Let m ∈ Mon(x1 , . . . , xn),
b ∈ K, then

a) br = (bl , bp),
b) mr = (ml ,mp).

In De�nition 1.7.12 (3) we have de�ned the standard representation of a polynomial f
w.r.t. some �nite set of polynomials G. �is de�nition is crucial for the notion of a normal
form, which is the main tool computing standard bases. As a matter of fact, we need to
introduce such a representation also for labeled polynomials.

De�nition 4.1.9. Let I = ⟨ f1 , . . . , fk⟩ be an ideal in P equipped with <, let r, r1 , . . . , r l ∈
P k × I be labeled polynomials, and let G = {r1 , . . . , r l}. Moreover, let ≺ be a well–order
on P k . We say that r has a standard representation w.r.t. G if there exist polynomials
p1 , . . . , p l ∈ K[x1 , . . . , xn] and a unit u ∈ P such that

u poly(r) = l

∑
i=1

pi poly(ri),
where

max< { lm(pi) lm(ri)} ≤ lm(r), and

max≺ { lm(pi) siglm(ri)} ⪯ siglm(r).
Remark 4.1.10. �e standard representation of a labeled polynomial r has two properties:

(1) poly(r) has a standard representation w.r.t. {poly(r1), . . . , poly(r l)}.
(2) �e signatures of the multiples of the ri are not greater than the signature of r.

�is second property makes the standard representation of a labeled polynomial more re-
strictive than that of a polynomial.

For the rest of this section we always assume the following setting: Let I = ⟨ f1 , . . . , fk⟩
be an ideal in P , and let p, q ∈ I be two polynomials such that aλe i ∈ signatures(p) and
bσ e j ∈ signatures(q).

�e following properties of signatures are straightforward by their de�nition.

Proposition 4.1.11. Let c ∈ K, and let m ∈Mon(x1 , . . . , xn). �en the following hold:

(1) aλe i ∈ signatures(p ± q), if λe i ≻ σ e j.
(2) (a ± b)λe i ∈ signatures(p ± q), if λe i = σ e j and a ± b ≠ 0.

(3) camλe i ∈ signatures(cmp).
�ese propertieswewant to use for de�ning a reduction process for labeled polynomials

similar to the one for usual polynomials de�ned in Section 1.7.

132 4 An introduction to signature–based standard basis algorithms

Corollary 4.1.12. Suppose that there exist c ∈ K and m ∈Mon(x1 , . . . , xn) such that lt(p) =
cm lt(q). �en the following hold:

If mσ e j ≺ λe i , then aλe i ∈ signatures(p − cmq). (4.1.1)

If mσ e j = λe i and a ≠ bc , then (a − bc)λe i ∈ signatures(p − cmq). (4.1.2)

�is in mind one can de�ne a reduction process for labeled polynomials in a quite
natural manner:

De�nition 4.1.13. Let f = (s, p) and g = (t, q) be two labeled polynomials such that
sig(f) = aλe i resp. sig(g) = bσ e j. Suppose that there exist c ∈ K andm ∈Mon(x1 , . . . , xn)
such that cm lt(f) = lt(g). �en the following hold:

(1) We say that p − cmq is a sig–safe reduction of p w.r.t. q i� (aλe i , p) and (bσ e j , q)
satisfy either (4.1.1) or (4.1.2). Otherwise, the reduction p− cmq is called sig–unsafe.

(2) Let G = {r1 , . . . , r l} be a �nite set of labeled polynomials in P k × I, and let r be
another labeled polynomial. We say that the reduction of r w.r.t. G is sig–safe i�
for each j ∈ {1, . . . , l} the reduction of r (possibly already by other elements of G
sig–safe reduced) by r j is sig–safe.

(3) A sig–safe reduction is called complete if reductions satisfying (4.1.1) and (4.1.2) are
allowed.

(4) A sig–safe reduction is called semi–complete if only reductions satisfying (4.1.1), but
not those satisfying (4.1.2) are allowed.

Note that in De�nition 4.1.13 we have made use of our more general de�nition of la-
beled polynomials. We have de�ned two labeled polynomials, whose labels are just the
signatures.

�e intention of de�ning such a sig–safe reduction is to keep the main values of the
signature of a labeled polynomial r, namely the index index(r) and the monomial part
slm(r) constant. �is means that we allow no reduction with an element r′ of a “really”
higher signature, i.e. where siglm(r′) ≻ siglm(r). �is sounds strange thinking about
termination and correctness for a standard basis algorithm, but in Section 4.2 we see that a
signature–based algorithm has some fallback functionality to cope with these not allowed
reduction steps.

As a last step in preparation of a �rst generic framework of a signature–based standard
basis algorithm we need to de�ne critical pairs resp. s–vectors of labeled polynomials.

De�nition 4.1.14. Let f and g in P k ×P be two labeled polynomials. Let

u = lc(g) τ(f , g)
lm(f) , v = lc(f) τ(f , g)lm(g) .

(1) Assume that lm (u label(f)) ≠ lm (v label(g)).
a) We de�ne the s–vector of f and g by

S(f , g) = (u label(f) − v label(g), u poly(f) − v poly(g)).

4.1 Basic ideas behind signatures and labeled polynomials 133

b) We call the tuple (u f , vg) a critical pair of the labeled polynomials f and g. �e
degree of the critical pair (u f , vg) is de�ned to be deg (τ(f , g)).

(2) Conversely, if lm (u label(f)) = lm (v label(g))we say that (u f , vg) is sig–equivalent.
(3) In more general, for any two terms λ, σ ∈ P we de�ne the notation

λ f − σ g ∶= (λ label(f) − σ label(g), λ poly(f) − σ poly(g)).
Remark 4.1.15.

(1) We use the shorthand notation of Part (3) of De�nition 4.1.14 to generalize our def-
inition of a sig–(un–)safe reduction, speaking now of f − cmg instead of p − cmq
where poly(f) = p and poly(g) = q.

(2) �e de�nition of a critical pair of two labeled polynomials di�ers slightly from those
of usual polynomials given in De�nition 1.8.6. Here we explicitly store the multipli-
ers for the s–vector computation, too.�is is due to the fact that those multipliers are
also used to get the signature of the corresponding s–vector. Moreover, signature–
based algorithms are depending on a special order, in which the critical pairs have to
be handled, namely by increasing signatures (see Algorithm 33, Line 12). �is selec-
tion is done before the s–vector itself is constructed, thus the data of the multipliers
are important to be stored in the critical pair.

In the signature–based world we work with labeled polynomials, but in the end our
single interest is the standard basis G of some polynomial ideal. �us it makes sense, in
terms of presenting pseudo codes, for example in Algorithms 32 , 33, and 34, to de�ne a
shorthand notation for the polynomial part of a set of labeled polynomials.

De�nition 4.1.16. Let G = {r1 , . . . , r l} be a set of labeled polynomials. We denote the
polynomial ideal of G by

poly(G) ∶= {poly(r1), . . . , poly(r l)}.
We can easily adopt Buchberger’s Criterion from the classical, polynomial situation to

the labeled polynomial one here.

Proposition 4.1.17. Let < be a monomial order on P , and let G = {g1 , . . . , gs} be a set of
labeled polynomials. Moreover, let I = ⟨ f1 , . . . , fk⟩ be an ideal in P such that { f1 , . . . , fk} ⊂
poly(G). If for each pair (g i , g j) ∈ G ×G with i > j S(g i , g j) has a standard representation
w.r.t. G, then poly(G) is a standard basis of I.
Proof. For each S(g i , g j) having a standard representaion w.r.t. G S (poly(g i), poly(g j))
has a standard representation w.r.t. poly(G). As poly(G) ⊂ I the statement follows by
�eorem 1.8.3.

In �rst place this does not make sense at all: Why do we require a stronger variant
of standard representation on the s–vectors than we even need to? Quite similar to our
discussions in Chapter 2 we show that based on the statement of Proposition 4.1.17 we �nd
criteria to narrow down the number of labeled s–vectors really that need to be veri�ed
having a standard representation.

134 4 An introduction to signature–based standard basis algorithms

Corollary4.1.18. Let< be amonomial order onP , and letG = {g1 , . . . , gs} be a set of labeled
polynomials. Moreover, let I = ⟨ f1 , . . . , fk⟩ be an ideal inP such that { f1 , . . . , fk} ⊂ poly(G).
For each pair (g i , g j) ∈ G ×G with i > j let

tk = lc(g l) τ(g i , g j)
lm(gk)

for k ∈ {i , j}, l ∈ {i , j}/{k}. If for each such pair (g i , g j) either
(1) lm(ti) siglm(g i) = lm(t j) siglm(g j), or
(2) l = ti label(g i)− t j label(g j) and (l , ti poly(g i) − t j poly(g j)) has a standard repre-

sentation w.r.t. G,

then poly(G) is a standard basis of I.
Proof. By De�nition 4.1.9 all pairs (g i , g j) ful�lling (2) of the above statement, generate

labeled polynomials r = (l , ti poly(g i) − t j poly(g j)) such that poly(r) has a standard rep-
resentation w.r.t. poly(G). �us it remains to show that all pairs (g i , g j) that meet (1) lead
to s–vectors, which have a standard represenation, at least of their polynomial part w.r.t.
poly(G).

For this, let P be the set of all pairs (g i , g j) and delete all those ful�lling (2). Now order

the remaining pairs by increasing lm (ti label(g i)) = lm (t j label(g j)). Let (f , g) be the
pair minimal by this order, let u, v be the corresponding terms such that u lt(f) = v lt(g),
and let a = lc (label(f)), b = lc (label(g)). Assume the labeled polynomial

r = (u label(f) − a

b
v label(g), u poly(f) − a

b
v poly(g)) .

By construction it holds that siglm(r) ≺ lm (u label(f)), thus r has a standard representa-
tion w.r.t. G. If a = b then r is just the s–vector of f and g and we are done. Otherwise we
have a closer look at the standard representation of r:

poly(r) = s

∑
k=1

pk poly(gk), pk ∈ P

where lm (pk label(gk)) ≺ lm (u label(f)) for all k. From this we can conclude that any
two summands of the same leading term correspond to an s–vector which has a standard
representation. Exchanging all those matching leading terms by the corresponding stan-
dard representation w.r.t. G we �nd some element h ∈ G and some term w ∈ P such that

u lt (poly(f)) = v lt (poly(g)) = w lt (poly(h)).
�is means that we can �nd λ1 , λ2 ∈ P such that

u poly(f) − v poly(g) = λ1 S (poly(f), poly(h)) − λ2 S (poly(h), poly(g)).
By construction, S(f , h) as well as S(h, g) have a standard representation w.r.t. G. From
this the statement follows.

4.2 A generic signature–based standard basis algorithm 135

Remark 4.1.19.

(1) Whereas during the reduction of a labeled polynomial we do not allow sig–unsafe
reductions, the construction of the s–vector itself seems to contradict this idea look-
ing at De�nition 4.1.14: Assume that sig(r1) ≻ sig(r0). It is possible that t1 sig(r1) ≺
t0 sig(r0). Whereas a signature–based algorithm can handle the suppressed reduc-
tions quite nicely, there is no real alternative in the s–vector situation: We have
to build S(r1 , r0) to ensure the correctness of the standard basis in the end. One
could cope with this situation by discarding S(r1 , r0) and generating the new s–
vector S(r0 , r1). Clearly, S(r0 , r1) gets the correct signature, but those two labeled
s–vectors di�er only by a multiplication with the unit −1. �us, in an implemen-
tation a bene�t from keeping even the s–vector generation sig–safe is missing, and
much less problematic compared to the computational overhead of discarding one
s–vector and generating another one.

(2) Note that we have not de�ned an s–vector of two labeled polynomials g , h if themul-
tiplied signatures coincide. To understand this, we need to think in a more general
setting: Generating the s–vector u poly(g)− v poly(h) on the polynomial part, this
would also mean to subtract the corresponding multiplied labels of the two polyno-
mials. From this point of view, at least when u sig(g) = v sig(h) it is clear that the
computation on the labels would cancel out the leading terms u sig(g) resp. v sig(h),
and end up with a completely new leading term. Clearly, this cannot be handled
on the level of labeled polynomials, having only the signatures stored in such an s–
vector. If lm(u) siglm(g) = lm(v) siglm(h) on the one hand, but u sig(g) ≠ v sig(h)
on the other hand, this means that the multiplied signatures di�er only by some con-
stant. In this situation the signature of the corresponding s–vector can be de�ned.
Certainly, we see in Section 4.2 that those sig–equivalent critical pairs are not needed
if we want to compute standard bases.

Moreover, this problem of vanishing signatures when building s–vectors is one of
the main tasks we want to handle a bit more dynamically generalizing signatures in
Section 7.3.

4.2 A generic signature–based standard basis

algorithm

�is section can be understood as the signature–based counterpart to Section 1.8. Here
we present a generic standard basis algorithm based on signatures to detect useless critical
pairs. �e key points are:

(1) Use labeled polynomials instead of usual ones.

136 4 An introduction to signature–based standard basis algorithms

(2) Use the signatures of these elements to reject useless computations.

(3) Use a sig–safe reduction process to keep the signatures and regardlessly manage to
retain the correctness of the algorithm computing a standard basis.

�e idea is to give an easy introduction to the behaviour of signature–based algorithms
with a framework, which does not focus on e�ciency, but comprehensibility. Moreover, the
structure of the algorithm is kept generic enough such that all later on presented e�cient
implementations, e.g. F5 or G2V, can be easily derived from it.

Nearly all of the ideas presented in this section are already published in [59], which is a
collaboration with John Perry.

We need some notion for a situation occurring in signature–based algorithms, which
seems to be very strange in the �rst place, as they cannot occur in the usual polynomial
setting. It can happen that some labeled s–vector reduces to a labeled polynomial r such
that poly(r) ≠ 0, but r is useless.
De�nition 4.2.1. Let I = ⟨ f1 , . . . , fk⟩ be an ideal in P , let r be a labeled polynomial, and
let G be a �nite set of labeled polynomials in P k × I. If there exists some g ∈ G such that

siglm(g) ∣ siglm(r) and lm(g) ∣ lm(r),
then r is called to be sig–redundant (w.r.t. G).

Algorithm 32Generic signature–based standard basis computation w.r.t. < (SigStd)
Input: F = { f1 , . . . , fr} a �nite subset of P
Output: G a standard basis for ⟨F⟩ w.r.t. <
1: G1 ← { f1}
2: for (i = 2, . . . , r) do
3: fi ← Reduce(fi ,G i−1)
4: if (fi ≠ 0) then
5: G i ← IncSig(fi ,G i−1)
6: else

7: G i ← G i−1

8: G ← Gr

9: return G

As one can see we have split up the generic signature–based standard basis algorithm
into 3 parts:

(1) Algorithm 32 is nothing else but the main loop, which goes over all elements fi in
the generating set F of the ideal I. �e only computation done is the reduction of
fi w.r.t. already known standard basis G i−1 of ⟨ f1 , . . . , fi−1⟩. Clearly, if the reduced
fi = 0, then we go on with the next element.

(2) SigStd calls Algorithm 33, in which the computation of a standard basis G i for the
ideal generated by f1 , . . . , fi is done.

4.2 A generic signature–based standard basis algorithm 137

(3) �e reduction process itself is out–sourced in Algorithm 34. For every previously
constructed s–vector it computes a semi–complete sig–safe reduced labeled polyno-
mial.

Looking at this description, even without thinking about labeled polynomials, a rather
obvious di�erence to Std can be seen: �e standard basisG is computed incrementally. Let
us give a short explanation of this:

Instead of computing a standard basis G for ⟨ f1 , . . . , fr⟩ at once, it is computed piece-
wise: We know that G1 = { f1} is a standard basis for ⟨ f1⟩. With this information stored we
can compute the standard basis G i for ⟨ f1 , . . . , fi⟩ for 2 ≤ i ≤ r recursively:
▷ We know that ⟨ f1 , . . . , fi⟩ = ⟨ fi , g ∣ g ∈ G i−1⟩.
▷ We can start with G i = G i−1 ∪ { fi}, building only those critical pairs of fi with the

other g ∈ G i ; any critical pair (ti g i , t j g j) leads to an s–vector that reduces to zero
w.r.t. G i due to the fact that G i−1 is already a standard basis for itself.

▷ Doing the usual computation steps known from Std we end up with G i being the
standard basis for ⟨ f1 , . . . , fi⟩.

At the end of the above described process, we compute Gr , which is the standard basis for
I = ⟨ f1 , . . . , fr⟩.
Remark 4.2.2. It is important to note that signature–based algorithms do not necessarily
need an incremental framework as given by Algorithm 32. �e reasons why we present our
�rst, introductory signature–based algorithm in this fashion are:

(1) �e two most famous and widest spread implementations of algorithms using sig-
natures, namely F5 and G2V, are based on an incremental frame. As the focus of
this thesis is to explain and to compare those two algorithms in detail, it is, in an
educational manner, best to explain both as optimizations of the generic algorithm
presented in this section. �is makes it easier for the reader to understand their
peculiarities.

(2) �e reason why F5 and G2V are given in an incremental fashion is that both are
based on the order ≺i on the set of signatures. �is means that the index has a higher
priority than the monomial. From this point of view it makes sense to compute
G incrementally, as in Line 12 we see that the order in which the critical pairs are
handled is by increasing signature. �inking about any critical pair being generated
by elements out of ⟨ f1 , f2⟩ the index of corresponding signature is 2. Any pair built
with f3 must have a signature of at least index 3, and is thus always stored, but never
processed further until all critical pairs of index 2 have been computed.

Clearly, thinking geometrically about ideals of intersections being not complete, i.e. ideals
generated bymore polynomials than the number of variables in the corresponding polyno-
mial ring, the behaviour of an incremental standard basis algorithm can be quite bad and
preformance can su�er a lot from computing step by step and not using all data at once. In
the signature–based world this means that other monomial orders on the signatures must
be taken into account. First steps in this direction are already taken, see [9, 77, 148, 149].
We give a more general attempt on this topic in Section 7.4.

138 4 An introduction to signature–based standard basis algorithms

Algorithm 33 Incremental signature–based standard basis computation w.r.t. < (IncSig)
Input: fi a polynomial, G i−1 = {p1 , . . . , ps−1} a standard basis for ⟨ f1 , . . . , fi−1⟩
Output: B a standard basis for ⟨ f1 , . . . , fi⟩ w.r.t. <
1: B ← ∅,G ← ∅, P ← ∅
2: ps ← fi
3: t ← s
4: for (k = 1, . . . , s) do
5: gk ← (ek , pk)
6: G ← {g1 , . . . , gs}
7: for (k = 1, . . . , s − 1) do
8: u ← lc(gk) τ(gs ,gk)lm(gs)

9: v ← lc(gs) τ(gs ,gk)lm(gk)

10: P ← P ∪ {(ugs , vgk)}
11: while (P ≠ ∅) do
12: Choose (u f , vg) from P with max≺ {u sig(f), v sig(g)}minimal w.r.t. ≺.
13: P ← P/ {(u f , vg)}
14: l ← u label(f) − v label(g)
15: r ← (l , u poly(f) − v poly(g))
16: r ← SigRed(r,G)
17: if (poly(r) ≠ 0 and r not sig–redundant w.r.t. G) then
18: for (k = 1, . . . , t) do
19: u ← lc(gk) τ(r ,gk)lm(r)

20: v ← lc(r) τ(r ,gk)
lm(gk)

21: if (lm(u) siglm(r) ≠ lm(v) siglm(gk)) then
22: P ← P ∪ {(ur, vgk)}
23: t ← t + 1
24: gt ← r
25: G ← G ∪ {gt}
26: B ← poly(G)
27: return B

Let us have a closer look at Algorithm 33: IncSig computes the standard basis B for⟨ f1 , . . . , fi⟩. �e starting point is the idea to use the previously computed standard basis
G i−1 = {p1 , . . . , ps−1} ⊂ P for ⟨ f1 , . . . , fi−1⟩ to compute a standard basis B for the ideal⟨p1 , . . . , ps−1 , fi⟩ which is equal to ⟨ f1 , . . . , fi⟩.
(1) As a �rst pointwe startwith the construction of our initial set of labeled polynomials,

taking the element fi , previously reduced w.r.t. G i−1, and store it in ps (Line 2). Note
that we assume p1 , . . . , ps to be our initial generators of the ideal we want to compute
a standard basis for, thus our labeled polynomials are elements of P s × P , where
π ∶ P s

→ ⟨p1 , . . . , ps⟩maps ek to pk for 1 ≤ k ≤ s.

(2) In the for–loop we build the �rst batch of critical pairs. Here we note that we do

4.2 A generic signature–based standard basis algorithm 139

Algorithm 34 Semi–complete sig–safe reduction algorithm (SigRed)

Input: f a labeled polynomial, G = {g1 , . . . , gt} a �nite set of labeled polynomials
Output: h a labeled polynomial sig–safe reduced w.r.t. G
1: s ← siglm(f)
2: l ← label(f)
3: p ← poly(f)
4: while (p ≠ 0 and Dp ← {g ∈ G ∣ lm (poly(g)) ∣ lm(p)} ≠ ∅) do
5: Choose any g ∈ Dp .

6: u ←
lt(p)

lt(poly(g))

7: if (lm(u) siglm(g) ≺ s) then
8: p ← p − u poly(g)
9: l ← l − u label(g)
10: h ← (l , p)
11: return h

not need to consider any critical pair generated by gk , g l such that k , l < s as G i−1 is
already a standard basis for itself.

(3) �e next point is very important as correctness as well as termination of SigStd are
based on it: �e order in which critical pairs are handled: Having a pair (u f , vg) the
corresponding s–vector gets the signature

max
≺
{u sig(f), v sig(g)}.

�e choice wemake is to get exactly those pair, whosemaximumof its two signatures
is minimal for all pairs in P (Line 12). In more detail, we choose the pair (u f , vg)
from P such that

max
≺
{u sig(f), v sig(g)} = min

≺
{max
≺
{u′ sig(f ′), v′ sig(g′)} ∣ (u′ f ′ , v′g′) ∈ P} .

If there are several critical pairs of the same signature we take the one, which was
added to P �rst.

(4) A�er the computation of the s–vector r we handle its reduction w.r.t. G in Algo-
rithm 34. �e crucial point is that SigRed ful�lls only semi–complete reductions
with r. �is has some impact on the algorithm:

▷ �e signature of r remains unchanged during the reduction steps.

▷ lm(r) can still be λ lm(g j) for some λ ∈Mon(x1 , . . . , xn), g j ∈ G.�is happens
if λ siglm(g j) ⪰ siglm(r). �is can lead to sig–redundant labeled polynomials,
which explains why one needs to test this in Line 17.

(5) If r is not sig–redundant and poly(r) ≠ 0, then we go on with the following steps:

▷ Generate new critical pairs with r and elements of G as long as the pair is not
sig–equivalent. We show in Lemma 4.2.4 that those elements are not needed
to be investigated by the algorithm.

140 4 An introduction to signature–based standard basis algorithms

▷ Add r to G.

(6) �en we go on with the next element in P, again choosing the one of minimal sig-
nature. When P is empty we are done and take the polynomial part of G, which is a
standard basis for ⟨ f1 , . . . , fi⟩.

Obviously, we need to clarify some points and decisions described above:

▷ Why is it enough to do semi–complete reductions and not complete ones?

▷ Why do we not need to care about sig–equivalent critical pairs? Are they not impor-
tant for the correctness of the algorithm?

We prove correctness and termination of SigStd in several steps, giving answers to the
above questions.

Lemma 4.2.3. Let (u f , vg) be a critical pair generated in IncSig, and let h = S(f , g). �en
it holds that sig(h) ∈ signatures (poly(h)).
Proof. �is is clear by the fact that the signatures of the initial elements g1 , . . . , gs of G
are correct: For all g i with i < s this is clear by de�nition. For gs this is clear as we have
reduced fi beforehand by G i−1 in Line 3 of Algorithm 32. �us es is the minimal signature
for ps .

Lemma 4.2.4. Suppose f = (l , p) is a sig–redundant labeled polynomial in IncSig as re-
turn value of SigRed (Line 16) with poly(f) ≠ 0. �en there exists some g ∈ G such that
any s–vector being generated by f has a standard representation w.r.t. G, when all s–vectors
generated by g have been considered.

Proof. By De�nition 4.2.1 there exists g = (t, q) ∈ G such that lm(t) ∣ lm(l) and lm(q) ∣
lm(p). Let v ∈Mon(x1 , . . . , xn) such that v lm(q) = lm(p). Looking at the signatures two
cases can happen:

(1) If v lm(t) ≺ lm(l), then reducing f by g is sig–safe and semi–complete. �is is a
contradiction to our assumption that f is the return value of SigRed, since then this
reduction must have already taken place.

(2) If v lm(t) ⪰ lm(l), then there existsw ∈Mon(x1 , . . . , xn) such thatw < v,w lm(t) =
lm(l), and w lm(q) < lm(p). Let c ∈ K such that lt(l) = cwt. As we compute new
s–vectors in IncSig by increasing signature, h ∶= (u, r) with r ∶= p − cwq has a
standard representation w.r.t. G, as lm(u) ≺ lm(t). Any s–vector S(f , g′) for some
g′ = (t′, q′) ∈ G can be rewritten by h and a corresponding multiple of S(g , g′), i.e.
there exist terms λ, σ ∈ P such that

λp − σq′ = λ(r + cwq) − σq′.
Whenever S(g , g′) has been considered by IncSig, S(f , g) has a standard repre-
sentation w.r.t. G.

4.2 A generic signature–based standard basis algorithm 141

Lemma 4.2.5. In SigRed there cannot be a complete sig–safe reduction without a semi–
complete sig–safe reduction.

Proof. Assume two labeled polynomials f , g, and let c ∈ K and λ ∈Mon(x1 , . . . , xn) such
that

lm(f) = λ lm(g),
lc(f) = c lc(g),

siglm(f) = λ siglm(g), but
sig(f) ≠ cλ sig(g).

Clearly, there exists c ≠ d ∈ K such that lc (sig(f)) = d lc (sig(g)). As siglm(f − dλg) ≺
siglm(f), and since IncSig proceeds by increasing signatures, f − dλg has a standard
representation w.r.t. G. �us there exist some h ∈ G and some monomial σ ∈ P ful�lling
σ siglm(h) ≺ siglm(f) and σ lm(h) = lm(f). But then there exists a semi–complete,
sig–safe reduction of f by h.

Remark 4.2.6. �e question arises why we have considered complete sig–safe reductions
at all in Section 4.1?�e point is that G2V is de�ned by using complete sig–safe reductions
in [76]. It is �rst shown in [59] that it is enough to consider semi–complete reductions.
So it is important to mention this fact when talking about signature–based standard basis
algorithms.

On the other hand, current research of signature–based algorithms tries to generalize
the signatures to include more than the leading term of the label for detecting useless crit-
ical pairs (see Section 4.3 resp. 7.3). �ere it is essential to include the coe�cients in the
computations as otherwise the data is corrupted.

Now we are ready to prove correctness and termination of SigStd.

�eorem 4.2.7. Let F ⊂ P be the input of SigStd. �en SigStd is an algorithm computing
a standard basis G for ⟨F⟩ w.r.t. the underlying monomial order < on P .

Proof. We need to prove correctness and termination of SigStd.

(1) �e proof of correctness of SigStd is based on Corollary 4.1.18. All s–vectors are
considered besides

▷ those generated by sig–redundant elements (Line 17 of Algorithm 33), and

▷ those, whose corresponding critical pair is sig–equivalent. (Line 21 of Algo-
rithm 33).

By Lemma 4.2.4 the s–vectors generated by sig–redundant elements can be assumed
to have standard representations.

Moreover, we need to investigate the fact that only sig–safe reductions are taken
into account. On the one hand, a sig–unsafe reduction of an element r by some
element f in G, which is possibly needed for the correctness of the SigStd, is not
computed in place. On the other hand, if this sig–unsafe reduction is necessary for

142 4 An introduction to signature–based standard basis algorithms

poly(G) being a standard basis in the end, it will be considered in the following way:
In Line 22 we generate new critical pairs with r. Here clearly the critical pair of r and
f is considered, if this pair is needed at all. �us the sig–unsafe reduction of r by f
rejected beforehand leads to a new s–vector of higher signature (those of themultiple
of the signature of f), which is reduced in the following to ensure the correctness of
poly(G) (see Remark 4.3.3 for more details).

With this SigStd ful�lls the hypothesis of Corollary 4.1.18.

(2) �e monoid Mon(x1 , . . . , x2n) can be considered, similar to Mon(x1 , . . . , xn), as an
Noetherian Mon(x1 , . . . , x2n)–monomodule. Moreover, assume the initial setting
of IncSig, and let f = (aλe j, p) ∈ P s

× ⟨p1 , . . . , ps⟩ be a labeled polynomial. From
this we can extract the following, monomial data: λ and lm(p). Now, consider the
map

ψ ∶ Mon(x1 , . . . , xn) ×Mon(x1 , . . . , xn) Ð→ Mon(x1 , . . . , x2n)(λ, lm(p)) = (∏n
i=1 x

α i

i ,∏n
i=1 x

β i

i) z→ ∏n
i=1 x

α i

i x
β i

n+i .

Let N be the Mon(x1 , . . . , x2n)–submodule generated by the labeled elements in G
during the computations of IncSig.

Assume that IncSig adds an element (bσ e j , q) to G and N does not expand. �is
implies that there exists some (cτe j , r) ∈ G such that τ ∣ σ and lm(r) ∣ lm(q). As
it follows then that (bσ e j , q) is sig–redundant, IncSig does not add (bσ e j , q) to G.
�uswehave a contradiction. So it follows thatwhenever IncSig adds a new element
to G N expands. By Lemma 1.1.15, N , as a submodule of a Noetherian monomod-
ule, can expand only �nitely many times, so IncSig can only compute �nitely many
critical pairs. As the input of SigStd is �nite, the number of iteration steps, i.e. calls
of IncSig, is �nite, too. All in all, SigStd terminates.

Lemma 4.2.8. Let f be a recently reduced labeled polynomial such that poly(f) ≠ 0 in
Line 17 of Algorithm 33. If there exist λ ∈Mon(x1 , . . . , xn), g ∈ G such that

λ siglm(g) = siglm(f) and λ lm(g) = lm(f),
then f is sig–redundant w.r.t. G.

Proof. Assume there exists g ∈ G such that siglm(g) ∣ siglm(f) and lm(g) ∣ lm(f), and
w.l.o.g. lc(f) = lc(g) = 1. Let λ, σ ∈ Mon(x1 , . . . , xn) be two monomials, and let c ∈ K
such that

cλ sig(g) = sig(f) and σ lm(g) = lm(f).
We need to consider the following situations:

(1) If σ < λ, then the sig–safe reduction of f with g would not have taken place in
SigRed. �is is a contradiction.

4.3 Some remarks on sig–safeness 143

(2) If σ > λ, then lm(f) = σ lm(g) > λ lm(g). By assumption, sig(f−cλg) ≺ sig(f), but
lm(f − cλg) = lm(f). Due to the smaller signature, f − cλg already has a standard
representation w.r.t. G. By de�nition, there exist h ∈ G, γ ∈ Mon(x1 , . . . , xn) such
that γ lm(h) = lm(f) = lm(f − cλg) and sig(h) ⪯ sig(f − cλg) ≺ sig(f). But then
SigRed should have computed the reduction of f by h, as it is semi–complete. �is
is, again, a contradiction.

We �nish our introduction to signature–based algorithms with some essential remarks
on the sig–safeness in the next section. Due to this, we postpone an example computation
of SigStd to Section 4.3.

4.3 Some remarks on sig–safeness

Having presented a basic framework for signature–based standard basis computations
in Section 4.2 based on the introduction of labeled polynomials in Section 4.1, we should
draw the reader’s attention to some apparent peculiarities:

At this point it is not really clear, why we force reductions in SigRed to be sig–safe.
Reducing a labeled polynomial f by another onei, g, the information of a sig–unsafe re-
duction still seems to be valid, since we compute

label(f) = label(f) − u label(g) for u = lt(f)
lt(g)

in Line 9 of SigRed.�us assuming label(f) and label(g) being complete labels for poly(f)
resp. poly(g) in any possible con�guration sig(f) and u sig(g) are related to each other,
no data corruption could happen. Reconsidering Möller, Mora, and Traverso’s attempt
using syzygies to compute Gröbner bases presented in Section 3.3 their key problem reap-
pears: Storing the whole label for a labeled polynomial is too much data. Keeping track
and adjusting the label in each sig–safe reduction step in SigRed generates an undeniable
overhead in the computations of SigStd.

�e most e�cient signature–based standard basis algorithms right now thus limit the
data stored in the labeled polynomial: Instead of storing the whole label they only keep the
signature of the labeled polynomial. Note that we only enforce sig(l) ∈ signatures(p) for
any labeled polynomial r = (l , p) in De�nition 4.1.4. Because of this we can align the data
stored in l from a whole label of p to only a signature of p. As this last variant of labeled
polynomials is essential in the following discussion, let us de�ne some notation for it.

De�nition4.3.1. Let r = (l , p) be a labeled polynomial. r is called slim i� l ∈ signatures(p).
Moreover, when constructing s–vectors of two slim labeled polynomials f = (s, p) and

g = (t, q)we get
S(f , g) = (w, up − vq),

144 4 An introduction to signature–based standard basis algorithms

where

(1) u, v are the corresponding multipliers for the s–vector S(p, q), and
(2) w = max≺{us, vt}.
Clearly, the above de�nition coincides with De�nition 4.1.14 w.r.t. the restriction on the

labels of slim labeled polynomials.
Using this slim version of a labeled polynomial, De�nition 4.1.13 becomes clearer: Hav-

ing only the signature to be stored in our labeled polynomial, a sig–safe reduction can be
done much faster than one that is not sig–safe. �is is due to the fact that no computation
on the label of the labeled polynomial must be done at all. In fact, we can completely delete
Line 9 in SigRed. �is has several advantages:

▷ One stores less data in memory,

▷ does less computations in SigRed, but

▷ still has information about the signature due to sig–safe reductions.

Clearly, on the one hand, having more data stored in the label of the labeled polynomial
enables us to be less restrictive on the reduction process. On the other hand, the compu-
tational costs we inherit by doing this could decrease performance. �us a more in–depth
discussion on this topic can be found in Chapter 7.

In the meantime we concentrate on available implementations of signature–based al-
gorithms and tempt to understand the main ideas behind them. For this, the following
convention is quite useful.

Convention. Whenever we are looking at the theory behind signature–based algorithms
we assume labeled polynomials with the complete corresponding label, i.e. π(label(f)) =
poly(f). In terms of implementation the reader can always assume slim labeled polyno-
mials besides other noted.

Remark 4.3.2. Let us give some evident reason, why it is useful to consider the non–slim
variant of labeled polynomials in theoretical considerations: Assume two labeled poly-
nomials f and g such that sig(f) = t sig(g) for some term t ∈ P . Whereas from the
implementational point of view it is enough for us to know the relation sig(f − tg) ≺
sig(f), t sig(g), it is useful in theory to know the exact value of sig(f − tg). Note that it is
only useful, but not required to prove statements in the following. It just shortens notation
and makes results clearer.

Moreover, it simpli�es the transition to the more general case presented in Section 7.3.

In this sense the stated pseudo code is given for slim labeled polynomials, which can
di�er slightly from the one for arbitrary ones, for example see the following “slim version”
of SigRed given in Algorithm 35. Note that due to our above convention we also call this
algorithm SigRed.

One clearly sees that the computation of the label reduction is absent. �e reason is that
in Line 8 the returned labeled polynomial still has the same label resp. signature as in the
beginning of the computation.

4.3 Some remarks on sig–safeness 145

Algorithm 35 Slim semi–complete sig–safe reduction algorithm (SigRed)

Input: f a labeled polynomial, G = {g1 , . . . , gt} a �nite set of labeled polynomials
Output: h a labeled polynomial sig–safe reduced w.r.t. G
1: s ← siglm(f)
2: p ← poly(f)
3: while (p ≠ 0 and Dp ← {g ∈ G ∣ lm (poly(g)) ∣ lm(p)} ≠ ∅) do
4: Choose any g ∈ Dp .

5: u ←
lt(p)

lt(poly(g))

6: if (lm(u) siglm(g) ≺ s) then
7: p ← p − u poly(g)
8: h ← (sig(f), p)
9: return h

In the same fashion Line 14 of Algorithm 33 changes from

l = u label(f) − v label(g)
to

l =max
≺
{u label(f), v label(g)}.

As we restate IncSig in the following chapters several times due to the addition of criteria
to detect useless critical pairs, we abandon a restatement of a slim version of IncSig at this
point and incorporate the above mentioned change in the optimized versions presented
later on.

Besides these evident reasons to choose a sig–safe reduction from an implementational
point of view using slim labeled polynomials, we still need to discuss some curiosity in
its behaviour during the computations of SigStd as already mentioned in the proof of
�eorem 4.2.7.

Remark 4.3.3. �e fact to allow only sig–safe reductions in SigStd clearly generates some
computational overhead.

(1) First of all each new possible reducer in SigRedmust be checked not only for divis-
ibility of leading monomials, but also for a smaller signature.

(2) �e second, even stranger point, is the way how sig–unsafe reductions are handled:

Assume that one could reduce f by cλg in SigRed, since lm(f) = λ lm(g), c = lc(f)
lc(g)

.

�e reduction f −cλg does not take place if λ lm (sig(g)) ≻ lm (sig(f)) . Assuming
furthermore that there is no other reducer of f le� and f being not sig–redundant,
this means that f generates new critical pairs with elements already in G in IncSig
(Line 22) and later on added to G (Line 25). �e main fact ensuring correctness of
poly(G) in the end is the generation of the critical pair (cλg , f). �is critical pair
is just the sig–unsafe reduction, we have rejected beforehand. So two things have
happened:

146 4 An introduction to signature–based standard basis algorithms

a) �e element f has been added toG whereas its leadingmonomial is not needed
at all to ensure Buchberger’s criterion.

b) �e real reduction has been postponed, but still takes place.

�e question arises why to do such a complicated and overhead–producing reduc-
tion process at all? �e answer to this question is quite easy: the signatures.

▷ We need to ensure that the signature of an element does not increase during
the reduction process, since our main idea is to equip a polynomial with its
minimal possible signature.

▷ �e element f is clearly useless for poly(G) in the end, but it is possibly crucial
for its computation at all. �inking about upcoming reductions in IncSig one
can now reduce multiples of lm(f) either by σ f or by σλg. As the signature of
λg is greater than those of f it can happen that whereas a reduction with σ f is
allowed (sig–safe), a corresponding reduction by σλg is rejected (sig–unsafe).

�us neither f nor the reduction f − cλg can be le� out to ensure correctness of the
standard basis computations.

Let us close our discussion on this �rst, generic framework for signature–based algo-
rithms, illustrating its behaviour by a small example. For this we choose the slim represen-
tation of labeled polynomials

Example 4.3.4. Let us give a small example illustrating computations done by SigStd.
Assume P equipped with <dp. As a well–order on the signatures we use ≺i . Consider

F = {y2 − xz, x2 − yz, xyz − y2z}
as generating set for I = ⟨F⟩. In this examplewe use the slim variant of labeled polynomials,
which results in reductions only on the polynomial part, but not on the labels themselves.

We start with G1 = {y2 − xz} which is clearly a Gröbner basis for ⟨y2 − xz⟩. In the next
iteration we enter IncSig for the computation of G2, a Gröbner basis of ⟨y2 − xz, x2 − yz⟩.
We start with initializing the set of labeled polynomials

G ∶= { (e1 , y2 − xz)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g1

, (e2 , x2 − yz)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g2

}.
�ere is only one critical pair to be considered in P, namely (y2g2 , x2g1). Generating the
corresponding s–polynomial r = (y2e2 , x3z − y3z) we compute a sig–safe reduction in
SigRed via

r ∶= (y2e2 , x3z − y3z) − xz(e2 , x2 − yz) = (y2e2 ,−y3z + xyz2),
r ∶= (y2e2 ,−y3z + xyz2) + yz(e1, y2 − xz) = (y2e2 , 0).

Note that both reductions are semi–complete sig–safe reductions since xze2 ≺ y2e2 and
yze1 ≺ y2e2. �us G2 = poly(G) is a Gröbner basis of ⟨y2 − xz, x2 − yz⟩. So we go on with
the last iteration step, adding xyz − y2z to our initial data:

G ∶= { (e1 , y2 − xz)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g1

, (e2 , x2 − yz)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g2

, (e3, xyz − y2z)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g3

}.

4.3 Some remarks on sig–safeness 147

Generating the �rst critical pairs we get the pair set, already ordered by ascending signa-
tures:

P ∶= {(yg3, xzg1), (xg3, yzg2)} .
We start with generating the s–polynomial r corresponding to (yg3 , xzg1) and reduce it
sig–safe in SigRed:

r ∶= (ye3 , x2z2 − y3z) − z2(e2 , x2 − yz) = (ye3 ,−y3z + yz3),
r ∶= (ye3 ,−y3z + yz3) + yz(e1, y2 − xz) = (ye3 ,−xyz2 + yz3),
r ∶= (ye3 ,−xyz2 + yz3) + z(e3 , xyz − y2z) = (ye3 ,−y1z2 + yz3),
r ∶= (ye3 ,−y2z2 + yz3) + z2(e1 , y2 − xz) = (ye3 ,−xz3 + yz3).

At this point no further reductions are possible and r is returned to IncSig in Line 16. We
see that poly(r) ≠ 0 and r is not sig–redundant w.r.t. G, thus we add new critical pairs to
P generated by g4 ∶= r:

P ∶= {(xg3 , yzg2), (yg4,−z2g3), (xg4 ,−z3g2), (y2g4 ,−xz3g1)}.
Note that

xe3°
x sig(g3)

≺ y2e3±
y sig(g4)

≺ xye3±
x sig(g4)

≺ y3e3±
y2 sig(g4)

,

so it follows that the set P is already ordered by increasing signatures. We add g4 to G:

G = {g1 , g2 , g3 , g4}.
Computing the semi–complete sig–safe reductions of all the corresponding s–polynomials
r we get poly(r) = 0 for each. �us the computation stops, and we have found a Gröbner
basis for I:

poly(G) = {y2 − xz, x2 − yz, xyz − y2z,−xz3 + yz3}.
As one can plainly see, SigStd computes lots of zero reductions due to the fact that

besides rejecting sig–equivalent critical pairs and discarding sig–redundant labeled poly-
nomials in IncSig no real criterion is used to detect useless critical pairs. So right now we
have only shown how to add signatures to polynomials, but not how to use them e�ciently.
�is is the topic of the following chapters.

5 Signature–based criteria to

detect useless critical pairs

A�er we have given a �rst, rather generic framework for signature–based standard basis
computations we need to achieve more e�cient implementations. Similar to the ideas of
Section 2.3 we have to �nd criteria to detect and to reject useless critical pairs of labeled
polynomials in SigStd. �is is the crucial point still missing.

In this chapter we present �rst attempts in this direction, including some well–known
implementations like G2V. We lay the groundwork for more aggressive implementations,
like F5, with the presented, rather generic criteria. �e reader should interpret this chapter
as a collection of rather e�cient criteria, which can also quite easily be integrated in SigStd .

All known signature–based algorithms up to now are based on 2main criteria: �e �rst
one can be understood as a check for the minimality of the signature for the corresponding
polynomial. We denote it as (NM).�e second one, denoted (RW), is more or less a test for
rewritings, i.e. is there another polynomial with the very same signature we should prefer?
In spite of our approach in Section 2.3, where the main question was how to implement the
criteria (see Section 2.4), we need to answer two questions for signature–based algortihms:

150 5 Signature–based criteria to detect useless critical pairs

▷ Where to place the criteria in SigStd?

▷ How aggressive should the two criteria be implemented?

�is second question seems a bit strange, but we see that the main di�erences between
known signature–based algorithms lays just in this area. Of course, the answer to this
question is not given by the formula the more aggressive, the more e�cient, but it is rather
complex to interpret the di�erent behaviours.

In Section 5.1 we state, similar to our approach in Section 4.2, generic versions of our
criteria. Due to their genericity they are not really e�cient, and in some sense they lack a
concrete implementation, but they illustrate the general concept quite clear.

As a �rst step, we show how to avoid as much as possible computational overhead,
which emerges from the constraint that reductions must be sig–safe. �is attempt leads to
a variant called SigStdRed, which uses reduced intermediate standard bases.

A �rst optimization of the criteria used by SigStdRed is given in Section 5.3. Algorithm
AP, �rst stated in [7] as a variant of Faugère’s F5 Algorithm, can be understood as a more
e�cient variant of SigStdRed detecting more useless critical pairs due to extending (NM)
and (RW).�e main idea of AP is to be more speci�c on the choices which can be made
in an implementation of (RW). However, Algorithm MM presented in Section 5.4, is just
a variant of AP di�ering only slightly in the above noted choices.

Last we present Algorithm G2V of [76]. Besides explaining the algorithm, we show that
it is also just a variant of SigStdRed, whose peculiarities can be adopted quite easily.

We close this chapter with a section comparing all presented variants of SigStd resp.
SigStdRed, giving not only timings but also other, very important data needed to decide
about the performance of a standard basis algorithm.

All implementations we present in the upcoming sections are based on the same setting:

Convention. < denotes a well–order on P . As inherited module order on the signatures
resp. labels of the labeled polynomials we use ≺i .

For generalizations of these algorithms we refer the reader to Chapter 7.

5.1 Generic criteria based on signatures

In the signature–based world twomain criteria to detect useless critical pairs are known
and can be described rather easily assuming two di�erent labeled polynomials f , g:

(1) If siglm(f) ≻ siglm (poly(f)), then discard f .

(2) If siglm(f) = siglm(g), then compute only f or g, but not both.

In this section we do not only prove why the above criteria are correct, we also give ideas
of how to implement them. �ose implementations are of a rather general fashion such

5.1 Generic criteria based on signatures 151

that they can be easily put in SigStd. Clearly, the advantage of an easy and generic imple-
mentation has drawbacks in terms of e�ciency. In the following sections we cope with this
problem, giving more concrete and more aggressive implementations of the two criteria.

�e �rst criterion we present is based on a search for the minimal signature. It some-
what answers the following question for f = (l , p): Is siglm(l) equal to lm (sig(p))? If
this is not the case, then we know by the relation l ⪰ sig(p) that l is greater than sig(p).
�us l is not the minimal signature of p.

Lemma 5.1.1 (Non–minimal signature criterion). Let (u f , vg) be a critical pair generated
in IncSig, and let h = S(f , g). If siglm(h) ≠ lm (sig (poly(h))), then h has a standard
representation w.r.t. G at the moment IncSig generates h in Line 15.

Proof. Assume that siglm(h) ≠ lm (sig (poly(h))). Let t = sig (poly(h)). Clearly, there
exists a representation r = ∑s

i=1 hi e i ∈ P s such that π(r) = ∑s
i=1 hi g i = poly(h) and

lm(r) = t. As IncSig proceeds by ascending signatures all cancellations of leading terms
in ∑s

i=1 hi g i correspond to s–vectors of lower signature than sig(h). �us we can rewrite
all those by their corresponding standard representation at the moment h is generated in
IncSig. From this we conclude with a standard representation of h.

�e second criterion is based on the fact that whenever two elements f , g have the same
signature during the computations of SigStd than at least one of those elements is useless
and needs not be considered in the algorithm at all. Its name is based on the fact that one
can rewrite the information which a computation of g would generate using f and other
elements already stored in the intermediately computed set of labeled polynomials G.

Lemma 5.1.2 (Rewritable signature criterion). Assume the critical pair (ug , vh) in IncSig,
w.l.o.g. let siglm (S(g , h)) = lm(u) siglm(g). S(g , h) has a standard representation, if one
of the following statements hold for any f ∈ R = {g′ ∈ G ∣ siglm(g′) ∣ lm(u) siglm(g)}:
(1) f ≠ g.

(2) S(f , f ′) is computed, where f = g, f ′ ≠ h, and siglm (S(f , f ′)) = lm(u) siglm(g).
Please note again that due to SigRed only performing sig–safe reductions the second

condition of Lemma 5.1.2 can appear in SigStd.

Proof. Let t = #(G), let S(g , h) = ug − vh, and let f ∈ R. �en we know that

index(f) = index(g) = s and slm(f) ∣ lm(u) slm(g).
�ere exists a monomial m ∈ Mon(x1 , . . . , xn) such that m slm(f) = lm(u) slm(g) = λ.

Furthermore, adjusting the coe�cient c = lc(u) slc(g)
slc(f)

, we know thatug−cw f has a signature

smaller than λes . As we proceed in IncSig by increasing signatures we know that ug− cw f
has already a standard representation w.r.t. G, i.e. there exist pk ∈ P , gk ∈ G such that

ug − cw f = ∑t
k=1 pk gk ,

⇒ ug = cw f +∑t
k=1 pk gk .

152 5 Signature–based criteria to detect useless critical pairs

All top–cancellations of this last representation of ug have a signature which is at most
equal to λes . From this it follows that

S(g , h) = ug − vh
= cw f +∑t

k=1 pk gk − vh

has a standard representation once IncSig either chooses a new critical pair in Line 12,
which has a signature greater than λes , or terminates.

Convention. Lemmata 5.1.1 and 5.1.2 are the basic versions of all signature–based criteria we
present in this thesis. As we refer to them lots of time, let us agree on the notations (NM)
for the non–minimal signature criterion, and (RW) for the rewritable signature criterion.

Whereas (RW), Lemma 5.1.2, is already given in a way an implementation in IncSig
can be easily done, Lemma 5.1.1 lacks this practical formulation. Because of this we need
to �nd a realizable approach for (NM):

Lemma 5.1.3. In IncSig, let G i−1 = {p1 , . . . , ps−1} be the previously computed standard
basis of ⟨ f1 , . . . , fr−1⟩. Let S = {lt(p1), . . . , lt(ps−1)}, and let (u f , vg) be a critical pair in
P. If there exists an 1 ≤ j ≤ s − 1 such that lt(p j) ∣ u slt(f), then S(f , g) has a standard
representation.

Proof. Let lt(p j) ∈ S such that lt(p j) ∣ u slt(f). �en there exists a term v ∈ P such that
v lt(p j) = u slt(f). It follows that there exists a principal syzygy

ω = p j es − ps e j ∈ P s

such that lt(vω) = u slt(f). Clearly, π(ω) = 0, thus we can easily generate

l = u sig(f) − vω
ful�lling π(l) = u poly(f) and lm(l) ≺ u siglm(f). By Lemma 5.1.1 S(f , g) has a standard
presentation.

Lemma 5.1.3 is the �rst practical attempt of (NM) so far. With an easy corollary we can
improve (NM)’s implementation even more.

Corollary 5.1.4. In IncSig, let G i−1 = {p1 , . . . , ps−1} be the previously computed standard
basis of ⟨ f1 , . . . , fs−1⟩, and let S = {lt(p1), . . . , lt(ps−1)}. Whenever SigRed returns a labeled
polynomial h such that poly(h) = 0 we can add slt(h) to S.
Proof. Let f be the input value of SigRed, let h be the corresponding return value such
that poly(h) = 0, and let G = {g1 , . . . , gt}. We know that for j ∈ {1, . . . , t} there exist
h j ∈ P such that

poly(f) = t

∑
j=1

h j poly(g j).
As SigRed performs only sig–safe reductions for all those j it holds that

sig(f) ≻ lt(h j) sig(g j).
�us we can construct ω = label(f) −∑t

j=1 h j label(g j) ∈ P s such that

5.1 Generic criteria based on signatures 153

π(ω) = poly(f) −∑t
j=1 h j poly(g j) = 0,

lt(ω) = sig(f).
As already shown in the proof of Lemma 5.1.3 we know now that any critical pair (ug , vh)
with lt(ω) ∣ u slt(g) has a standard representation, as we can rewrite its signature with a
lower leading term subtracting a corresponding multiple of ω. �us we can add lt(ω) =
slt(f) = slt(h) to S.

Remark 5.1.5. Also (RW) can be implemented straightforwardly, one needs to decidewhich
labeled polynomial resp. which critical pair to keep whenever two of them have the same
signature. We see that this is one of the main di�erences between the later on presented,
optimized implementations of signature–based algorithms like F5 or G2V.

�e generic (RW), as stated in Lemma 5.1.2, keeps the �rst element resp. critical pair
entering G resp. P, whereas all others of the same signature are discarded.

With this inmindwe can update our implementation of SigStd, more precisely IncSig.
SigStd and SigRed remain unchanged for the time being, (NM) and (RW) a�ect only
IncSig. Remember that we use, as explained in detail in Section 4.3, slim labeled polyno-
mials in the following.

Looking at Algorithm 361 one notices two major di�erences to Algorithm 33:

(1) IncSigCrit keeps and updates a set S of leading terms of elements in P .

(2) IncSigCrit uses two subalgorithms calledNonMin? andRewrite? to decidewhether
a critical pair should be kept or not.

�e set S is just the set of terms in P we need to check (NM) via implementation of
Lemma 5.1.3 and Corollary 5.1.4: In Line 7 we initially �ll S with the leading terms of the
polynomials p j ∈ G i−1: Every critical pair which signature’s leading term is a multiple of
some element of S can be discarded by Lemma 5.1.3. Incorporation of Corollary 5.1.4 is
done in Line 23: Whenever SigRed returns a sig–safe reduced labeled polynomial r such
that poly(r) is zero, we can add the term of the leading part of sig(r) to S.

Let us have a closer look at how Algorithms 37 and 38 implements (NM) and (RW):
Both return boolean values, “true” if they have detected a critical pair to be useless, “false”
otherwise.

(1) NonMin? is quite self–explanatory: In Line 1 we store the term of the maximum of{ sig(u f), sig(vg)} and check if it is a multiple of some element of S in Line 6.

(2) In contrast, Rewrite? needs to do a lot more computations to check for the use-
lessness of (u f , vg) compared to NonMin?. Besides computing the maximum of
sig(u f) and sig(vg) one also needs to store the generators of the pair separately for
further checks. In Line 7 condition (1) of Lemma 5.1.2 is checked. If no such element
g j ∈ G is found Rewrite? goes on and searches in P for other critical pairs having
the same signature (Lines 2–7). �is implements condition (2) of Lemma 5.1.2.

1Note that we use “!” to negate boolean values in this thesis.

154 5 Signature–based criteria to detect useless critical pairs

Algorithm 36 IncSig including implementations of (NM) and (RW) (IncSigCrit)

Input: fi a polynomial, G i−1 = {p1 , . . . , ps−1} a standard basis for ⟨ f1 , . . . , fi−1⟩
Output: B a standard basis for ⟨ f1 , . . . , fi⟩ w.r.t. <
1: B ← ∅,G ← ∅, P ← ∅
2: S ← ∅
3: ps ← fi
4: t ← s
5: for (k = 1, . . . , s − 1) do
6: gk ← (ek , pk)
7: S ← S ∪ {lt(pk)}
8: gs ← (es , ps)
9: G ← {g1 , . . . , gs}
10: for (k = 1, . . . , s − 1) do
11: u ← lc(gk) τ(gs ,gk)lm(gs)

12: v ← lc(gs) τ(gs ,gk)lm(gk)

13: if (!NonMin? (ugs , vgk , S) and !Rewrite? (ugs , vgk ,G , P)) then
14: P ← P ∪ {(ugs , vgk)}
15: while (P ≠ ∅) do
16: Choose (u f , vg) from P with max≺ {u sig(f), v sig(g)}minimal w.r.t. ≺.
17: if (!NonMin?(u f , vg , S) and !Rewrite?(u f , vg ,G , P)) then
18: P ← P/ {(u f , vg)}
19: l ← max≺ {u sig(f), v sig(g)}
20: r ← (l , u poly(f) − v poly(g))
21: r ← SigRed(r,G)
22: if (poly(r) = 0) then
23: S ← S ∪ {slt(r)}
24: else if (poly(r) ≠ 0 and r not sig-redundant w.r.t. G) then
25: for (k = 1, . . . , t) do
26: u ← lc(gk) τ(r ,gk)lm(r)

27: v ← lc(r) τ(r ,gk)
lm(gk)

28: if (lm(u) siglm(r) ≠ lm(v) siglm(gk)) then
29: if (!NonMin? (ur, vgk , S) and !Rewrite? (ur, vgk ,G , P)) then
30: P ← P ∪ {(ur, vgk)}
31: t ← t + 1
32: gt ← r
33: G ← G ∪ {gt}
34: B ← poly(G)
35: return B

Remark 5.1.6.

(1) Note that we always consider the maximum of sig(u f) and sig(vg) of a critical pair(u f , vg) in (NM) resp. NonMin? or (RW) resp. Rewrite?. From this it follows

5.1 Generic criteria based on signatures 155

Algorithm 37 Generic implementation of (NM) (NonMin?)

Input: u f a labeled polynomial multiplied by a term, vg a labeled polynomial multiplied
by a term, S = {t1 , . . . , tk} a �nite set of terms in P

Output: TRUE if max≺ { sig(u f), sig(vg)} is not minimal, FALSE otherwise

1: t ← slt (max≺ { sig(u f), sig(vg)})
2: for (i = 1, . . . , k) do
3: if (ti ∣ t) then
4: return TRUE
5: return FALSE

that index(m) = s where m = max≺ { sig(u f), sig(vg)}. �us we always check
signatures resp. labeled polynomials of the current index in IncSigCrit.

(2) It seems a bit extraordinary to check (NM) and (RW) 3 times in IncSigCrit (Lines 13,
17, and 29). Clearly, the check in Line 17 is the latest possible one, where “latest”
means that a�er this line the s–vector computation and sig–safe reduction of the
critical pair starts. So, from the point of view of fewer lines of code, this check is
enough as this is the biggest data set (S, G, and P) we can consider for �nding rea-
sons to reject the corresponding critical pair. From the point of e�cient implemen-
tations checking in Line 13 and 29 makes sense, too: �e earlier we can throw away
useless critical pairs, the better. Storing useless pairs in P costs time and memory
and should be avoided as much as possible.

(3) Reconsidering (2) the reader should be aware that the sets S, G, and P could change
dramatically between a check of (u f , vg) in Line 13 resp. Line 29 and a check in
Line 17. �us none of the three checks should be le� out. Clearly, one can think
of optimizations by considering in Line 17 only elements in S, G, and P which are
added a�er the corresponding check in Line 13 resp. Line 17.

Clearly, correctness and termination of SigStd using IncSigCrit with NonMin? and
Rewrite? follows straightforward from Lemma 5.1.1 and Lemma 5.1.2 combined with�e-
orem 4.2.7.

Corollary 5.1.7. Let F ⊂ P be the input of SigStd. �en SigStd calling IncSigCrit is an
algorithm computing a standard basis G for⟨F⟩ w.r.t. the underlying monomial order < on
P .

Example 5.1.8 (Example 4.3.4 revisited). Let us reconsider the example computation of
SigStd using IncSig given in Section 4.3. �is time we use SigStd with IncSigCrit.

Again we start with G1 = {y2 − xz}. Next we enter IncSigCrit with p2 = x2 − yz,
generating

G ∶= { (e1 , y2 − xz)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g1

, (e2 , x2 − yz)´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
g2

}.

156 5 Signature–based criteria to detect useless critical pairs

Algorithm 38 Generic implementation of (RW) (Rewrite?)

Input: u f a labeled polynomial multiplied by a term, vg a labeled polynomial multiplied
by a term, G = {g1 , . . . , gt} a �nite set of labeled polynomials, P = {p1 , . . . , pk} a �nite
set of critical pairs of labeled polynomials

Output: TRUE if h ∈ {u f , vg} such that sig(h) =max≺ { sig(u f), sig(vg)} is detected by
(RW), FALSE otherwise

1: if (sig(u f) ≻ sig(vg)) then
2: h ← f ,w ← u
3: h̃ ← g , w̃ ← v
4: else
5: h ← g ,w ← v
6: h̃ ← f , w̃ ← u
7: for (j = 1, . . . , t) do
8: if (g j ≠ h and sig(g j) ∣ sig(wh)) then
9: return TRUE
10: for (j = 1, . . . , k) do
11: (u′ f ′ , v′g′)← p j

12: if (sig(u′ f ′) ≻ sig(v′g′)) then
13: h′ ← f ′ ,w′ ← u′

14: h̃′ ← g′, w̃′ ← v′

15: else

16: h′ ← g′,w′ ← v′

17: h̃′ ← f ′ , w̃′ ← u′

18: if (h′ = h and w′ = w and h̃′ ≠ h̃) then
19: return TRUE
20: return FALSE

Moreover, S = {y2}. �e single critical pair (y2g2 , x2g1) is not computed, but discarded,
since y2 ∈ S is equal to the multiplier y2 of g2, which represents

y2e2 = max
≺
{ sig(y2g2), sig(x2g1)}.

�us no s–vector is considered at all in this round of IncSigCrit, andwe add p3 = xyz−y2z
to our data set. Having S = {y2 , x2}. As in Example 4.3.4 we consider the pairs (yg3 , xzg1)
and (xg3 , yzg2). �e �rst one generates g4 = (ye3 ,−xz3 + yz3). At this point the pair set
consists of 4 critical pairs:

P ∶= {(xg3 , yzg2), (yg4 ,−z2g3), (xg4 ,−z3g2), (y2g4 ,−xz3)}.
Instead of computing all those pairs and ending up with a zero reduction in each case as it
is done in IncSig, IncSigCrit actively uses S to detect zero reductions in advance:

▷ (xg3 , yzg2) is computed and ends with a zero reduction. It follows that x from xe3 =
max≺ { sig(xg3), sig(yzg2)} is added to S.

5.2 Reducing computational overhead in SigStd 157

▷ y2e3 = max≺ { sig(yg4), sig(−z2g3)} is detected by y2 ∈ S, thus (yg4 ,−z2g3) is dis-
carded.

▷ xye3 = max≺ { sig(xg4), sig(−z3g2)} is detected by x ∈ S, thus (xg4 ,−z3g2) is dis-
carded.

▷ y3e3 = max≺ { sig(y2g4), sig(−xz3g1)} is detected by y2 ∈ S, thus (y2g4 ,−xz3g1) is
discarded.

In our example, due to the fact of generating only 1 new element throughout the whole
computation, (RW) does not reject any critical pair at all. We show its usefulness in bigger
examples illustrating G2V and F5 in the following.

Nevertheless, we see that using (NM) in IncSigCrit we end up with only 1 zero reduc-
tion, which we actively use: Adding x to S enables us to discard the pair (xg4 ,−z3g2). Also
note that this pair is checked and not detected to be useless in Line 29 of IncSigCrit before
the zero reduction of (xg3 , yzg2) is known. �us the recheck in Line 17 is really necessary
to reject (xg4 ,−z3g2).
Remark 5.1.9.

(1) Note that the e�ciency of (NM) and (RW) depend on the order, in which the el-
ements of the set of initial generators of the ideal are entered to IncSigCrit. �e
problem is that one cannot prede�ne the best possible way. �is problem is part of
further discussions on optimizations, especially of F5, given later on. For the mo-
ment let us assume to order the set of initial generators F always by increasing leading
terms. Speaking in terms of the incremental behaviour of SigStd this clearly holds
for all G i used as input data of IncSigCrit, too.

(2) As one can easily realize from looking at the pseudo codes of Algorithm 37 and Al-
gorithm 38 computational time and memory storage are much higher for Rewrite?

than they are for NonMin?. Later on we see that adding leading terms of signatures
of zero reducions is one bene�t of G2V over F5, which can be easily adopted to F5
and optimizes its performance in some classes of example sets immensely.

5.2 Reducing computational overhead in SigStd

�emain problemof SigStd is the combination of sig–safe reductionswith incremental
computations: �e intermediate standard basesGi IncSigCrit returns are neither reduced
norminimal in general. As these G i are the starting point for the next iteration step, taking
fi+1 into account, the overhead of

(1) multiples of leading terms as well as

(2) quite dense, not tail–reduced polynomials

158 5 Signature–based criteria to detect useless critical pairs

a�ects upcoming computations and thus generates even more useless data.
Let us try to understand where this computational overhead is inherited and how to

avoid it as much as possible in a sensible way. �e ideas given in this section are based
on [58], where Perry and the author have presented the idea of interreducing intermediate
bases in F5. As it is a common tool in nearly all available signature–based algorithms these
days, we decided to present the idea at this point of the thesis for a better understanding
on how to optimize signature–based algorithms in general.

Let us start with the problem of having a non–minimal standard basis G i at the end of
the i–th call of IncSigCrit.

(1) Due to the fact that the signatures of the labeled polynomials must be kept valid
during the reductions taking place in SigRed, some leading term reductions do not
take place immediately, but are postponed. �ese reductions, which are needed to
ensure correctness of SigStd are computed when generating new critical pairs. �us
at the end we could have the 3 polynomials poly(f), poly(g), and poly(h) in G i in
SigStd such that

▷ lt(g) ∣ lt(f), but the reduction f − tg for some term t ∈ P has not taken place
due to sig–unsafeness.

▷ h is the result of the later on constructed s–vector tg − f , which is sig–safe due
to changing the order of tg and f .

In the end, we only need two out of these three elements for a standard basis; in a
minimal standard basis we would discard f . �e problem is that for the correctness
of IncSigCrit the computation and addition of the labeled polynomial f is impor-
tant: Without adding f to G in IncSigCrit the critical pair (tg , f) would not be
generated at all, thus the element h, possibly needed for the correctness of the stan-
dard basis in the end, would never be computed. So we are not able to remove f
during the actual iteration step.

Clearly, in the same vein the problem of non–reducedness of the standard basis G i , i.e.
the missing tail–reductions, can be understood.

(2) Since SigRed computes only reductions of the leading terms of the polynomial parts
of the labeled polynomials, elements with non–reduced tails can be entered to G i .
�emain argument for not doing complete reductions in SigRed is the requirement
of sig–safeness: Comparing the signatures must also be done before each possible
tail–reduction. �is can lead to quite worse timings. From the point of view of the
already computed standard basis G i , returned by IncSigCrit, which consists only
of polynomial data, we do not need to take care of sig–safeness and can tail–reduce
the elements in G i as usual without any preprocessed comparison. �is is way faster
than implementing tail–reductions in SigRed, although we have to use the non–
tail–reduced elements during a whole iteration step.

From this discussion we can derive the following:

▷ �e computational overhead during an iteration step is prerequisite for the correct-
ness of IncSigCrit and thus of SigStd.

5.2 Reducing computational overhead in SigStd 159

▷ �e polynomial standard basisG i returned by IncSigCrit a�er the ith iteration step
is used as input for the (i + 1)st iteration step.�e emphasis lies on the fact that only
the polynomial structure is used. Each such polynomial gets a new signature at the
beginning of IncSigCrit when initializing G in Line 9.

�us it follows that one can easily reduce the intermediate standard basis G i a�er the
ith and before the (i + 1)st call of IncSigCrit. �is is illustrated by the pseudo code given
in Algorithm 39: �e only di�erence to Algorithm 32 is given in Line 3. Instead of the
standard basis for ⟨ f1 , . . . , fi⟩ computed in IncSigCrit for the (i + 1)st iteration step in
IncSigCrit, the corresponding reduced standard basis is computed. RedSB takes a stan-
dard basis and computes the corresponding, reduced standard basis. �us in the next iter-
ation step IncSigCrit starts with a reduced standard basis as input.

Algorithm 39 SigStd with reduced standard bases (SigStdRed)

Input: F = { f1 , . . . , fr} a �nite subset of P
Output: G a standard basis for ⟨F⟩ w.r.t. <
1: G1 ← { f1}
2: for (i = 2, . . . , r) do
3: G i−1 ← RedSB (G i−1)
4: fi ← Reduce(fi ,G i−1)
5: if (fi ≠ 0) then
6: G i ← IncSig(fi ,G i−1)
7: else

8: G i ← G i−1

9: G ← Gm

10: return G

Clearly, the idea of tail–reducing the polynomials in G i before starting the (i + 1)st
iteration step gives advantages in the reduction process:

▷ �e polynomials are possibly sparser, which leads to less operations for multiplying
them with terms and comparing with other terms when subtracting polynomials.

▷ Some reductions which would have taken place in SigRed, possibly multiple times,
are already carried out once.

�e only drawback of reducing the intermediate standard bases could be that some useless
critical pairs which are detected in SigStd are no longer detected in SigStdRed, but luckily
this is not true at all.

Proposition 5.2.1. Any useless critical pair detected by NonMin? or Rewrite? in SigStd is
also detected in SigStdRed.

Proof. Assume that G i is the return value of IncSigCrit a�er the ith iteration step, and let
B i = RedSB(G i). By the above discussion we do not need to take the tail–reduction of the
elements both inG i and B i into account. So it is le� to consider elements, which are in G i ,
but are removed from B i (if no such element exists we are done). Let g be such an element.

160 5 Signature–based criteria to detect useless critical pairs

It is removed from B i since there exists an element h ∈ G i ∩ B i such that lt(h) ∣ lt(g). Let
us assume the (i + 1)st call of IncSigCrit and investigate the di�erences between using G i

and B i as input data. For this we need to look at NonMin? and Rewrite?. Let g i , g j , gk ∈ G
in IncSigCrit such that poly(g i) = g and poly(g j) = h, index(gk) be the current index2 .
Moreover, we assume that gk is just returned by SigRed and new critical pairs with gk and
elements of G need to be generated.

(1) Using G i , lt(g) ∈ SG i . As g ∉ B i , lt(g) ∉ SB i . From this it clearly follows that
#(SG i) > #(SB i). Whenever lt(g i) would detect a useless critical pair in SigStd
we know that there exists lt(g j) ∈ SG i ∩ SB i such that lt(g j) ∣ lt(g i). Moreover, by
Remark 5.1.9 (1) it holds that j < i. It follows that any useless critical pair detected
by NonMin? in SigStd is also detected by NonMin? in SigStdRed.

(2) Next we investigate the di�erences using Rewrite? in SigStd resp. SigStdRed.
Since we generate less critical pairs in SigStdRed than in SigStd we need to check,
if the signature of one of these not generated critical pairs could be used to detect
more useless critical pairs in SigStd. Since g i and g j are both in G the critical pairs(uk gk , ui g i) and (vk gk , v j g j) are considered. By our above assumption it holds that

τ(gk , g j) ∣ τ(gk , g i).
Moreover, by index(gk) >max{i , j} and by assuming ≺i we have that

uk sig(gk) ≻ ui sig(g i)
vk sig(gk) ≻ v j sig(g j).

As j < i by Remark 5.1.9 (1) (gk , g j) is investigated before (gk , g i). Moreover, vk ∣ uk .
�us, two situations can happen:

a) If (gk , g j) is detected to be useless in Rewrite?, then (gk , g i) is detected, too,
as vk ∣ uk .

b) If (gk , g j) is not detected to be useless in Rewrite?, then (gk , g i) is detected
to be useless, since vk ∣ uk , i.e.

S(gk , g i) = uk

vk
S(gk , g j) + k

∑
l=1

wl g l ,

where uk sig(gk) ≻ max≺ {wl sig(g l)∣1 ≤ l ≤ k}.
Hence (gk , g i) is never used in SigStd to detect a useless critical pair.

From Proposition 5.2.1 and our previous discussion on the advantages considering tail–
reduced elements it is clear that computations nearly always (see Remark 5.2.2 below for
an explanation of nearly) bene�t from reducing the intermediate standard bases due to the
following facts:

2�us poly(gk) ≠ g and poly(gk) ≠ h.

5.2 Reducing computational overhead in SigStd 161

▷ less reduction steps,

▷ pre–detection of useless critical pairs due to minimalization, and

▷ faster detection with NonMin? due to less elements in S.

Remark 5.2.2.

(1) Note that the solution of reducing computational overhead by interreducing the in-
termediate standard bases G i a�er each iteration step is nowadays standard in in-
cremental signature–based algorithms. Nevertheless it is important to mention that
Perry and the author where the �rst to present this idea by optimizing F5 in [58]. See
Section 6.2 for more information on this.

(2) �e functioning of this idea is based on the fact that we assume < to be a well–order
in the signature–based setting. Otherwise a terminating computation of a reduced
standard basis B out of a non–reduced standard basis G via RedSB as it is assumed
in Algorithm 39, Line 3, is not provided in general (see Section 1.7). Still, a mini-
mal standard basis can be computed nevertheless, which drops the computational
overhead, too.

(3) In SigStdRed, as presented in Algorithm 39, we do not reduce the last standard
basis. �us the result of SigStdRed need not be the reduced standard basis of the
ideal generated by the input data. One can do another reduction of Gr at the end
before returning the result, but this comptutation can be heavy. Most of the time a
standard basis is enough for further computations, thus it saves time and memory
to not reduce at the end.

(4) Also note that due to the fact that F5 implements (NM) and (RW) quitemore aggres-
sive than all variants presented in the current chapter (being just variants of SigStd)
an optimization in the vein of the one given in this section cannot as easily be done
as illustrated here.

(5) �ere are some situations where SigStd can be faster than SigStdRed. �ose are
quite unusual and not performance–critical at all, but we should mention them here
for the sake of completeness of our discussion:

a) One possibility would be that all intermediate standard bases computed by
IncSigCrit are already reduced. Calling RedSB in SigStdRed produces some
more computational overhead in this situation, but which can be neglected in
comparison to the complete computation of the algorithm w.r.t. memory usage
and time.

b) �e second possibility is that the whole computation is done so fast that reduc-
ing the standard bases inbetween the iteration steps slows done the algorithm
a bit. Considering such ideals the performance of SigStd resp. SigStdRed is
not critical at all.

162 5 Signature–based criteria to detect useless critical pairs

In Section 5.6 we compare signature–based algorithms based on SigStd with those us-
ing SigStdRed as basis in various di�erent examples to illustrate the bene�ts of reducing
the standard bases between iteration steps.

In the remaining of this chapter we assume all variants of the generic signature–based
standard basis algorithm, presented in Section 5.1, to use SigStdRed instead of SigStd.

5.3 An explicit choice in (RW)

In [7] Arri and Perry have presented an algorithm, which can be understood as a gen-
eralization of Faugère’s F5 Algorithm by changing F5’s implementation of (RW).�e nice
fact is that from our recent point of view in this thesis their algorithm is (restricted to our
prede�ned module order ≺i) nothing else but a variant of implementing (NM) and (RW)
in IncSigCrit.

Sadly the authors of [7] have not given their algorithm a concrete name. In this thesis
we denote it AP , by the �rst letter of their respective surname, in the vein of other naming
conventions in the signature–based world.

�e historical reason for this is that our way more general attempt to signature–based
algorithms we have presented in this thesis has been developed �rst in late 2010, preparing
[59], whereas the ideas for [7] go back to 2009. We give the connection to F5 in detail in
Section 6.3 resp. Section 7.4 (see Remark 5.3.1 below):

SigStdRed(IncSigCrit) Section 5.3
GGGGGGGGGGGGGA AP

Section 6.3
D GGGGGGGGGGGGGG F5

�e generalizations of F5’s criteria by Ars and Hashemi (see [9]), Sun and Wang (see
[148]), andZobnin (see [163]) can be understood as special cases of the algorithmpresented
in this section.

Remark 5.3.1. It is important to note that AP as presented in [7] is much more general than
the restricted versionwe state in this section. �is is due to the fact thatAP canbe usedw.r.t.
to any module well–order ≺ and is not restricted to ≺i. �is can lead to non–incemental
signature–based algorithms. We consider those in Section 7.4. �ere we discuss this more
general, module order independent version of AP in detail.

We review some of their de�nitions and state the main theorem of [7]. A�erwards we
merge their ideas to our attempt and see that AP di�ers from SigStdRed just by a special
implementation of (RW).

In [7], the notion of a normal critical pair is de�ned, which restricts a critical pair by
ensuring some properties on its generators. We show that these properties are just special
interpretations resp. implementations of sig–redundancy, (NM), and (RW).

De�nition 5.3.2. We denote the variant of SigStdRed calling IncSigCrit, NonMinAP?,
and RewriteAP? by AP.

5.3 An explicit choice in (RW) 163

De�nition 5.3.3. Let I = ⟨ f1 , . . . , fr⟩ be an ideal in P . We say that a set G of labeled
polynomials such that { f1 , . . . , fr} ⊂ poly(G) is an sig–standard basis for I, if for each not
sig–safe reducible element f ∈ G there exist g ∈ G and a term t ∈ P such that lt(tg) = lt(f)
and sig(tg) = sig(f).

�e main usage of sig–standard bases can be found in�eorem 5.3.5: �ere a computa-
tional approach of sig–standard bases is given. For the complete statement of�eorem 5.3.5
we need some more notation.

De�nition 5.3.4. In IncSigCrit we call a critical pair (u f , vg) normal if

(1) lm(u) siglm(f) ≠ lm(v) siglm(g),
(2) neither u f nor vg are sig–redundant, and

(3) lm(u) siglm(f) = siglm(u f) and lm(v) siglm(g) = siglm(vg).
�eorem 5.3.5. Let G be a �nite set of not sig–safe reducible labeled polynomials whose po-
lynomial parts are in I. If

(1) for each i = 1, . . . , r such that e i ∉ L(Syz(F)) there exists g ∈ G such that siglm(g) =
e i , and

(2) for any f , g ∈ G such that (u f , vg) is a normal critical pair there exist a labeled poly-
nomial h ∈ G and a term t ∈ P such that th is not sig–safe reducible and siglm(th) =
siglm (S(f , g)),

then G is an sig–standard basis for I.

Proof. See proof of�eorem 18 in [7].

Proposition 5.3.6. From every sig–standard basis G for an ideal I ⊂ P one can derive a
standard basis H of I.

Proof. See proof of Proposition 14 in [7].

�ese are the main facts of AP, they can be quite easily translated to �t into SigStdRed.
�e notion of a sig–standard basis is not important in our approach, it is useful the

way the authors describe and embed their ideas in [7], but not needed in our more general
attempt to signature–based standard basis algorithms.

Let us have a closer look at the de�nition of normal critical pairs, which are the ones of
interest in�eorem 5.3.5:

▷ Property (1) is included in�eorem 4.1.18 and thus also in SigStd.

▷ (2) discards critical pairs generated by sig–redundant labeled polyomials. �ose are
also discarded in IncSigCrit.

▷ Property (3) is just a reformulation of (NM), thus it can be implemented viaNonMin? .

From this we can follow:

164 5 Signature–based criteria to detect useless critical pairs

Algorithm 40 AP’s implementation of (NM) (NonMinAP?)

Input: u f a labeled polynomial multiplied by a term, vg a labeled polynomial multiplied
by a term, S = {t1 , . . . , tk} a �nite set of terms in P

Output: TRUE if sig(u f) or sig(vg) is not minimal, FALSE otherwise
1: s ← slt(u f)
2: t ← slt(vg)
3: for (i = 1, . . . , k) do
4: if (ti ∣ s and i < index(f)) then
5: return TRUE
6: if (ti ∣ t and i < index(g)) then
7: return TRUE
8: return FALSE

Lemma 5.3.7. AP implements (NM) similar to IncSigCrit, but extends the criteria check to
both generators of the critical pair (u f , vg).

�is leads to a new implementation of (NM) we present in Algorithm 40.
�e pseudo code should be clear to the most parts, NonMinAP? checks not only the

multiplied generator which corresponds to max≺ { sig(u f), sig(vg)}, but both generators
(see Lines 1 and 2 of Algorithm 40). Due to our module order this leads to the extra
overhead of checking the index of the generator (Lines 4 and 6). Here we do not know
if index(f) resp. index(g) is the current index of IncSigCrit. So it is possible that (one of
them) has a lower index. Let us assume that index(g) is smaller than the current index s.
To discard a critical pair using (NM) we need to ensure the existence of a principal syzygy
whose leading term divides sig(vg). If we �nd an element ti ∈ S such that ti ∣ slt(vg) but
i ≥ index(g), then we cannot build a principal syzygy:

▷ If i = index(g), then ti = lt(g), w = slt(v g)
lt(g)

, and we get a syzygy

w(ge i − ge i) = 0 ∈ P s

▷ If i > index(g), then there exists j < i such that π(e j) = g, w = slt(v g)
lt(t i)

, ti = lt(g i),
and we get

w(g i e j − ge i).
It holds that lm(wge i) ≺ lm(wg i e j). �us we cannot assume to lower the signature
resp. label of vg as it is done in the proof of Lemma 5.1.3. �is is why we need to
require the condition on the indices of the divisors found in S.

It is le� is to see how (RW) is used inAP.�is information is also given by�eorem 5.3.5:
Whereas the �rst property is clearly ful�lled in our incremental approach based on ≺i as
monomial order ≺ on the signatures, the second property is the interesting one:

On the one hand it requires only normal pairs to be considered. �is is checked in AP
byNonMinAP?. It also states that if there are two or more normal critical pairs of the same
signature on the corresponding s–vector, we can freely consider just one of them. �is is

5.3 An explicit choice in (RW) 165

the rewritable criterion of AP. As mentioned already in Remark 5.1.5 one needs to choose
which one of themultiple critical pairs corresponding to the same signature should be kept.
In AP the critical pair is chosen, whose corresponding s–vector has minimal leading term.

Algorithm 41 AP’s implementation of (RW) (RewriteAP?)

Input: u f a labeled polynomial multiplied by a term, vg a labeled polynomial multiplied
by a term,G = {g1 , . . . , gt} a �nite set of labeled polynomials, P = {p1 , . . . , pk} a �nite
set of critical pairs of labeled polynomials

Output: TRUE if h ∈ {u f , vg} such that sig(h) = max≺ { sig(u f), sig(vg)} is detected by
(RW), FALSE otherwise

1: if (sig(u f) ≻ sig(vg)) then
2: h ← f ,w ← u
3: h̃ ← g , w̃ ← v
4: else

5: h ← g ,w ← v
6: h̃ ← f , w̃ ← u
7: for (j = 1, . . . , t) do
8: if (g j ≠ h and sig(g j) ∣ sig(wh)) then
9: m ←

st(wh)
slt(g j)

10: if (m lt(g) < lt(u f − vg)) then
11: return TRUE
12: for (j = 1, . . . , k) do
13: (u′ f ′ , v′g′)← p j

14: if (sig(u′ f ′) ≻ sig(v′g′)) then
15: h′ ← f ′ ,w′ ← u′

16: h̃′ ← g′, w̃′ ← v′

17: else
18: h′ ← g′,w′ ← v′

19: h̃′ ← f ′ , w̃′ ← u′

20: if (h′ = h and w′ ∣ w and h̃′ ≠ h̃) then
21: m ← w

w′

22: if (m lt(u′ f ′ − v′g′) < lt(u f − vg)) then
23: return TRUE
24: else

25: Delete p j from P
26: break
27: return FALSE

Two main di�erences to Algorithm 38 can be found:

▷ In both checks done during the computations of RewriteAP? themultiplierm of the
element in G resp. critical pair in P must be computed such that the leading terms
can be compared (see Lines 9 and 21). If the leading term of the investigated critical
pair is smaller, then it is not discarded, but computed. Considering the second check

166 5 Signature–based criteria to detect useless critical pairs

with elements of P one more step must be done: It is possible that the leading term
of the investigated critical pair is smaller than those of the critical pair already in P.
�en we must remove the critical pair from P and add the investigated one to it.

▷ Moreover, note that in Line 20 we only check for divisibility of sig(u f − vg) by
sig(u′ f ′ − v′g′) and do no longer require equality. �is enables us to discard a lot
more critical pairs than Rewrite?.

Remark 5.3.8.

(1) Besides the optimizations discussed in (2), correctness and termination of AP fol-
lows easily from�eorem 4.2.7.

(2) Note that both, NonMinAP? and RewriteAP? have new properties we have not
proved here so far. NonMinAP? checks both generators of the critical pair, whereas
RewriteAP? needs only divisibility and not equality on signatures. �e correctness
of both optimizations of NonMin? resp. Rewrite? can be found in the proof of
�eorem 18 in [7]. We see in Chapter 6 that F5 implements (NM) and (RW) even
more aggressive, including the optimizations of AP mentioned here. We refer the
reader to this part of the thesis for related proofs.

(3) Note that the pseudo code of RewriteAP? is not optimized at all. For example,
elements whose signature leading term has index smaller than the current one are
never detected by RewriteAP? as for any such wh there exists only h ∈ G having
the same index. �us in Line 8 the if clause is never ful�lled for such elements.

5.4 A variant of AP using sparser polynomials

�is section describes a short variant of AP (and thus of SigStdRed) preferring sparser
polynomials. We have already seen that the only real choice one can make in signature–
based standard basis algorithms is which critical pair to take in (RW). Clearly, some choices
make sense, whereas others, like keeping the pair with largest leading term, does not.

�e variant presented here was �rst mentioned by Perry and the author in [59]. We call
it MM, short for minimal number of monomials, which describes the main idea: Having
several elements of the same signature, then keep the sparsest element. �is is in the vein
of the ideas behind Brickenstein’s SlimGB presented in Section 2.6. �ere, during the re-
duction steps, polynomials are dynamically exchanged with sparser equivalents w.r.t. the
intermediate standard basis.

De�nition 5.4.1. We denote the variant of SigStdRed calling IncSigCrit, NonMinAP?,
and RewriteMM? by MM.

5.4 A variant of AP using sparser polynomials 167

Algorithm 42MM’s implementation of (RW) (RewriteMM?)

Input: u f a labeled polynomial multiplied by a term, vg a labeled polynomial multiplied
by a term,G = {g1 , . . . , gt} a �nite set of labeled polynomials, P = {p1 , . . . , pk} a �nite
set of critical pairs of labeled polynomials

Output: TRUE if h ∈ {u f , vg} such that sig(h) = max≺ { sig(u f), sig(vg)} is detected by
(RW), FALSE otherwise

1: δ ← #(supp(poly(u f − vg)))
2: if (sig(u f) ≻ sig(vg)) then
3: h ← f ,w ← u
4: h̃ ← g , w̃ ← v
5: else
6: h ← g ,w ← v
7: h̃ ← f , w̃ ← u
8: for (j = 1, . . . , t) do
9: if (g j ≠ h and sig(g j) ∣ sig(wh)) then
10: m ←

st(wh)
slt(g j)

11: if (#(supp(poly(g j))) < δ) then
12: return TRUE
13: for (j = 1, . . . , k) do
14: (u′ f ′ , v′g′)← p j

15: if (sig(u′ f ′) ≻ sig(v′g′)) then
16: h′ ← f ′ ,w′ ← u′

17: h̃′ ← g′, w̃′ ← v′

18: else

19: h′ ← g′,w′ ← v′

20: h̃′ ← f ′ , w̃′ ← u′

21: if (h′ = h and w′ ∣ w and h̃′ ≠ h̃) then
22: m ← w

w′

23: if (m lt(u′ f ′ − v′g′) < lt(u f − vg)) then
24: return TRUE
25: else

26: Delete p j from P
27: break
28: return FALSE

We give the pseudo code of this idea in Algorithm 42, again highlighting the di�erences
to Algorithm 41.

�e only di�erence can be found in Line 11 wherewe compare the number ofmonomials
in poly(g j) to those in poly(u f − vg), instead of comparing the leading terms. Clearly,

#(supp(poly(g j))) = #(supp(poly(mg j))), thus the check in Line 11 is consistent and
saves the computation of multiplying poly(g j) by m. As one can see there is no change to
RewriteAP? in the second for loop of RewriteMM?. One can freely choose which critical
pair to keep, but we found out that AP’s choice is the most e�cient in this situation. �e

168 5 Signature–based criteria to detect useless critical pairs

question arises why we do not check for minimality of monomials there, too? �e point is
that one needs to store the lengths of the corresponding s–vectors of the critical pairs. �e
overhead for all those computations is too high to bene�t from them. We see in Section 5.6
that despite the good idea of MM in general, the computations do not bene�t from this
decision, to the contrary, they get slower.

Clearly, correctness and termination of MM follows from those of AP.

5.5 G2V – Complete reduction,weakened (RW)

In 2010 Gao, Guan, and Volny presented their algorithm G2V in [76]. �e algorithm
is quite �exible in the sense that one cannot only compute the standard basis of an ideal
I = ⟨p1 , . . . , pr⟩ ⊂ P , but also the ideal quotients ⟨p1 , . . . , pi−1⟩ ∶ pi . �is can also be done
by any other signature–based standard basis algorithm (see Section 7.2 for more details).
In this section we focus on the standard basis computation and see that G2V is nothing
else but a rather straightforward implementation of SigStdRed with a complete sig–safe
reduction and a so�er variant of (RW).

De�nition 5.5.1. We denote the variant of SigStdRed calling IncSigG2V, NonMinG2V?,
and RewriteG2V? by G2V.

G2V, as stated in [76], does not keep any label for elements from the previously com-
puted standard basis G i−1, but sets them to zero. In more detail, G2Vmaintains two lists of
polynomials, U ,V ∈ P . �e elements the algorithm works with are pairs (u, v) ∈ U × V ,
whereas u must be thought of as a signature of the polynomial v. So, assuming the be-
ginning of the ith iteration of IncSigCrit, for each element pk ∈ G i−1 G2V generates the
element (0, pk).�e new element fi from the initial set of generators of I is stored as (1, fi).

We can easily translate this into our setting, as illustrated in Algorithm 45, the imple-
mentation of IncSigCrit for G2V: All labeled polynomials gk with polynomial part in
G i−1 are initialized with label(gk) = 0 (see Line 6). �e labeled polynomial corresponding
to the generator fi of I, entering the computations at this point, is generated as usual by
gs = (es , ps) (see Line 8). �e same holds for all newly computed labeled polynomials of
the current index s (see Line 32). We can de�ne a map

ψ ∶ P s ×P Ð→ P ×P
g z→ (slt(g), poly(g)),

which does nothing else but to extract the term out of the signature of the labeled poly-
nomial, i.e. it forgets the index. Due to the fact that G2V does only keep data u ≠ 0 if
the corresponding polynomial is of current index, we have a one–to–one correspondence
between

(1) labeled polynomials, whose labels are not equal to 0 if and only if their index is
maximal, and

5.5 G2V – Complete reduction, weakened (RW) 169

(2) pairs of polynomials in U × V ⊂ P ×P .

It follows that we can keep our notation of labeled polynomials and discuss G2V in our
setting. Having uni�ed notations it is le� to compare the main parts of SigStdRed and
G2V, namely the reduction process and the criteria checks.

In G2V a new notion is de�ned, the super top–reduction. Again, we can easily translate
this to our notation using labeled polynomials.

De�nition 5.5.2. A labeled polynomial f is called super top–reducible if there exist a labeled
polynomial g and a term t ∈ P such that

t lt(g) = lt(f) and t sig(g) = sig(f).
InG2V those super top–reductions are not allowed in the sig–safe reduction steps. �us

we get a slightly di�erent implementation of SigRed for G2V:

Algorithm 43 G2V’s sig–safe reduction algorithm (SigRedG2V)

Input: f a labeled polynomial, G = {g1 , . . . , gs} a �nite set of labeled polynomials
Output: h a labeled polynomial sig–safe reduced w.r.t. G
1: s ← siglm(f)
2: c ← slc(f)
3: p ← poly(f)
4: while (p ≠ 0 and Dp ← {g ∈ G ∣ lm (poly(g)) ∣ lm(p)} ≠ ∅) do
5: Choose any g ∈ Dp .

6: u ←
lt(p)

lt(poly(g))

7: if (lm(u) siglm(g) ≺ s) then
8: p ← p − u poly(g)
9: else if (lm(u) siglm(g) = s and lc(u) ≠ c) then
10: p ← p − u poly(g)
11: c ← c − lc(u)
12: h ← (c siglm(f), p)
13: return h

As one can see the only real di�erence between SigRed and SigRedG2V is given in
Lines 9–11. Instead of checking only

lm(u) siglm(g) ≺ siglm(f)
as it is done in SigRed, SigRedG2V also checks the whole signature including the co-
e�cients. So the only reductions which do not take place are sig–unsafe or super top–
reductions. Looking again at De�nition 4.1.13 we see that this is just the di�erence be-
tween a complete and a semi–complete sig–safe reduction. Moreover, we have shown in
Lemma 4.2.5 that there cannot be a complete sig–safe reduction in SigRedG2V without
a semi–complete sig–safe reduction in SigRed. �us comparing the coe�cients (Line 9)
and adjusting them (Line 11) enables us to do complete sig–safe reductions. In the end,

170 5 Signature–based criteria to detect useless critical pairs

Algorithm 43 returns the reduced labeled polynomial with possibly adjusted label resp.
signature c siglm(f) (Line 12). It could be possible that a reduction of f by some element
g, which SigRedwould not allow, can be processed in SigRedG2V, but there always exists
an element h ∈ G such that f can be reduced by h in SigRed in this situation. So the only
question that arises is the one of the better reducer at this point of the computations, g or
h?

Let us get back to the essential point that G2V does not store any label for elements of
G i−1. �is is a small change, since all situations where the label resp. its leading term is
important it is checked, if the signature of an element is of current index. �e signatures
of the elements from G i−1 have by de�nition smaller index and thus are not considered
NonMin? or Rewrite? at all. Setting the labels of those elements to 0 leads to three main
di�erences to current index elements:

(1) �ey are not checked by NonMin?, since their signature is 0 and 0 is not divisible
by any term in P .

(2) �ey are checked neither by Rewrite? as there exists no other element of the same
index in the current iteration round.

(3) It is safe to reduce with these elements as the leading term of their signature is always
smaller than the leading term of the signature of the element to be reduced (which
has the current index).

In fact, G2V implements (NM) just like the generic signature–based algorithm in Sec-
tion 5.1 does. So we can apply the following equality:

NonMinG2V? = NonMin? .

As a last step in our discussion of G2V we need to discuss its implementation of (RW). At
a �rst glance it seems that G2V has not implemented (RW) at all, since it is not mentioned
in [76]. Having a closer look at the Singular library source code Gao, Guan, and Volny
have made publicly available at

http://www.math.clemson.edu/~sgao/code/g2v.sing

one can �nd a rather so� implementation of (RW) at the point where new critical pairs are
generated. �is leads to the fact that IncSigG2V calls RewriteG2V? only in Line 13 and
Line 29 (see Algorithm 45), but not in Line 17, where only NonMinG2V? is called. �is
lies in the nature of the so�er implementation of RewriteG2V?: In G2V (RW) detects a
useless critical pair if and only if for a newly generated critical pair (u f , vg) there is another
critical pair (u′ f ′ , v′g′) in the pair set P such that

max
≺
{ sig(u f), sig(vg)} = max

≺
{ sig(u′ f ′), sig(v′g′)}.

http://www.math.clemson.edu/~sgao/code/g2v.sing

5.5 G2V – Complete reduction, weakened (RW) 171

In this situation G2V keeps only one of the two critical pairs (by sig–redundancy it
is clear that only one of these is needed). G2V assumes that the newly generated pair(u f , vg) has some better properties than (u′ f ′ , v′g′), thus it deletes (u′ f ′ , v′g′) from the
pair set and inserts (u f , vg) later on. In Algorithm 44 we present the pseudo code of
RewriteG2V?. Due to the fact that it is quite stripped down we do not highlight changed
lines, but give a complete new pseudo code. One can see that a check is done with quite
less comparisons and multiplications. Note that it does not check (u f , vg) with elements
already in G as it is done in Rewrite?, RewriteAP?, and RewriteMM?, thus less useless
critical pairs can be detected.

Algorithm 44 G2V’s implementation of (RW) (RewriteG2V?)

Input: u f a labeled polynomial multiplied by a term, vg a labeled polynomial multiplied
by a term, P = {p1 , . . . , pk} a �nite set of critical pairs of labeled polynomials

Output: FALSE
1: s ←max≺ { sig(u f), sig(vg)}
2: for (j = 1, . . . , k) do
3: (u′ f ′ , v′g′)← p j

4: t ←max≺ { sig(u′ f ′), sig(v′g′)}
5: if (s = t) then
6: Delete p j from P
7: break
8: return FALSE

Remark 5.5.3.

(1) RewriteG2V? always returns FALSEdue to its description strongly related toRewrite? .
Whenever a critical pair is detected, the one in P is deleted, but the actual critical
pair has to be added to P later on. For the sake of unifying notations and letting the
theoretical changes a�ect the pseudo code as less as possible we keep the boolean
framework of Rewrite? also for RewriteG2V?.

(2) Note that the proof of correctness of G2V is straightforward using the results of Sec-
tion 5.1. Moreover, termination of G2V is proven by Corollary 5.1.7, too. �is proof
appeared initially in [59] and is the �rst publicly available proof of G2V’s termina-
tion.

�is �nishes our discussion about G2V, which is the last variant of SigStd presented
at this point. We close this Chapter with an extensive comparison of all presented variants
of SigStd resp. SigStdRed.

172 5 Signature–based criteria to detect useless critical pairs

Algorithm 45 G2V’s implementation of IncSigCrit (IncSigG2V)

Input: fi a polynomial, G i−1 = {p1 , . . . , ps−1} a standard basis for ⟨ f1 , . . . , fi−1⟩
Output: B a standard basis for ⟨ f1 , . . . , fi⟩ w.r.t. <
1: B ← ∅,G ← ∅, P ← ∅
2: S ← ∅
3: ps ← fi
4: t ← s
5: for (k = 1, . . . , s − 1) do
6: gk ← (0, pk)
7: S ← S ∪ {lt(pk)}
8: gs ← (es , ps)
9: G ← {g1 , . . . , gs}
10: for (k = 1, . . . , s − 1) do
11: u ← lc(gk) τ(gs ,gk)lm(gs)

12: v ← lc(gs) τ(gs ,gk)lm(gk)

13: if (!NonMinG2V? (ugs , vgk , S) and !RewriteG2V? (ugs , vgk , P)) then
14: P ← P ∪ {(ugs , vgk)}
15: while (P ≠ ∅) do
16: Choose (u f , vg) from P with max≺ {u sig(f), v sig(g)}minimal w.r.t. ≺.
17: if (!NonMinG2V?(u f , vg , S)) then
18: P ← P/ {(u f , vg)}
19: l ← max≺ {u sig(f), v sig(g)}
20: r ← (l , u poly(f) − v poly(g))
21: r ← SigRedG2V(r,G)
22: if (poly(r) = 0) then
23: S ← S ∪ {slt(r)}
24: else if (poly(r) ≠ 0 and r not sig-redundant w.r.t. G) then
25: for (k = 1, . . . , t) do
26: u ← lc(gk) τ(r ,gk)lm(r)

27: v ← lc(r) τ(r ,gk)
lm(gk)

28: if (lm(u) siglm(r) ≠ lm(v) siglm(gk)) then
29: if (!NonMinG2V? (ur, vgk , S) and !RewriteG2V? (ur, vgk , P)) then
30: P ← P ∪ {(ur, vgk)}
31: t ← t + 1
32: gt ← r
33: G ← G ∪ {gt}
34: B ← poly(G)
35: return B

5.6 Experimental results 173

5.6 Experimental results

A�erwehave given lots of di�erent variants of SigStd wewant to compare them. Before
we can do this a small interlude of how we compare the algorithms shall give the reader an
idea on the accuracy we try to achieve.

All algorithms presented throughout sections 5.1 – 5.5 di�er only in minor parts, most
of the time only in their implementation of (NM) and (RW).�us the following underlying
structure of our test suite makes sense: We have implemented the overall, generic struc-
ture of SigStd resp. SigStdRed without using any criteria (see Section 4.2). Keeping this
implementation without any changes to data structures, polynomial representations, etc.,
we have added the corresponding implementations of (NM) and (RW) for SigStd resp.
SigStdRed with generic criteria, AP, MM, and G2V. Using this the best possible compar-
ison can be done. �e source code of the di�erent algorithms distinguish in at most 127
lines of code, compared to nearly 3,300 lines of code overall quite neglectable.

�e algorithms are implemented in the Singular kernel in the programming language
C++. Note that the code is open source and publicly available at

git@github.com:ederc/Sources.git3.

�e implementation is done not only in the most optimized way to compare the di�erent
algorithms, but also focusses on the e�ciency of the computations. Still we should note
the following.

Remark 5.6.1. �e implementation presented in this section is not intended to be compa-
rable with Singular ’s highly e�cient and optimized standard basis algorithm implemen-
tation. Our implementation is slower due to the following facts:

(1) We do not want to optimize any part of the algorithm all variants are sharing due to
the problem that one of the variants could take more an advantage out of this than
another variant.

(2) All signature–based algorithms presented here, being derivates of F5, as we see in
the next chapter, have to cope with a problem their functioning is based on: �ey
use an incremental structure, which can slow done computations due to not using
all input data in an optimal way. We show that this is a �eld of high research in the
signature–based world these days

In Section 7.4 we give more insight in this area, which is of great importance in the
signature–based world.

All examples where computed on a computer with the following speci�cations:

▷ 2.6.31–gentoo–r6 GNU/Linux 64–bit operating system,

▷ INTEL® XEON® X5460 @ 3.16GHz processor,

3You can get the git repository by typing git clone git@github.com:ederc/Sources.git. Each algo-
rithm has its own branch.

git@github.com:ederc/Sources.git

174 5 Signature–based criteria to detect useless critical pairs

Figure 5.6.1: Coloration of results for variants of SigStd

▷ 64 GB of RAM, and

▷ 120 GB of swap space.

For all computations we used the latest4 developer version of Singular 3–1–3, revision
14,372 in the SVN trunk available at

http://www.singular.uni-kl.de/svn/trunk/.

A complete list of the test cases can be found in Appendix A. In this series of tests we
always compute in the respective polynomial ring over a �eld of characteristic 32, 003 using
the graded reverse lexicographical order <dp.

�e series of examples we give results for in the following cover di�erent settings, from
complete intersections to overdetermined systems, from inhomogeneous to homogeneous
input data.

In Figure 5.6 we explain how the di�erent colors of the results presented in the tables
have to be interpreted: �e best results are always written in blue, the worst in red. As we
give not only timings, but also memory consumption, and various other data, we cannot
be more precise with terms like “best” or “worse”. �is should be no problem for the reader
as it is clear from the context of the table.

�e table which can be understood easiest is Table 5.2: It shows the number of zero re-
ductions not rejected in each of the 5 algorithms during the corresponding computations.
As one can see all algorithms share the same number of zero reductions. �is can be in-
terpreted in the following way:�e implementation of (NM), which is equal in all variants
discards nearly all critical pairs whichwould lead to a zero reduction. �e di�erences in the
implementation of (RW) does not alter the behaviour of the algorithms w.r.t. zero reduc-
tions. Note that even SigStd, which does not interreduce the intermediate standard bases,
does not compute more zero reductions. �is again is based on the strength of NonMin?.

Looking at the timings in Table 5.1 an overall statement is the following: AP and G2V
are the fastest of the 5 given algorithms. Whereas G2V is mostly the fastest or second
fastest algorithm, AP sometimes loses track, e.g. F-744(-h) and Katsura-11(-h). On
the other hand, AP is way faster, even than G2V, in examples like Cyclic-7(-h) and
Eco-x(-h).

Clearly, SigStd must handle all the overhead of not interreducing intermediate stan-
dard bases which slows down the algorithm noticeable. Its timings are getting better with

4It is the current developer version of Singular at the point we start the �rst computation of the series. To keep
the computations comparable we �x this revision number of Singular for all experimental results given in
this thesis.

http://www.singular.uni-kl.de/svn/trunk/

5.6 Experimental results 175

the Katsura-x(-h) examples, as those are regular sequences, where no zero reduction at
all takes place and any useless critical pair is already handled by (NM). �ere, especially
in the smaller test sets, SigStd bene�ts from the overhead of computational time needed
interreducing intermediate standard bases which is done by the other algorithms only.

Moreover, one should note that, besides AP which actively looks at the polynomial
leading terms in its (RW) implementation, all other algorithms really slow down when
computing standard bases of inhomogeneous ideals. In Section 7.1 we give more details
on this behaviour of signature–based algorithms in general. Note that the algorithms, as
implemented, are not able to compute the inhomogeneous exampleEco-11 in a reasonable
amount of time, whereas a standard basis for Eco-11-h can be given.

Table 5.3 is the quite opposite of Table 5.1 at �rst esteem. Giving it a closer look it turns
out that nearly all algorithms behave the very similar to the timings table, but AP. In nearly
all examples AP needs the most memory during the computations. Comparing this with
its quite good timings, this is a strange behaviour and needs some clari�cation: As ex-
plained in the prelude of this section we have implemented all 5 algorithms based on one
basic underlying framework. We changed only very few lines of code for the di�erent al-
gorithms to ensure a comparison of the di�erent ways (NM) and (RW) are implemented
as precise as possible. However, AP compares the leading terms of the critical pairs for its
implementation of (RW). In a specialized implementation one would keep this data stored
in the structure of the critical pair. Since we decided to use the same data structures for all
5 algorithms, we cannot do this in AP and need to compute the leading terms again and
again when checking (RW). Whereas it does not cost much time to get the leading term
out of the critical pair, comparing two terms consumes memory to store those terms and
the result of the comparison. Calculating roughly the number of calls of RewriteAP? this
explains the memory overhead of AP compared to the other 4 algorithms.

Tables 5.4 and 5.5 need to be taken into account together. Whereas the �rst one presents
the number of critical pairs not detected by any criterion in the algorithm, and thus fur-
ther processed, the later one gives us the complete number of all single reductions steps
that have taken place during the computations. �e clear winner of these two properties
is AP: It detects the most useless critical pairs and does the fewest reduction steps of all
algorithms. �e fact that it discards the most critical pairs follows from its sophisticated
implementation of (RW).�e fact that it computes so much less single reduction steps is
not only based on the fact that it handles less critical pairs, but it is also a consequence of
AP’s implementation of (RW) keeping the elements of lowest possible leading term. �is
has quite astonishing e�ects as we can see in Table 5.5: In nearly all examples AP computes
less than half the number of reduction steps the other algorithms do. �inking of MM as
being just a variant of AP preferring sparser polynomials the di�erences in the results are
quite big. MM performs even worse than G2V in most of the examples. �e main prob-
lem of MM is that favouring sparse polynomials it keeps critical pairs of the �rst labeled
polynomials of the iteration steps, since those have the fewest terms in general. �is leads
to a recomputation of reduction steps the generators of other critical pairs, which e.g. AP
keeps instead, have already been undergone.

As a last criterion to distinguish the given algorithms we present the number of ele-
ments in the resulting standard bases. Note that SigStd does not interreduce intermediate
standard bases, whereas the other does. However, no algorithm reduces the result of the

176 5 Signature–based criteria to detect useless critical pairs

last iteration of IncSigCrit.
Clearly it follows that the number of elements in G computed by SigStd is always the

largest one. �e astonishing outcomeof Table 5.6 are the numbers of the other 4 algorithms:
they are all the same! �is means that their di�erences in (RW) does not have an e�ect on
the number of elements computed at all. All start with the very same reduced standard
basis as input for their last iteration step. In there, the same number of elements is added
toG. �is again shows the strength that lies in (NM), but also the impact of the restricting
sig–safe reduction process.

With this we �nish our discussion of this canonical derived signature–based standard
basis algorithms. We have presented di�erent possible attempts and compared them in
some basic features that are most interesting in terms of standard basis computations.
Problems with inhomogeneous computations as well as the incremental structure of the
algorithms are discussed in detail in Section 7.1 resp. 7.4. Next we start an in–depth charac-
terization of Faugère’s F5 Algorithm, which turns out to be a way more aggressive variant
of SigStd.

5.6
E
xperim

en
tal

resu
lts

177

Test case SigStd SigStdRed AP MM G2V

Cyclic-7-h 67.180 41.280 6.090 31.900 26.900

Cyclic-7 66.210 40.230 5.950 31.230 26.350

Cyclic-8-h 73, 903.890 21, 090.780 14, 645.590 15, 470.990 13, 991.890

Cyclic-8 69, 356.880 19, 468.020 14, 078.000 14, 369.790 12, 973.530

Eco-8-h 0.470 0.450 0.210 0.440 0.410

Eco-8 0.500 0.490 0.080 0.490 0.480

Eco-9-h 13.440 13.020 2.960 12.870 11.870

Eco-9 29.400 28.950 1.630 29.020 29.110

Eco-10-h 420.520 418.410 127.190 407.930 386.680

Eco-10 1, 548.090 1, 554.970 67.410 1, 526.530 1, 492.900

Eco-11-h 14, 948.500 14, 973.920 4, 521.250 14, 486.700 13, 691.810

F-633-h 0.000 0.000 0.010 0.010 0.000

F-633 0.000 0.010 0.000 0.000 0.000

F-744-h 62.330 40.020 44.910 39.200 34.150

F-744 52.840 31.580 42.700 29.370 28.760

F-855-h 2, 414.730 1, 349.680 492.980 1, 266.440 1, 279.630

F-855 7, 005.730 1, 844.650 182.390 1, 437.890 1, 071.850

Gonnet-83-h 37.620 12.760 8.920 11.170 10.890

Katsura-8-h 0.050 0.070 0.050 0.050 0.050

Katsura-8 0.060 0.060 0.050 0.060 0.040

Katsura-9-h 0.560 0.580 0.450 0.550 0.400

Katsura-9 0.540 0.580 0.440 0.540 0.400

Katsura-10-h 5.820 6.220 5.170 6.590 4.430

Katsura-10 5.730 6.150 5.110 6.490 4.360

Katsura-11-h 69.900 84.210 74.050 84.100 62.600

Katsura-11 65.170 76.860 66.590 77.540 56.760

Schrans-Troost-h 6.020 6.580 3.160 6.110 4.590

Table 5.1: Time needed to compute a standard basis, given in seconds.

178 5 Signature–based criteria to detect useless critical pairs

Test case SigStd SigStdRed AP MM G2V

Cyclic-7-h 36 36 36 36 36

Cyclic-7 36 36 36 36 36

Cyclic-8-h 244 244 244 244 244

Cyclic-8 244 244 244 244 244

Eco-8-h 57 57 57 57 57

Eco-8 0 0 0 0 0

Eco-9-h 120 120 120 120 120

Eco-9 0 0 0 0 0

Eco-10-h 247 247 247 247 247

Eco-10 0 0 0 0 0

Eco-11-h 502 502 502 502 502

F-633-h 2 2 2 2 2

F-633 0 0 0 0 0

F-744-h 323 323 323 323 323

F-744 0 0 0 0 0

F-855-h 835 835 835 835 835

F-855 0 0 0 0 0

Gonnet-83-h 2,005 2,005 2,005 2,005 2,005

Katsura-8-h 0 0 0 0 0

Katsura-8 0 0 0 0 0

Katsura-9-h 0 0 0 0 0

Katsura-9 0 0 0 0 0

Katsura-10-h 0 0 0 0 0

Katsura-10 0 0 0 0 0

Katsura-11-h 0 0 0 0 0

Katsura-11 0 0 0 0 0

Schrans-Troost-h 0 0 0 0 0

Table 5.2: Number of zero reductions computed by the algorithms.

5.6
E
xperim

en
tal

resu
lts

179

Test case SigStd SigStdRed AP MM G2V

Cyclic-7-h 305.093 216.132 638.073 180.627 155.201

Cyclic-7 305.594 216.137 637.573 180.627 155.202

Cyclic-8-h 40, 514.258 14, 550.527 70, 500.524 11, 049.046 10, 387.808

Cyclic-8 34, 775.470 12, 494.244 60, 444.643 9, 490.331 8, 917.106

Eco-8-h 22.547 21.576 45.065 21.076 20.600

Eco-8 12.515 11.529 12.026 11.529 12.036

Eco-9-h 186.765 179.826 350.688 177.826 176.957

Eco-9 138.072 134.605 90.595 134.105 139.133

Eco-10-h 1, 588.217 1, 552.831 2, 982.387 1, 533.829 1, 547.097

Eco-10 1, 384.822 1, 367.438 666.817 1, 353.436 1, 394.078

Eco-11-h 13, 695.384 13, 525.094 26, 206.020 13, 279.561 13, 376.611

F-633-h 0.000 0.036 0.536 0.036 0.036

F-633 0.000 0.035 0.535 0.035 0.034

F-744-h 368.775 250.779 458.346 236.260 207.322

F-744 174.631 102.110 133.606 92.110 84.134

F-855-h 4, 735.116 3, 199.016 5, 876.375 3, 101.008 3, 065.703

F-855 4, 299.398 2, 361.621 1, 228.474 1, 904.102 1, 518.127

Gonnet-83-h 102.887 81.870 193.013 78.870 76.963

Katsura-8-h 2.500 2.000 8.000 2.000 1.500

Katsura-8 2.500 2.000 8.000 2.000 1.500

Katsura-9-h 9.500 7.000 41.000 7.000 6.500

Katsura-9 9.500 7.000 41.000 7.000 6.500

Katsura-10-h 39.500 28.516 212.046 28.016 25.521

Katsura-10 39.500 28.516 212.546 28.016 25.521

Katsura-11-h 185.545 129.085 1, 295.758 127.585 116.098

Katsura-11 162.542 113.583 1, 133.735 111.583 101.598

Schrans-Troost-h 45.028 31.537 113.555 31.037 29.541

Table 5.3: Memory used to compute a standard basis, given in Megabyte.

180 5 Signature–based criteria to detect useless critical pairs

Test case SigStd SigStdRed AP MM G2V

Cyclic-7-h 4,868,209 3,194,383 93,742 2,407,166 1,915,620

Cyclic-7 4,868,209 3,194,383 93,742 2,407,166 1,915,620

Cyclic-8-h 624,588,332 189,526,325 49,444,223 127,025,633 118,873,460

Cyclic-8 624,588,332 189,526,325 49,444,223 127,025,633 118,873,460

Eco-8-h 72,348 72,140 15,583 70,961 69,087

Eco-8 72,138 72,107 10,161 71,124 70,144

Eco-9-h 673,572 672,973 112,285 659,967 654,585

Eco-9 862,776 862,683 83,911 847,575 824,967

Eco-10-h 6,259,660 6,258,064 904,936 6,083,158 6,099,258

Eco-10 10,201,164 10,200,912 869,101 9,927,104 9,580,146

Eco-11-h 56,484,340 56,480,296 7,787,226 54,221,419 55,307,100

F-633-h 671 664 389 637 681

F-633 561 554 319 556 540

F-744-h 2,203,159 1,623,992 636,295 1,458,884 1,103,524

F-744 1,224,352 748,585 249,228 606,369 481,477

F-855-h 38,155,078 25,114,845 5,408,786 23,749,896 23,212,624

F-855 39,102,121 19,477,654 1,749,296 12,941,981 8,085,517

Gonnet-83-h 180,061 145,494 84,203 121,245 120,296

Katsura-8-h 3,694 3,647 1,626 3,416 1,780

Katsura-8 3,694 3,647 1,626 3,416 1,780

Katsura-9-h 14,950 14,857 5,309 13,633 5,729

Katsura-9 14,950 14,857 5,309 13,633 5,729

Katsura-10-h 57,479 58,495 17,868 55,317 19,403

Katsura-10 57,479 58,495 17,868 55,317 19,403

Katsura-11-h 238,219 240,294 60,965 213,224 66,760

Katsura-11 238,219 240,294 60,965 213,224 66,760

Schrans-Troost-h 59,817 57,127 14,167 52,946 19,628

Table 5.4: Number of all reduction steps during the computations.

5.6 Experimental results 181

Test case SigStd SigStdRed AP MM G2V

Cyclic-7-h 3,496 3,072 914 3,072 3,072

Cyclic-7 3,496 3,072 914 3,072 3,072

Cyclic-8-h 37,260 24,600 20,086 24,600 24,600

Cyclic-8 37,260 24,600 20,086 24,600 24,600

Eco-8-h 2,147 2,012 694 2,012 2,012

Eco-8 821 796 398 796 796

Eco-9-h 6,141 5,794 1,852 5,794 5,794

Eco-9 1,997 1,933 954 1,933 1,933

Eco-10-h 17,379 16,535 5,148 16,535 16,535

Eco-10 4,742 4,587 2,337 4,587 4,587

Eco-11-h 49,079 47,105 14,994 47,105 47,105

F-633-h 80 80 56 80 80

F-633 74 74 54 74 74

F-744-h 4,090 3,451 2,221 3,451 3,452

F-744 1,467 1,280 899 1,280 1,280

F-855-h 16,442 14,197 6,532 14,197 14,197

F-855 7,206 6,365 3,309 6,365 6,366

Gonnet-83-h 12,407 10,241 7,573 10,241 10,248

Katsura-8-h 120 120 120 120 120

Katsura-8 120 120 120 120 120

Katsura-9-h 247 247 247 247 247

Katsura-9 247 247 247 247 247

Katsura-10-h 502 502 502 502 502

Katsura-10 502 502 502 502 502

Katsura-11-h 1,013 1,013 1,013 1,013 1,013

Katsura-11 1,013 1,013 1,013 1,013 1,013

Schrans-Troost-h 469 461 397 461 461

Table 5.5: Number of critical pairs not detected by the respective criteria used.

182 5 Signature–based criteria to detect useless critical pairs

Test case SigStd SigStdRed AP MM G2V

Cyclic-7-h 749 658 658 658 658

Cyclic-7 749 658 658 658 658

Cyclic-8-h 3,865 2,611 2,611 2,611 2,611

Cyclic-8 3,865 2,611 2,611 2,611 2,611

Eco-8-h 356 249 249 249 249

Eco-8 294 187 187 187 187

Eco-9-h 721 499 499 499 499

Eco-9 595 373 373 373 373

Eco-10-h 1,438 979 979 979 979

Eco-10 1,184 725 725 725 725

Eco-11-h 2,901 1,968 1,968 1,968 1,968

F-633-h 58 56 56 56 56

F-633 58 56 56 56 56

F-744-h 1,252 204 204 204 204

F-744 694 87 87 87 87

F-855-h 2,277 688 688 688 688

F-855 2,012 148 148 148 148

Gonnet-83-h 2,673 1,035 1,035 1,035 1,035

Katsura-8-h 128 105 105 105 105

Katsura-8 128 105 105 105 105

Katsura-9-h 256 202 202 202 202

Katsura-9 256 202 202 202 202

Katsura-10-h 512 399 399 399 399

Katsura-10 512 399 399 399 399

Katsura-11-h 1,024 784 784 784 784

Katsura-11 1,024 784 784 784 784

Schrans-Troost-h 398 189 189 189 189

Table 5.6: Size of the resulting standard basis.

6 Faugère’s F5 Algorithm

In the proceedings of the ISSAC’02 conference Faugère published his F5 Algorithm
([63]).�is algorithm is nothing else but the ancestor of all (incremental) signature–based
algorithms presented in this thesis. Nevertheless F5 can be understood as the most aggres-
sive variant of SigStd, as we see in the following. Due to this fact we decided to discuss
F5 a�er we have already discussed the other variants, although F5 is scheduled before each
algorithm presented in Chapter 5.

F5 is famous for its great performance computing standard bases. Especially in the
situation of regular sequences as input, F5’s criteria rejecting useless data are very powerful,
not computing any zero reduction at all. We see that this holds for all variants of SigStd
previously mentioned, too. Moreover, using his initial implementation of F5, Faugère was
the �rst who computed a standard basis for Cyclic-10 over a �eld of characteristic p,
p prime. Also in the �eld of cryptography and cryptanalysis F5 is well–known, e.g. for
breaking some previously untractable HFE systems ([19, 64, 68]).

�ere are a lot of open questions le� a�er reading [63]. Whereas Faugère presented his
ideas in full, some gaps in the essential proofs as well as some issues considering perfor-
mance were given. First improvements in understanding F5 were done by Stegers in [144].

184 6 Faugère’s F5 Algorithm

In this chapter F5 is not only presented and explained in detail, we also show the con-
nections and di�erences to the algorithms presented in Chapter 5.

�e main points of our discussion are:

(1) How to prove the correctness of F5? �ere exist various attempts of this task, but
none of them provide a gapless and correct proof. We give a complete proof together
with an in–depth presentation of F5 in Section 6.1.

(2) Do there exist optimizations of F5? We present various in this chapter, the most sig-
nifcant being the variant F5C in Section 6.2. It shows how to reduce computational
overhead to a minimum and improve F5’s performance by a large factor.

(3) One of the hardest problems around F5 is to prove its termination. Until now no
complete and correct proof of this exists to the knowledge of the author. Di�erent
variants ensuring termination are already known, but all of them lack F5’s perfor-
mance due to introducing a huge overhead in the computations. In Section 6.5 we
present another variant of F5, ensuring termination with no penalty on performance
at all.

�e author has tackled the above mentioned problems in [55, 56], together with John
Perry in [58], and together with Justin Gash and John Perry in [57]. �e ideas discussed in
this chapter are initially presented in those publications, whereby lots of generalizations of
these attempts are presented for the �rst time in this thesis.

Some other ideas of generalization and optimization, sometimes just specializations of
our research can be found in various publications of the last years, e.g. [8–10,71,78,148,163]
et al. Signature–based standard basis algorithms are a �eld of high research these days, a
lot of new ideas and constructions can be expected in the near future, understanding the
special behaviour of these algorithms more and more.

6.1 Faugère’s initial presentation of F5

In this section we start our discussion of F5 giving the algorithm in its initial form as
presented in [63]. Explaining the underlying ideas in constructing an e�cient standard
basis algorithm we use the notations previously de�ned in Chapters 4 and 5. Based on this
we can easily use already found aspects and compare F5 with SigStd and its variants.

Since we guess that most readers are either not at all familiar with F5 or possibly only
aware of [63], we focus on introducing F5 in this vein. A complete classi�cation of the algo-
rithm in the �eld of signature–based standard basis algorithms is postponed to Section 6.3.

In this section we give a full proof of the correctness of F5, including both its criteria
used. John Perry and the author are the �rst who published a complete proof in [58].

Due to our intention to present F5 as much as possible unaltered in this section, we
need to agree on the following:

6.1 Faugère’s initial presentation of F5 185

Convention. In this section we restrict ourselves to homogeneous polynomials and ideals
in P . So the input F = { f1 , . . . , fr} of the presented algorithms are always homogeneous.

Remark 6.1.1. Note that in [63] a slightly di�erent module order is used,

xα e i ≺neg-i xβ e j ∶⇐⇒ i > j or,

i = j and xα < xβ .

We keep stuck to ≺i being the order on the signatures. �e main di�erence between ≺neg-i
and ≺i concerning F5 is that we compute incrementally standard bases for ⟨ f1⟩, ⟨ f1 , f2⟩, etc.,
whereas Faugère’s F5 goes the other way around starting with a basis for ⟨ fr⟩, ⟨ fr , fr−1⟩, etc.
So this is only a di�erence in notation, but not in the mathematical approach and should
not irritate the reader at all.

�e F5 Algorithm is an incremental standard basis algorithm, in particular, we can de-
�ne a main loop iterating over all elements fi of the input data:

Algorithm 46�e F5 Algorithm(F5)

Input: F = { f1 , . . . , fr} a �nite subset of P
Output: B a standard basis for ⟨F⟩ w.r.t. <
1: G1 ← {(e1 , f1)}
2: S = empty list
3: R = empty list
4: for (i = 2, . . . , r) do
5: fi ← Reduce (fi , poly(G i−1))
6: if (fi ≠ 0) then
7: G i , S , R ← IncF5(fi ,G i−1 , S , R)
8: else
9: G i ← G i−1

10: B ← poly(Gr)
11: return B

Algorithm 46 coincides with Algorithm 32 besides some small, but quite essential dif-
ferences:

▷ �e while loop runs over sets of labeled polynomialsG i , soG1 is initialized in Line 1
by G1 = {(e1 , f1)}.

▷ In Line 7 we do not call IncSig or IncSigCrit, but the incremental F5 routine de-
noted IncF5. �is di�ers from the previously presented incremental algorithms
mostly in its usage of the signature–based criteria, which we explain in detail in
the following. At this point it is important that the kth call of IncF5 returns a set
of labeled polynomials G such that poly(G) is a standard basis for ⟨ f1 , . . . , fk⟩. �is
is a very important change since it enables us to reuse signatures computed during
previous iteration steps in upcoming one.

186 6 Faugère’s F5 Algorithm

▷ Due to the fact of using sets of labeled polynomials, we need to extract the polyno-
mial part of Gr at the end. With this we return a set of polynomials which is just a
standard basis for I = ⟨ f1 , . . . , fr⟩ with respect to the given monomial order <.

▷ S is a list of list of terms in P . It is used for F5’s implementation of (NM). One
should think of it as a more structured way of storing the needed criteria. �is more
in structure can be used to implement (NM) way more aggressive as we show in the
following.

▷ R is some data structure describing lists of terms in P . �ose are needed for F5’s
implementation of (RW) in RewriteF5?. It is initialized to the empty set in Line 3.
We give a detailed explanationwhendiscussing theRewrittenCriterion below. In the
meantime the reader should just think about some data which is updated in IncF5
and is used in RewriteF5? to detect useless critical pairs.

Remark 6.1.2. Note that in the description of F5 in [63] Line 5 does not appear. As we have
already pointed out in Section 4.2 this is an quite obvious improvement of the algorithm.

Potentially the most known feature of F5 is the fact that it can compute standard bases
highly e�cient, given some minor restrictions to its input data: Let F = (f1 , . . . , fr) be a
regular sequence of homogeneous polynomials fi ∈ P . Computing a standard basis, to be
more precise, a Gröbner basis in this setting, G for I = ⟨ f1 . . . , fr⟩, F5 does not compute
any reduction to zero at all.

�is property of F5 is based on the so–called F5 Criterion, for which the notion of nor-
malized elements is essential:

De�nition 6.1.3 (F5 Criterion).

(1) A labeled polynomial f with sig(f) = tek , t ∈ P , and poly(f) ∈ I is callednormalized
(w.r.t. ⟨ f1 , . . . , fk−1⟩), if

t ∉ L(⟨ f1 , . . . , fk−1⟩).
(2) A critical pair (u f , vg) is called normalized if

a) u sig(f) ≠ v sig(g)1, and
b) u f and vg are normalized.

(3) We say that a critical pair is detected by the F5 Criterion i� it is not normalized.

Remark 6.1.4. Note that in IncF5 slt(g i) needs not be 1 if i < s as it used to be in IncSig
resp. IncSigCrit. F5 reuses the signatures computed in previous iteration steps. �is is
due to the more aggressive implementation of (RW) in F5, which makes use of those “old”
signatures.

1In [63] u sig(f) ≻ v sig(g) is claimed. �is is due to the fact that there the �rst entry of the critical pair is
assumed to be the element giving the corresponding s–vector its signature. In our setting we do not require
this for critical pairs, thus inequality is enough to ask for.

6.1 Faugère’s initial presentation of F5 187

Let us have a closer look at IncF5, the incremental part of F5 presented in Algorithm 50.
Doing this we lay a focus on how the F5 Criterion and the Rewritten Criterion are used to
detect useless critical pairs.

It seems quite clear that normalized critical pairs are in a strong connection to the non–
minimality property of signatures we discovered in Section 5.1. In particular, the F5 Crite-
rion is much stronger than SigStd’s implementation of (NM) due to the fact that in F5 also
the second generator of the critical pair is checked. �is means that we cannot implement
the detection of non–normalized critical pairs just by using NonMin? (Algorithm 37), but
need a special implementation presented in the pseudo code of Algorithm 47:

Algorithm 47 F5’s implementation of (NM) (NonMinF5?)

Input: u f a labeled polynomial multiplied by a term, S a �nite list of �nite lists of terms
in P

Output: TRUE if u sig(f) is detected by the F5 Criterion, FALSE otherwise
1: l ← index(f)
2: t ← u slm(f)
3: for (i = 1, . . . , l − 1) do
4: m ← length (S[i])
5: for (j = 1, . . . ,m) do
6: if (S[i][j] ∣ t) then
7: return TRUE
8: return FALSE

�e main idea is to implement S in F5 not as a set, but as a list. Due to the fact that both
generators of a critical pair are checked we must ensure that we do not discard an element
of index 3 by a term in S whose corresponding labeled polynomial has index 4 during a
computation of IncF5 of actual index 11. �is is ensured by keeping all terms corresponding
to a given index j in a list S[j] and storing all those lists in one big list S. �is is done in
Line 1 of IncF5.

�us by ensuring the correct initialization of S in Line 4 we can use NonMinF5? in
Lines 9 and 29whennew critical pairs are generated. Note that as contrast from IncSigCrit
we do not need to use NonMinF5? in Line 15, too, when entering the critical pair to the
reduction process. �is is owing to the fact that S is not updated when a zero reduction
takes place in the presented, original version of F5.

Whenever a new element is added to G in IncF5, we add its leading term to S[i]
(Line 23) as it will be useful in the next iteration round for detecting useless critical pairs
generated by elements of index i + 1. �is is done in Algorithm 48.

Algorithm 48 F5’s F5 Criterion adding algorithm (addF5Crit)

Input: t a term, S a list of terms in P
Output: S a list of terms in P
1: append (t, S)
2: return S

188 6 Faugère’s F5 Algorithm

IncF5 seems to be quite similar to IncSigCrit, but di�ers in some substantial points:

(1) Due to the fact that F5 reuses already computed signatures from previous iteration
steps, there is no need to initialize all elements of G as it is done in IncSigCrit
(Lines 5–7). �ere is only one initialization, namely those of gs in Line 3, all other
elements are just copied from G i−1.

(2) In Line 12 IncF5 preselects a bunch of critical pairs out of the pair set P. �ese
elements are determined by their degree: P′ is the set of critical pairs of P, which
have the minimal possible degree. It follows that the computation process does not
only loop over elements of P, but goes through an inner loop over the elements in P′.
In P′ the order in which the elements are sorted to proceed with the reduction steps
is the same as in IncSigCrit: At each start of a new reduction process we choose the
critical pair of P′ for which the signature of the corresponding s–vector is minimal
w.r.t. P′ (if there are several pairs of the same signature, take the one which was
added to P �rst).

(3) �is storage of elements of smallest possible degree, say d, in P′ has some conse-
quences for IncF5: In Line 30 any new critical pair (ur, vgk) is added to P, but not
to P′. �us it must be ensured that the degree of (ur, vgk) is greater than d. �is is
caused by the test that lm(gk) ∤ lm(r) in Line 25, and the fact that we are restricting
the input to homogeneous data only.

(4) From (3) it follows that it is, in contrast to IncSigCrit, not possible to introduce
sig–unsafe reduction steps disguised as critical pairs a�er a new element is added
to G. �e problem is that some of the sig–unsafe reductions might be essential for
the correctness of F5’s computations, so we must ensure that these are computed
nevertheless. In F5 this is handled by SigRedF5.

(5) Moreover, in Line 20 of IncF5 the polynomial part of r is reduced w.r.t. poly(G i−1).
Note that this “labelless” reduction does not pose a problem for the sig–safeness at
all! Since we are using ≺i on the signatures all elements in G i−1 have a lower index,
and thus all corresponding signatures are ensured to be smaller than those of r.

�e last three points give us an idea of the capabilities SigRedF5 must o�er: Besides per-
forming only sig–safe reductions with elements of current index (which is not the complete
truth as we explain below) it needs to generate new critical pairs representing sig–unsafe
reductions and enters them to P′. In addition another crucial di�erence to SigRed can be
found in Algorithm 49: �e testing of (NM) and (RW) on the reducers.

Let us discuss the above mentioned essential points in detail:

(1) In Lines 1 and 2 the sets D and B i−1 are constructed: D is the set of all labeled poly-
nomials of current index, which are possible reducers of f and must be checked for
sig–safeness before performing a reduction with them (Line 11). B i−1, on the other
hand, is a polynomial set, consisting of the polynomial parts of labeled polynomials
in G, whose index is smaller than the current one. �is set is used in Line 10. �e
idea behind this is the following:

6.1 Faugère’s initial presentation of F5 189

Algorithm 49 F5’s semi–complete sig–safe reduction algorithm (SigRedF5)

Input: f a labeled polynomial, G = {g1 , . . . , gt} a �nite set of labeled polynomials, S a
list of lists of terms in P , R a list of lists of terms in P , s the index of the �rst labeled
polynomial of current index, P′ a set of critical pairs

Output: h a labeled polynomial sig–safe reduced w.r.t. G, P′ a set of critical pairs
1: D ← {gs , . . . , gt}
2: B i−1 ← {poly(g1), . . . , poly(gs−1)}
3: l ← siglm(f)
4: p ← poly(f)
5: while (p ≠ 0 and Dp ← {g ∈ D ∣ lm (poly(g)) ∣ lm(p)} ≠ ∅) do
6: Choose any g ∈ Dp .

7: u ←
lt(p)

lt(poly(g))

8: if (!NonMinF5?(ug , S) and !RewriteF5?(u, g , R)) then
9: if (lm(u) siglm(g) < l) then
10: q ← Reduce (u poly(g), B i−1)
11: p ← p − q
12: else if (lm(u) siglm(g) > l) then
13: P′ ← P′ ∪ {(ug , (sig(f), p))}
14: h ← (sig(f), p)
15: return (h, P′)

▷ One the one hand poly(f) is completely reduced w.r.t. B i−1 before it enters
SigRedF5 (see Line 20 of IncF5). �us it is enough to reduce f with labeled
polynomials of the current index, i.e. we only need to search in D for possible
reducers, not in the whole G.

▷ On the other hand, when we reduce poly(f) with some multiple u of some
poly(g), g ∈ D, it is possible to introduce terms in poly(f) − u poly(g) which
can be reduced w.r.t. B i−1. By construction these terms come from u poly(g).
�us reducing u poly(g) w.r.t. B i−1 to an element q before reducing poly(f)
with it ensures that poly(f) − q is still completely reduced w.r.t. B i−1.

▷ Since poly(f) is completely reduced w.r.t. B i−1 and lm(f) = u lm(g), it is not
possible that lm(q) < u lm(g). It follows that

lm (poly (f) − q) < lm (poly (f)) .
(2) �e second crucial change of SigRedF5 compared to SigRed is that whenever a sig–

unsafe reduction f − ug would happen a new critical pair (ug , f) is generated and
added to P′. �is process is well–de�ned since deg(ug − f) = deg(f) assuming all
elements to be homogeneous. �us (ug , f)must be part of the current preselection
P′, therein sorted by increasing signature. We already know that sig(ug) ≻ sig(f),
thus the reduction of (ug , f) is scheduled a�er the current reduction of f for sure.

(3) We see that not all possible sig–safe or sig–unsafe reductions take place. In Line 8
SigRedF5 checks the possible reducer ug for minimality of its signature (NM) as

190 6 Faugère’s F5 Algorithm

well as for its non–rewritability (RW).�is is something SigRed does not perform,
with tremendous impacts on the performance as we see later on.

Remark 6.1.5.

(1) Note that in the description of the F5 Algorithm in [63] the so–called top–reduction
process, which parallels SigRedF5, does not take care of the reduction of elements
w.r.t. G i−1. �is is outsourced to another wrapper algorithm in [63]. We want to
keep the description of the algorithm as comprehensible as possible, in this sense we
have chosen this more unsophisticated presentation.

(2) On the other hand, F5, as presented in [63], keeps recently computed new elements of
degree d in a pool Rd until thewhole degree step is done, i.e. until P

′ = ∅. A�erwards
those elements are added to G. We do this right away to conform to our notation
introduced in the presentation of SigStd since it seems to be more �uent. By all
means this di�erence does not change any computational aspect of F5.

(3) �e idea of using NonMinF5? and RewriteF5? in SigRedF5 for testing the reducers
ug is quite natural. Any such reduction step can be interpreted as a critical pair(f , ug). For such a pair it is self–evident in our context to test both criteria.

(4) Moreover, note that we clearly do not need to recheck f with both criteria, since we
have done this already before entering SigRedF5. g itself, as an element already inG
is also already tested, but multiplying g with a term u it is not clear if ug still passes
the tests.

(5) Another important fact we should mention is the di�erent treatment of current in-
dex labeled polynomials and those of lower index in F5. Whereas those of current
index are always checked by the criteria before reducing with them, F5 does not
check the reducers of lower index. Moreover, whereas F5 performs complete reduc-
tions w.r.t. the elements of previous iteration steps, it only reduces leading terms
with the current index ones. In Section 6.2 we see that this handling of the overall
reduction process is quite essential improving F5.

What is le� is a discussion of how F5 resp. IncF5 implements (RW) in RewriteF5?. For
thisweneed to give somemore background on rewritability. Aswehave alreadymentioned
in Chapter 5 F5 implements (RW) way more aggressive than all other signature–based al-
gorithms. It checks, as AP, not only for equality (i.e. checking if another critical pair of the
same signature exists), but for divisibility (i.e. an element whose signature divides the one
of the critical pair in question). We see that this Rewritten Criterion in�uences two main
parts of F5:

▷ On the one hand, it improves its performance quite a lot detecting more useless
critical pairs than all variants of SigStd.

▷ On the other hand, it seems to be “too aggressive” in an algorithmic sense: Until now
there is no full proof of F5’s termination. Although we present some variants of F5
that ensure terminationwith nearly no overhead in Section 6.5, showing termination
for the original version of F5 is still an open problem.

6.1 Faugère’s initial presentation of F5 191

Algorithm 50 Incremental F5 step (IncF5)

Input: fi a polynomial, G i−1 = {g1 , . . . , gs−1} a set of labeled polynomials such that
poly(G i−1) is a standard basis for ⟨ f1 , . . . , fi−1⟩, S a list of (i − 1) lists of terms in P , R
a list of (i − 1) lists of terms in P

Output: G a set of labeled polynomials such that poly(G) is a standard basis for⟨ f1 , . . . , fi⟩, S a list of i lists of terms in P , R a list of i lists of terms in P
1: B ← ∅,G ← ∅, P ← ∅, P′ ← ∅, R[i]← empty list, S[i]← empty list
2: t ← s
3: gs ← (e i , fi)
4: S[i]← addF5Crit (lt(gs), S[i])
5: G ← {g1 , . . . , gs}
6: for (k = 1, . . . , s − 1) do
7: u ← lc(gk) τ(gs ,gk)lm(gs)

8: v ← lc(gs) τ(gs ,gk)lm(gk)

9: if (!NonMinF5? (ugs , S) and !NonMinF5? (vgk , S)) then
10: P ← P ∪ {(ugs , vgk)}
11: while (P ≠ ∅) do
12: P′ ← Select(P) (critical pairs of minimal degree)
13: while (P′ ≠ ∅) do
14: Choose (u f , vg) from P′ with max≺ {u sig(f), v sig(g)}minimal w.r.t. ≺.
15: if (! RewriteF5?(u, f , R) and !RewriteF5?(v , g , R)) then
16: P′ ← P′/ {(u f , vg)}
17: l ← max≺ {u sig(f), v sig(g)}
18: R[i]← addRule(l , R[i])
19: r ← (l , u poly(f) − v poly(g))
20: poly(r) ← Reduce (poly(r), poly(G i−1))
21: (r, P′) ← SigRedF5(r,G , S , R, s, P′)
22: if (poly(r) ≠ 0 and r not sig–redundant w.r.t. G) then
23: S[i]← addF5Crit(lt(r), S[i])
24: for (k = 1, . . . , t) do
25: if (lm(gk) ∤ lm(r)) then

26: u ← lc(gk) τ(r ,gk)lm(r)

27: v ← lc(r) τ(r ,gk)
lm(gk)

28: if (lm(u) siglm(r) ≠ lm(v) siglm(gk)) then
29: if (!NonMinF5? (ur, S) and !NonMinF5? (vgk , S)) then
30: P ← P ∪ {(ur, vgk)}
31: t ← t + 1
32: gt ← r
33: G ← G ∪ {gt}
34: return (G , S , R)

Next we give a de�nition of how (RW) is implemented in F5 using so–called rules, a

192 6 Faugère’s F5 Algorithm

g l

(ui g i , u j g j)
gkg i

use this way g l ′

Figure 6.1.1: Illustration of the Rewritten Criterion

data structure which collects all already known signatures in lists.

De�nition 6.1.6 (Rewritten Criterion). Let I = ⟨ f1 , . . . , fr⟩, let g i , g j be two labeled poly-
nomials in G, computed in by IncF5, and let ui , u j be two terms in P .

(1) A rule r is slm(ui g i − u j g j) for an s–vector ui g i − u j g j considered in IncF5.

(2) �e rules list R[m] corresponding to some index m w.r.t. G is a list R[m] = (r1 , . . . , rk)
of rules ri which are signature monomials of elements g considered in IncF5 such
that index(g) = m and ri > ri−1 for all i ∈ {2, . . . , k}. Moreover we de�ne the
complete list of rules by

R = (R[1], R[2], . . . , R[r − 1], R[r]).
(3) We say that a critical pair (ui g i , u j g j) is detected by the Rewritten Criterion if the

following holds: �ere exists k ∈ {i , j} with l = index(gk) such that there exists
t ∈ R[l]with

t > slm(gk), and
t ∣ uk slm(gk).

�e basic idea behind theRewrittenCriterion can be illustrated as in Figure 6.1.1:�ink-
ing of G as a list of labeled polynomials appended to its end whenever a reduction process
stops with a nonzero remainder, we see that a�er having added g i and gk to G we are at
the point where the critical pair (ui g i , u j g j) should lead to a new element g l . Now we can
assume that the pair is detected by the Rewritten Criterion, in particular, let us say that the
rule corresponding to gk rewrites ui g i . �is means that there are elements being generated
a�er g i which can contribute to get an element gm (during the actual degree step, i.e. before
IncF5 jumps back to Line 12) with the same signature as g l , but generated of another criti-
cal pair. So our way of constructing G changes a bit, getting a possible di�erent element g l ′
instead of g l , but hopefully performing less reduction steps in the following due to using
elements, which entered G a�er g i had done so.

We have already seen that F5 takes care of R, using it as parameter for IncF5. �e main
construction and usage of R takes place there and is quite similar to the usage of S in F5:

In Line 18 the algorithm addRule is called, which appends the signature monomial of
l to the rules list R[i]. �e important point is to add the rule exactly at this point of the

6.1 Faugère’s initial presentation of F5 193

computation: �e critical pair (u f , vg)has already passed both criteria checks and the cor-
responding s–vector is constructed out of it. �is element is investigated by the algorithm
and further reduced. Even if u f − vg reduces to zero in the end its signature monomial
should be added to R[i] and can thus be used to reject other useless critical pairs with
the Rewritten Criterion. Moreover, due to Line 14 the rules appended to R[i] are always
greater than the ones already in the list, thus an increasing list of rules is constructed in
this way.
�e steps of addRule are presented in the pseudo code of Algorithm 51 and should be clear
without any further explanation.

Algorithm 51 F5’s rule adding algorithm (addRule)

Input: l a signature, R a list of terms in P
Output: R a list of terms in P
1: append (lm(l), R)
2: return R

As a last step we discuss RewriteF5?, which implements the Rewritten Criterion. In
detail, this algorithm is called once in IncF5, namely in Line 15. �is is the optimal choice,
since at this point all possible rules which could be useful to detect the critical pair are
stored in R already. RewriteF5? takes the two generators of the critical pair (u f , vg) and
the complete rules list R. It checks Rewritten Criterion for u f and vg separately, by

▷ extracting the index of the labeled polynomial (Line 1), and

▷ looping over all rules in the respective lists until the rule coming from the corre-
sponding labeled polynomial is reached (Line 4).

Whenever a divisibility check is ful�lled the algorithm returns TRUE, the critical pair is
detected by the Rewritten Criterion. Otherwise, the critical pair seems to be useful and its
computation in IncF5 goes on.

Algorithm 52 F5’s implementation of the Rewritten Criterion (RewriteF5?)

Input: u a term, f a labeled polynomial, R a list of lists of terms in P
Output: TRUE if u f is detected by the Rewritten Criterion, FALSE otherwise
1: k ← index(f)
2: t ← u slm(f)
3: m ← length(R[k])
4: while (slm(f) < R[k][m]) do
5: if (R[k][m] ∣ t) then
6: return TRUE
7: m ← m − 1
8: return FALSE

Remark 6.1.7.

194 6 Faugère’s F5 Algorithm

(1) Note that it is crucial that R[l] are lists, not sets. �e order of the list is essential for
the correctness of the Rewritten Criterion. We have already seen that RewriteF5?
appends a new rule to the list whenever a new s–vector is prepared to be reduced.
�is order is not allowed to change.

(2) In the kth call of IncF5 only the lists S[l] for 1 ≤ l < k are used detecting useless
critical pairs by the F5 Criterion. �e list S[k] is only initialized and new elements
are added to it. It is �rst used in the next iteration step.

(3) In the de�nition of the Rewritten Criterion we see for the �rst time in this thesis why
F5 wants to keep the signatures of the previous iteration steps: Looking at a critical
pair, both generators are checked by the criterion. �us also a generating labeled
polynomial of lower index, i.e. from the previous iteration round could be detected
to be rewritable and help to reject useless critical pairs.

(4) Comparing De�nition 6.1.6 (3) to Lemma 5.1.2 one obviously sees that the later one is
a very special situation of the Rewritten Criterion for F5: Firstly, only one generator
is tested in Rewrite? and its derivatives, namely the one giving the signature for the
corresponding s–vector. Secondly, another critical pair of the same signature must
exist. In this situation the Rewritten Criterion clearly holds, too.

(5) Note that RewriteF5? can be implemented in parallel, just like NonMinF5?, check-
ing both generators u f and vg separately at the same time, since the computations
are independent from each other. Clearly this cannot be done on the level of di�erent
processes, but must be implemented on the level of threads. One task which is not
straightforward in this setting is how one of the rewrite algorithms can tell the other
one that a useless critical pair is found without consuming too much computational
time.

(6) In an optimized implementation one would compute the coresponding indices of f
and g beforehand and pass the corresponding lists R[index(f)] and R[index(g)] to
RewriteF5? only.

We need to prove that F5 computes a correct standard basis for any input. �is we do
in several steps, preparing the main theorem 6.1.13.

Lemma 6.1.8. Let u f be a multiple u of a labeled polynomial f ∈ G in IncF5. Assume that
u f is detected by the Rewritten Criterion. In particular, there exists a rule r ∈ R [index(f)]
such that r ∣ u slm(f) and r > slm(f). If P′ becomes the empty set, then there exist terms
δ j ∈ P , and g j ∈ G such that

u poly(f) = t poly(h)+ ∑
g j∈G ,g j≠h

δ j poly(g j)
such that

(1) h ∈ G or poly(h) = 0,
(2) for all g j with t j ≠ 0 t j siglm(g j) ≺ u siglm(f), and

6.1 Faugère’s initial presentation of F5 195

(3) lm(u) siglm(f) = lm(t) siglm(h).
Proof. Assume that P′ = ∅, a�er we have considered u f in some critical pair, i.e. the
current degree step in F5 has just �nished. Since u poly(f) ∈ I = ⟨ f1 , . . . , fr⟩ we can write

u poly(f) = k

∑
i=1

λi fi

such that index(f) = k ≤ r, λk = u slt(f). Moreover, let us assume s to be the correspond-
ing s–vector of the labeled polynomial h with siglm(h) ∣ u siglm(f). Since we compute by
increasing signatures and P′ = ∅, we can assume that either poly(h) = 0 or h ∈ G already.
In any case the rule siglm(h) ∈ R[k] has detected u f to be rewritable. As h is constructed
out of s by sig–safe reduction steps we can assume that

poly(s) = k

∑
i=1

σi fi

where σk = slt(s) = slt(h). Since we have already computed all elements of P′ there exist
η j ∈ P such that

poly(s) = poly(h) + ∑
g j∈G ,g j≠h

η j poly(g j) with
sig(h) ≻ max

≺
{lt(η j) sig(g j) ∣ g j ∈ G , g j ≠ h} .

Let t ∈ P be a term such that t sig(h) = u sig(f). �en we can represent u poly(f) in the
following way using the two di�erent representations of poly(s)mentioned before:

u poly(f) = k

∑
i=1

λi fi + t poly(s)− t poly(s)
=

k

∑
i=1

(λi − tσi) fi − t poly(h)+ ∑
g j∈G ,g j≠h

η j poly(g j)
= t poly(h)+ ∑

g j∈G ,g j≠h

δ j poly(g j)
where

δ j =
⎧⎪⎪⎨⎪⎪⎩
λ j − t (σ j − η j) if poly(g j) = fi for some i ∈ {1, . . . , k},
tη j otherwise.

Since (e i , fi) ∈ G for all i ∈ {1, . . . , k} at this point and due to the fact that sig(h) ≻
max≺ {lt(η j) sig(g j) ∣ g j ∈ G , g j ≠ h}, the statement follows.

Remark 6.1.9.

(1) Note that it is not a problem if poly(h) = 0 and h is not added to G at all. �en we
still have a signature ≠ 0 of the zero polynomial and the restriction that g j ≠ h for
g j ∈ G in the representation of u f is trivial.

196 6 Faugère’s F5 Algorithm

(2) Note that Lemma 6.1.8 does not claim that the found representation of u poly(f)
is a standard representation w.r.t. poly(G). �e only usefulness lies in the fact
that the corresponding labeled polynomials of the elements in the representation
of u poly(f) have a smaller signature than u f , besides possibly th. What seems to
be a completely useless statement in a usual standard basis computation is of greatest
importance in the signature–based world as we see in the proof of the main theorem
of this section, �eorem 6.1.13.

Lemma 6.1.10. Let g i and g j be two labeled polynomials in G computed by F5 such that
index(g i) = index(g j) = k and i < j. If there exist terms u, v ∈ P such that u sig(g i) =
v sig(g j), then ug i (and thus any critical pair it is generating) is detected by the Rewritten
Criterion

Proof. Clearly, g i was considered before the s–vector s which leads to g j , thus the cor-
responding rule slm(g j) is in R[k] and it also checks to rewrite any multiple of g i in
the following. Since ug i is considered and u sig(g i) = v sig(g j) there exists a monomial
m ∈Mon(x1 , . . . , xn) such thatm slm(g j) = lm(u) slm(g i). In particular, m = lm(v).

Also Lemma 6.1.10 seems quite clear, neither Faugère ([63]) nor Stegers ([144]) men-
tion that the signature monomials of the corresponding generators of critical pairs must
be di�erent. Otherwise one would get sig–equivalent critical pairs, which need not be
considered as we have shown in Corollary 4.1.18. �e point of Lemma 6.1.10 is that even
though they do not check for sig–equivalence at all they discard those critical pairs by the
Rewritten Criterion. Nevertheless this can have a bad in�uence on the performance of the
algorithm since the Rewritten Criterion is checked much later than the sig–equivalence
check is done in IncSig, this means more data must be stored and carried. �us in our
presentation of IncF5 in Algorithm 50 we have kept the sig–equivalence check in Line 28
from IncSig due to optimization reasons.

Lemma 6.1.11. Let u f be a multiple u of a labeled polynomial f ∈ G considered in IncF5
where index(f) = k. Assume that u f is detected by the F5 Criterion. �en there exists a
principal syzygy s ∈ P k such that lt(s) ∣ u sig(f).
Proof. We have shown this already in the proof of Lemma 5.1.1.

Corollary 6.1.12. Let u f be a multiple u of a labeled polynomial f ∈ G in IncF5 where
index(f) = k. Assume that u f is detected by the F5 Criterion. �en there exists a syzygy
s ∈ P k such that

lt (u label(f) − s) = sig (u poly(f)) ≺ u sig(f).
Proof. As long as u f is detected by the F5 Criterion rewrite u f by u f − vg where

v lt(s) = u sig(f), and
g = (s, π(s)),

with s being the principal syzygy from Lemma 6.1.11 and π ∶ P k
→ P , e i ↦ fi for i ∈{1, . . . , k}, k ≤ r. �en u poly(f) = u poly(f) − v poly(g), since poly(g) = π(s) = 0. Due

to ≺ being a well–order this process of rewriting u f terminates at some point.

6.1 Faugère’s initial presentation of F5 197

Now we are ready to prove the main theorem of this section.

�eorem6.1.13. Let F = { f1 , . . . , fr}, a �nite set of homogeneous polynomials inP equipped
with a well–order <, be the input of F5. If the kth iteration of IncF5 terminates with output(G , R), then poly(G) is a standard basis for ⟨ f1 , . . . , fk⟩ w.r.t. <.
Proof. Looking at the elements in G three types of labeled s–vectors can occur:

(1) u f − vg has a standard representation w.r.t. G.

(2) u f − vg is detected by the F5 Criterion.

(3) u f − vg is detected by the Rewritten Criterion.

Weneed to show that any corresponding polyomial s–vector of two elements p, q ∈ poly(G)
has a standard representation w.r.t. poly(G).

We have already seen in Section 4.1 that having a standard representation w.r.t. G im-
plies having a standard representation w.r.t. poly(G).�us it is le� to show that an s–vector
of one of the other two types has a standard representation w.r.t. poly(G), too.

Let S be the set of all s–vectors of labeled polynomials of G. Choose u f − vg out of
S to be the element of maximal signature. Note that there might be a choice of such s–
vectors. For any such elements f , g, and h ∈ G choose the s–vector u f − vg such that
u lm(f) = v lm(g) = w lm(h) and u siglm(f) ≻ v siglm(g) ≻ w siglm(h). �us u f − vg is
uniquely determined and we can assume that sig(u f − vg) = u sig(f).

Two situations are possible:

(1) While there exists a component of u f − vg, which is detected by the F5 Criterion,
we can construct a syzygy s as in Corollary 6.1.12 such that we can rewrite u f − vg
using h = (s, π(s)) such that

u poly(f) − v poly(g) −w poly(h) = u poly(f) − v poly(g), and
sig (u f − vg − wh) = sig (u poly(f) − v poly(g)). So in the end we can assume that
u f − vg −wh has minimal signature.

(2) While there exists a component of u f − vg, which is detected by the Rewritten Cri-
terion, we can rewrite it as shown in Lemma 6.1.8.

We do this until there does no longer exist intermediate s–vectors in the representation of
u f − vg. At this point, we receive a standard representation of u f − vg w.r.t. G due to the
fact that all rewritings cancel out somemultiple leading terms and do not introduce higher
signatures. �us it is le� to show that this iterative process of rewriting terminates a�er
�nitely many steps.

Let us have a closer look at what can happen during the two types of rewriting:

(1) In the rewriting triggered by the F5 Criterion we have seen in Corollary 6.1.12 that
the considered component of u f − vg is rewritten with a lower signature.

198 6 Faugère’s F5 Algorithm

(2) If the rewriting is induced by the Rewritten Criterion we have seen in Lemma 6.1.8
that all but one of the introduced elements have smaller signature. �e only element
which can have the same signature is th.

▷ If poly(h) = 0, then we have rewritten the component of u f − vg completely
with lower signature elements.

▷ Otherwise h ∈ G, but h was added to G a�er the component it rewrites by
de�nition of the Rewritten Criterion. We choose h to be the element added
to G latest rewriting the component. �us we can assume that th itself is not
detected by the Rewritten Criterion.

In each of this rewritten representations of u f − vg let λ be the larger signature and σ be
the smaller one.

In most rewritings λ does not increase. �ere is one exception:2 Assume that the com-
ponent corresponding to λ has already been rewritten and λ has been decreased in this
situation to λ′. Now, if a rewriting for the component corresponding to σ is applied it is
possible that the leading term of the component corresponding to λ′ (introduced during
the beforehand rewriting) cancels out a non–leading term of the actual rewriting. In this
situation it is possible that λ′ increases back to λ.

(1) If this rewriting is based on the F5 Criterion, the value of σ must decrease. As ≺ is a
well–order, σ can decrease only �nitely many times.

(2) If it is evoked by the Rewritten Criterion, the rewriter was added to G a�er the ele-
ment it is rewriting. Since we assume that IncF5 has terminated, G has only �nitely
many elements. �us also this process must terminate a�er �nitely many steps.

Hence λ can increase to any previous already taken value only �nitely many times.
�is means that each iteration of the rewriting process either decreases one of λ or σ ,

or gives us an element with signature λ resp. σ , which was added to G at a later point of
the computations. Since we choose the rewriter element to be the one added toG latest the
Rewritten Criterion can invoke a rewriting of a given value of λ or σ at most once. SinceG
is �nite, this process of �nding elements with signature λ resp. σ , which are added to G at
a later point during the computations has to terminate eventually. In other words, λ must
decrease permanently below any given level at once the element added to G at the latest
possible point is found.

As ≺ is a well–order, λ cannot decrease inde�nitely. Hence the iteration must terminate
with a standard representation of u f − vg w.r.t. G.

Remark 6.1.14.

(1) In [63] and [144] proofs of the correctness of the F5 Algorithm are given, too. �ese
proofs do not cover the usage of the Rewritten Criterion in F5, but only take the F5
Criterion into account. Proving the correctness including F5’s aggressive implemen-
tation of (RW) was one of the main problems in the last couple of years and was �rst
achieved in [55] resp. [58]. Later on, di�erent variants of the proof of�eorem 6.1.13
and / or new proofs have been published, see, for example, [78, 148].

2�anks to Vasily Galkin for pointing out this exception.

6.1 Faugère’s initial presentation of F5 199

(2) Note that we must assume termination of IncF5 in �eorem 6.1.13. As we see in
Section 6.5 the problem proving termination of F5 is quite di�cult and not solved
until now. At this point let us just point out that all proofs of F5’s termination given
until now either have some errors or have somenot completed gaps. �emain reason
why proving termination for F5 is way more complicated than proving termination
of SigStd orG2V lays in the aggressive implementation of (RW)using the Rewritten
Criterion.

As a last step in this introduction to F5 let us showwhy F5, and also any other signature–
based standard basis algorithm, is very e�cient when it comes to the computation of bases
for input corresponding to regular sequences.

Proposition 6.1.15. If the polynomials generating the input ideal I = ⟨ f1 , . . . , fr⟩ ⊂ P form
a regular sequence F = (f1 , . . . , fr), then F5 does not compute any zero reduction.

Proof. If F is a regular sequence, then Syz(I) is generated by the principal syzygies in P r ,
w.r.t. ≺i in this situation. Assume there exists a zero reduction in F5, say poly(r) is reduced
to zero w.r.t. G for some labeled polynomial r in IncF5. �is means that there exist terms
ui ∈ P and g i ∈ G = {g1 , . . . , gt} such that

poly(r) = t

∑
i=1

ui poly(g i), and
siglm(r) ≻max

≺
{ui siglm(g i) ∣ i = 1, . . . , t} .

So it follows for the corresponding syzygy s ∈ P r that lt(s) = sig(r). Since s ∈ Syz(I) and
as Syz(I) is generated by principal syzygies it follows that there exists a gk ∈ G such that
index(gk) < index(r) and lt(gk) ∣ slt(r). But this means that r, in its initial form as a
critical pair, must have been detected by the F5 Criterion. �us F5 has not considered r at
all. A contradiction to our assumption that F5 has reduced r to zero.

Corollary 6.1.16. If the polynomials generating the input ideal I = ⟨ f1 , . . . , fr⟩ ⊂ P form a
regular sequence F = (f1 , . . . , fr), then none of the signature–based standard basis algorithms
presented in this thesis does compute a zero reduction during the computation of a standard
basis G of I.

Proof. �e statement follows from Proposition 6.1.15 together with Lemma 5.1.3.

We �nish this section with an example computation for a standard basis for an ideal
generated by elements forming a regular sequence.

Example 6.1.17. Let us give an example computation of a standard basis using F5. We use
the example given in [63] in Section 8. We have already considered this computation in
Example 3.3.5 using SyzStd. �is example is very useful in two ways:

▷ On the one hand, we can compare the syzygy–based attempt of Möller, Mora, and
Traverso (see Section 3.3) with the signature–based one of Faugère.

200 6 Faugère’s F5 Algorithm

▷ On the other hand, this example also shows the problem of proving F5’s termination
(see Section 6.5 for more details).

What we need to do in order to use F5 on Example 3.3.5 is to homogenize the polynomials.
Assume that P is equipped with <dp, and let F = { f1 , f2 , f3} ⊂ K[x , y, z, t]where

f1 = x2 y − z2 t,

f2 = xz2 − y2 t,

f3 = yz3 − x2 t2 .

Note that we use the slim representation of labeled polynomials in this example. Moreover,
note that we use a slightly di�erent numbering of the elements due to our notations. Also
note that in our computations coe�cients can be part of signatures due to ourmore general
de�nition. We start our computations setting G1 = {(e1 , f1)} since f1 cannot be reduced
w.r.t. { f2 , f3}, and S[1] = (lt(f1)). �e �rst real iteration round starts entering IncF5 with
f2 and G1. �ere we start by initializing 3 data structures,

G = { (e1 , f1)´¹¹¹¹¹¹¹¸¹¹¹¹¹¹¶
g1

, (e2 , f2)´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
g2

},
S[2] = (lt(f2)), and

P = {(xyg2 , z2g1)} .
In this situation, P′ = P. Since (xyg2 , z2g1) is detected neither by the F5 nor the Rewritten
Criterion we start the computation of the corresponding s–vector:

▷ r = (xye2 , xy poly(g2) − z2 poly(g1)) = (xye2 ,−xy3t + z4 t)
▷ �e rule xy is appended to the as yet empty list of rules of index 2, R[2].

�ere exists no reducer in poly(G1) nor of current index of r thus we add the new element
g3 = (xye2 ,−xy3t + z4 t) to G, −xy3t to S[2], and compute new critical pairs:

▷ On the one hand, (xg3 , y2tg1) is not added to P, since x sig(g3) = x2 ye2 and x2 y ∈
S[1]

▷ On the other hand, (z2g3 ,−y3tg2) is added to P.

�us a�er setting G = {g1 , g2 , g3} the computations go on, again with P′ = P: Computing
r = (xyz2e2 , z2 poly(g3) + y3t poly(g2)) = (xyz2e2 , z6t − y5t2). We add the rule xyz2 to
R[2]. �ere is no possible reduction we can perform, thus

g4 = (xyz2e2 , z6t − y5t2) ,
G = G ∪ {g4} , and

S[2] = (xz2 ,−xy3, z6 t) .
�e 3 possible critical pairs generated by g4 are all rejected:

6.1 Faugère’s initial presentation of F5 201

▷ (x2 yg4 , z6tg1) is detected by the F5 Criterion as x2 y sig(g4) is clearly divisible by
x2 y.

▷ (xg4 , z4 tg2) is also detected by the F5 Criterion due to x slm(g4) = x2 yz2, which is
divisible by x2 y.

▷ (xy3g4 ,−z6g3) is also detected by the F5 Criterion since xy3 slm(g4) = x2 y4z4.
�us IncF5 terminates at this point and returns, besides S and R the set G2 of labeled
polynomials. poly(G2) is a standard basis for ⟨ f1 , f2⟩.

�e next and �nal iteration step starts, initializing

g5 = (e3 , f3) ,
G = {g1 , g2 , g3 , g4 , g5} , and

S[3] = (lt(g5)).
Next, the �rst bunch of critical pairs is generated:

P = {(x2g5 , z3g1), (xg5, yzg2), (xy2tg5 ,−xz3g3), (z3tg5 , yg4)}.
Note that none of the critical pairs is detected by the F5 Criterion. We take those of lowest
possible degree, in this situation 5, and move them to P′:

P′ = {(xg5 , yzg2)}.
Since there is no rule added until now, the corresponding s–vector is computed:

r = (xe3 , x poly(g5) − yz poly(g2)) = (xe3 , y3zt − x3 t2) .
We add x to R[3] and add the new element to G as there is no possible reducer in G:

g6 = (xe3, y3zt − x3 t2) ,
S[3] = (yz3, y3zt) .

Of the 4 possible new critical pairs only 3 are added to P:

P = P ∪ {(x2g6 , y2ztg1), (xzg6, y3tg2), (xg6 ,−zg3), (z5g6 , y3g4)}.
(z2g6 , y2tg5) is detected by the F5Criterion using xz2 from S[2].�e next bunch of critical
pairs of minimal degree 6 is moved to P′:

P′ = {(x2g5 , z3g1), (xg6 ,−zg3)}.
�e corresponding s–vectors have the same signature x2e3, so we take (x2g5 , z3g1) �rst,
since it was added to P earlier than the other one. x2 g5 is detected by the Rewritten Cri-
terion using x ∈ R[3]. �us this pair is deleted and we go on with (xg6 ,−zg3). Although
the corresponding s–vector has the same signature x2e3 as the former critical pair it is not
detected by the Rewritten Criterion. �is is due to the fact that we check only for those

202 6 Faugère’s F5 Algorithm

rules t which ful�ll that t > slm(g6). Since slm(g6) = x and x is the only rule in R[3] until
now xg6 + zg3 is not detected.3 We go on generating r = (x2e3 , z5t − x4 t2) and add x2 as
rule to R[3]. Next we see that there is no reduction w.r.t. poly(G2) possible, and also no
element of index 3 reduces lt(r), thus we are done with the degree 6 step and update our
data set:

g7 = (x2e3 , z5t − x4 t2) ,
S[3] = (yz3 , y3zt, z5t) .

Building new critical pairs we see that (x y g7 , z
5tg1), (xy3g7 ,−z5g3), (yg7, z2 tg5), as well

as (y3g7 , z4g6) are detected by the F5 Criterion using x2 y ∈ S[1].
P = P ∪ {(xg7 , z3tg2), (zg7, g4)}.

�e next step takes all pairs of degree 7:

P′ = {(x2g6 , y2ztg1), (xzg6, y3tg2), (xg7, z3tg2), (zg7, g4).}
Examining the signatures, we go on with (zg7, g4), which is not detected to be useless:
A�er adding the rule x2z to R[3] we compute the 8th element for G by constructing the
corresponding s–vector:

g8 = (x2ze3 , y5t2 − x4zt2),
S[3] = (yz3, y3zt, z5t, y5t2) ,

P = P ∪ {(xg8 ,−y2tg3), (x2g8 , y4t2g1)}.
Besides these two, above mentioned new critical pairs, all others generated by g8 are de-
tected by the F5 Criterion.
Using the Rewritten Criterion we can now reject (xzg6 , y3tg2) by x2z ∈ R[3] correspond-
ing to g8. Next we compute (xg7 , z3tg2), adding the rule x3 to R[3] and generating g9 =(x3e3 ,−x5 t2+y2z3 t2)we see that a reduction of poly(r)w.r.t. poly(G2) is possible, whereas
no further reductions with current index elements take place. We end up with

g9 = (x3e3 ,−x5t2 + z2 t5),
S[3] = (yz3, y3zt, z5t, y5t2 ,−x5t2) .

All critical pairs generated by g9 are detected by the F5 Criterion, thus P is not updated at
all.
With the rule coming from g9 we can reject (x2 g6 , y2ztg1) and �nish this degree step.
For degree 8 we pick

P′ = {(xy2tg5 ,−xz3g3), (z3tg5 , yg4), (xg8 ,−y2tg3)}.
We start with (z3tg5 , yg4), add the rule z3t to R[3] and get the new element

g10 = (z3te3 , y6t2 − xy2zt4).
3Note that otherwise we would have detected xg6 by g6 as the rule x corresponds to g6 . Clearly this cannot be
a correct way deleting critical pairs.

6.2 F5C – F5 using reduced bases 203

Note that the sig–unsafe reduction of g10 by g8 in SigRedF5 does not take place since
y sig(g8) = x2 yze3 is divisible by x2 y ∈ S[2]. �us no new critical pair is generated in
SigRedF5.
At this point all already constructed and all to be generated critical pairs are detected by
F5’s criteria. �us IncF5 �nishes and returns to F5 with

G = {g1 , . . . , g10} .
F5 extracts the polynomial part of G and returns

B = {x2 y − z2 t, xz2 − y2t,−xy3t + z4 t, z6t − y5t2 ,
yz3 − x2 t2 , y3zt − x3 t2 , z5t − x4 t2 , y5t2 − x4zt2 ,
x5 t2 − z2t5 , y6t2 − xy2zt4},

a standard basis for I = ⟨x2 y − z2 t, xz2 − y2 t, yz3 − x2 t2⟩.
Remark 6.1.18.

(1) Note that whereas SyzStd computes 1 zero reduction, F5 does not reduce any s–
vector to zero.

(2) �inking about optimizing F5 while looking at the example computation given above
one could get the idea to use the Rewritten Criterion even more aggressively: Why
not adding the rules whenever a new critical pair is generated and added to P ? �e
problem is that such a critical pair, although it passes the F5 Criterion, can still be
detected by the Rewritten Criterion later on. Let us look at the degree 6 step of the
third iteration round of the above example: Assume that we have added the rule x2

coming from the signature x2e3 of the critical pair (x2g5 , z3g1) to R[3]. �is pair is
rewritten by the rule x ∈ R[3], but now also the next critical pair in P′, (xg6 ,−zg3),
is detected by the rule x2 and thus the corresponding s–vector is not computed. We
have seen that the data stored in xg6 + zg3 is essential for the correctness of the
computations of F5. We see that, although (xg6 ,−zg3) delivers the very same rule
x2 to R[3] it is crucial that the rule does not correspond to a critical pair which is
possibly rejected later on. �us we need to wait adding rules to R until the critical
pair is completely checked and stamped as useful.

Based on this discussion we can start not only comparing F5 to SigStd and its variants,
but we can also optimize F5 and have a closer look at the problem of proving its termina-
tion.

6.2 F5C – F5 using reduced bases

As a �rst step on our way improving the initial F5 Algorithm, we want to use a similar
attempt as in Section 5.2.�e main computational drawback of F5 lies in the overhead pro-

204 6 Faugère’s F5 Algorithm

duced during each iteration step due to sig–safe reduction steps.�is leads to the computa-
tion of intermediate standard bases poly(G i), neither reduced nor minimal. �e problem
is that we use these bases in the next iteration step for further computations, which results
in two disadvantages:

(1) An overhead of possible reducers of lower index, as well as

(2) an overhead of newly generated critical pairs are generated.

Whereas the idea of interreducing the intermediate standard bases poly(G i) in SigStd is
straightforward due to the fact that there only the polynomial data of G i is further used in
the (i + 1)st iteration step of IncSigCrit, it is not so easy to achieve such an result in F5.
Note that the main di�erences between both classes of algorithms (see Section 6.3 for more
details) lies in the implementations of (NM) and (RW). In both F5 is way more aggressive,
rejecting lots more critical pairs. �e main problem interreducing G i in F5 is that the data
stored in the signatures of the elements in G i become corrupted once we interreduce the
basis due to performing sig–unsafe reductions.

Understanding how to do this e�ectively is the main content of this section. John Perry
and the author have presented these ideas �rst in [58]. It should be mentioned that the
idea of interreducing SigStd and its variants, mainly G2V, is just taken from the attempt
presented here.

Convention. Explaining the ideas of interreducing previously computed standard bases in
F5 we need to talk a lot about di�erent iteration steps. Let us agree for this section on the
following notations: We always assume that the current iteration step is the kth one. �is
means that labeled polynomials computed during this iteration step have index k. �us
Gk−1 denotes the set of all labeled polynomials computed in the �rst (k − 1) iteration steps
and poly(Gk−1) is a standard basis for ⟨ f1 , . . . , fk−1⟩.

As mentioned above there are two main points one would like to optimize thinking
of F5’s computations: Less reduction steps and less critical pairs. �e �rst problem is the
easier one and is �rst solved by Till Stegers in his diploma thesis ([144]). It is mainly based
on the fact that in F5 we split up the reduction process of an s–vector in two parts:

(1) All reductions of elements of index k, i.e. elements generated during the current
iteration step, must be done sig–safe (or must generate new critical pairs, if a sig–
unsafe reduction takes place). Here the elements of Gk−1 have no in�uence at all,
thus this part of F5 is completely independent to any change of Gk−1 .

(2) Whereas the above mentioned current index reductions are done in SigRedF5, re-
ductions w.r.t. Gk−1 are performed plainly based on polynomial data. In Line 20
of Algorithm 50 the polynomial part poly(r) of the current s–vector is reduced
w.r.t. poly(Gk−1). All these reductions are sig–safe as all reducers have lower index.
Moreover it is quite important to note that, in spite of the current index reducers in
SigRedF5, the reducers of poly(Gk−1) are not checked by the F5 or the Rewritten
Criterion. �us only their polynomial part is used in terms of reduction.

�ese facts about F5’s reduction process have provided Stegers the idea of his variant
of F5, denoted F5R. �e “R” in F5R stands for reduction and means, in short, that F5R

6.2 F5C – F5 using reduced bases 205

uses reduced standard bases for lower index reduction purposes. In [144] he describes his
discovery. We give a brief summary of it:

When the (k− 1)st call of IncF5 returns a new set of labeled polynomials G, poly(G) is
a standard basis for ⟨ f1 , . . . , fk−1⟩. As IncF5 needs G, now as Gk−1 in its kth call for gener-
ating new critical pairs the signatures of the elements inGk−1 are crucial to the correctness
of further computations, as otherwise the F5 Criterion and the Rewritten Criterion do not
work properly any longer. �inking about interreducing poly(Gk−1) to a reduced standard
basis Bk−1 one must keep in mind that the reductions taking place there are exactly those
which were not allowed in the previous iteration steps of IncF5 due to either the F5 Cri-
terion or the Rewritten Criterion or the sig–unsafeness of the reduction. Not performing
these reduction steps keep the signatures as well as the rules list R correct, so interreducing
the standard basis at the end corrupts these data and we cannot use them in any upcoming
iteration step anymore. �us, if wewant to keep the signatures and rules already computed,
we really need to stuck to Gk−1 when talking about generators of new critical pairs.

On the other hand, we have seen that the reduction with elements of index < k is done
plainly on the polynomial side, thus no information about signatures or rules is important.
Sowe can optimize F5 in the followingway: Whenever IncF5 returnswe take the computed
standard basis poly(Gk−1) and reduce it to Bk−1 . Besides passingGk−1 to the kth instance of
IncF5 we also pass Bk−1 to it. �ere we use the elements of Gk−1 to build new critical pairs.
�is is possible, because the signatures and rules are correct for these elements. When it
comes to a prereduction of a newly computed s–vector in IncF5 we use Bk−1. �is has
the advantage over reducing w.r.t. poly(Gk−1) that there are no redundant reducers to be
checked and that the reducers are completely reduced. �is can lead to a lot less divisibility
checks and reduction steps.

�e problem of this attempt is that one has only an advantage on the reduction process,
and there not even on the complete one, but only on the part of lower index. Moreover,
one needs to store Bk−1 besides Gk−1, which consumes more memory. For solving these
problems we developed the idea of completely switching from Gk−1 to Bk−1 .

F5R is fully integrated in our idea of interreducing intermediate standard bases, a vari-
ant we call F5C. �e “C” in F5C is derived from F5R and means that we do all computations
of F5 using reduced bases. So the main obstacle to leap is how to handle the signatures
and rules when having interreduced poly(Gk−1)? We have already explained that those
are useless a�er that step, i.e. there is no longer a connection between the signatures resp.
rules from the (k − 1)st iteration step and the polynomials in Bk−1. �us we need to throw
away those data sets and generate new ones, which are appropriate for Bk−1. In this sense
we need to start again with counting indices: An element bi ∈ Bk−1 gets the label e i . �e
whole process keeps our computations correct since going on to the next iteration step k
we want to compute a standard basis for ⟨ f1 , . . . , fk⟩. But it clearly holds that

⟨ f1 , . . . , fk⟩ = ⟨b1 , . . . , bs−1 , fk⟩
where s − 1 = #(Bk−1). �us everything that needs to be adjusted in IncF5 is that the new
labeled polynomial for fk does not get label ek , but label es . Looking to IncSigCrit one
sees how this �ts quite smoothly in the initialization of G there. With this operation we
receive correct labels resp. signatures for the elements in Bk−1 , but we still have lost the

206 6 Faugère’s F5 Algorithm

information stored in R which are useful for detecting useless critical pairs being partly
generated by elements of Bk−1. How to recover at least some rules that help us on this task?
�e idea is simply to loop over all s–vectors of elements of Bk−1 and store the corresponding
signatures in a newly created list of lists of rules R:

Algorithm 53 F5C’s interreduction process (ReduceF5)

Input: G a �nite set of labeled polynomials, S a list of lists of terms, R a list of lists of terms
Output: G′ a �nite set of labeled polynomials, S′ a list of lists of terms, R′ a list of lists of

terms
1: B ← poly(G)
2: Delete G, R and S.
3: G′ ← ∅, R′ ← empty list, S′ ← empty list
4: B ← Reduce(B)
5: t ← #(B)
6: G′ ← G′ ∪ {(e1 , b1)}
7: S′[1]← (lt(b1))
8: R′[1]← empty list
9: for (i = t, . . . , 2) do
10: G′ ← G′ ∪ {(e i , bi)}
11: S′[i]← (lt(bi))
12: for (j = i − 1, . . . , 2) do
13: λ ←

τ(b i ,b j)

lt(b i)

14: R′[i]← append(λ, R′[i])
15: return (G′, S′, R′)
We know that the s–vector of any critical pair (bi , b j) reduces to zero, because B is a

reduced standard basis. �us we can add the corresponding signatures of these s–vectors
to the rules lists. We see in Line 13 how easily a rule is computed: For any element g′ ∈ G′ it
holds that slm(g′) = 1.�us the rule is nothing else but the multiplier of the corresponding
s–vector generator. Moreover, j is always bigger than i, thus we explicitly know that the
rule is just the multiple of b j .

With this we can present Algorithm 54, F5C, as a slightly variant of F5. Note that IncF5C
di�ers to IncF5 in exactly one point: Instead of initializing

gs ← (e i , fi)
in Line 3 we need to initialize it by

gs ← (es , fi)
since the indices have changed due to the reduction of the intermediate standard basis.

�e following theorem is quite clear from the above discussion.

�eorem 6.2.1. Let F = { f1 , . . . , fr}, a �nite set of homogeneous polynomials inP equipped
with a well–order <, be the input of F5C. If the kth iteration of IncF5 terminates with output(G , R), then poly(G) is a standard basis for ⟨ f1 , . . . , fk⟩ w.r.t. <.

6.2 F5C – F5 using reduced bases 207

Algorithm 54�e F5 Algorithm using reduced standard bases(F5C)

Input: F = { f1 , . . . , fr} a �nite subset of P
Output: B a standard basis for ⟨F⟩ w.r.t. <
1: G1 ← {(e1 , f1)}
2: S = empty list
3: R = empty list
4: for (i = 2, . . . , r) do
5: fi ← Reduce (fi , poly(G i−1))
6: if (fi ≠ 0) then
7: G i , S , R ← IncF5C(fi ,G i−1 , S , R)
8: G i , S , R ← ReduceF5(G i , S , R)
9: else
10: G i ← G i−1

11: B ← poly(Gr)
12: return B

Proof. Let (G′k−1 , S′, R′) = ReduceF5(Gk−1 , S , R). S′ and R′ are valid forG′k−1 due to their
constructions in ReduceF5. Moreover,

⟨ f1 , . . . , fk−1⟩ = ⟨poly(Gk−1)⟩ = ⟨poly(G′k−1)⟩.
�us our proof of �eorem 6.1.13 holds for the new parameters (G′k−1 , S′, R′) passed to
IncF5 in the kth iteration, too.

Remark 6.2.2. Note that in contrast to the variants of SigStd it is not so clear that reducing
the intermediate standard bases is really an optimization. On the hand, thinking about the
Rewritten Criterion it is possible that all those rules, which are deleted in ReduceF5, are
carrying a lot more data and information about the ideal. �is could lead to the detection
of more useless pairs. On the other hand, one cannot prove which attempt is the better
one due to the fact that F5 and F5C compute di�erent critical pairs and use di�erent sig-
natures. �us a complete comparison is not possible. We see in the experimental results
presented in Section 6.4 that, in practice, F5C does not compute more zero reductions than
F5. Moreover, it needs less memory and is faster than F5.4

In Section 5.2 we have seen that interreducing intermediate standard bases in SigStd
no extra computations are needed. Clearly, since F5 is based on its criteria, S and R must
be recomputed. At least, it seems so.

�e following convention seems a bit strange, butmakes sense in theworld of signature–
based algorithms as we see in Lemma 6.2.3.

Convention. Note that considering F5’s criteria it is a bit tricky to keep the good properties
of F5 alive in F5C. For this let us agree on the following way we reduce poly(Gk−1): Let
poly(Gk−1) = {p1 , . . . , ps−1}. When minimizing poly(Gk−1), we remove an element pi
because there exists some other element p j such that lm(p j) ∣ lm(pi). If we do so, we keep
4Again, as inRemark 5.2.2, in somenot important cases F5 is faster thanF5C due to theweighting of the overhead
of reducing the intermediate standard bases in comparison to the whole computation.

208 6 Faugère’s F5 Algorithm

p1 , . . . , pi−1 andmove p l to p l−1 for all l > j. When we go on reducing elements completely
and normalizing the pis we do not change their position or order the elements in any other
way.

Lemma 6.2.3. Any critical pair detected by the F5 Criterion in F5 is also detected by the F5
Criterion in F5C.

Proof. Any element of current index k which is detected in F5 is also detected in F5C due
to the fact that whenever we have deleted some pi ∈ poly(Gk−1) during the interreduction
process there exists a p j in the reduced standard basis such that lm(p j) ∣ lm(pi). So any
element detected by lm(pi) is also detected by lm(p j). Due to our above convention this
also holds for elements of index < k.

Corollary 6.2.4. If the polynomials generating the input ideal I = ⟨ f1 , . . . , fr⟩ ⊂ P form a
regular sequence F = (f1 , . . . , fr), then F5C does not compute any zero reduction.

Proof. Clear by Lemma 6.2.3.

Remark 6.2.5. Note that we can even improve the F5 Criterion on elements of index < k
due to the following:Let g i , g j ∈ Gk−1 with index (g i) = index (g j) such i < j and such that
poly(g i) reduces to p l and poly(g j) reduces to pm in the reduced intermediate standard
basis Bk−1 . It follows that l < m by Convention 6.2, thus the correspoding labeled polyno-
mials are h l = (e l , p l) and hm = (em , pm) in G′k−1. Now when checking the F5 Criterion
for some multiple of hm we can also use lt(g l) for a possible detection. �is is not possible
in F5, but in F5C only.

Also the above holds it is still a bit tricky to ensure the order of the elements in the
reduced standard bases, since such a restriction can slow down computations. �e nice
thing is that we do not need to check any multiple of a lower index labeled polynomial by
the F5 Criterion at all in F5C:

Lemma 6.2.6. Let (u f , vg) be a critical pair in F5C such that k = index(f) > index(g). If
v g is detected by the F5 Criterion, then u f is also detected by the Rewritten Criterion.

Proof. If vg is detected by the F5 Criterion, then there must exist some h ∈ G such that
index(h) < index(g) and

lm(h) ∣ τ(f , g)
lm(g) .

�is means that τ(g , h) ∣ τ(f , g). By Lemma 2.4.1 it follows that τ(f , h) ∣ τ(f , g) and thus
τ(f , h)
lm(f) ∣ τ(f , g)lm(f) .

By the algorithm’s design the critical pair generated by f and h is considered before (u f , vg).
�e following two situations are possible:

(1) �e critical pair generated by f and h is computed, then the rule
τ(f ,h)
lm(f)

is added to

R[k]. It follows that (u f , vg) is detected by this rule.

6.2 F5C – F5 using reduced bases 209

(2) �e critical pair generated by f and h is detected either by the F5 or the Rewritten
Criterion. In any case, this implies that (u f , vg) is detected, too.

From Lemma 6.2.6 we can follow that we do not need to recompute S in ReduceF5.
Evenmore, S does no longer need to be a list of lists of terms, but just a set of terms. Assume
we are in the kth iteration of IncF5, then it is enough to check labeled polynomials of index
k by the F5 Criterion. �is means we do not need to distinguish between di�erent index
levels in S, as all leading terms of elements of poly(Gk−1) are allowed to be used for an
element of index k.

We cando even better, namelywe donot need to recompute new rules at all inReduceF5.
�e next lemma shows that it is enough to check those generators of a critical pair, which
have the current index.

Lemma 6.2.7. Let (u f , vg) be a critical pair in F5C such that k = index(f) > index(g). If
v g is detected by the Rewritten Criterion, then u f is also detected by the Rewritten Criterion.

�e proof is similar to the one given for Lemma 6.2.6.

Proof. If vg is detected by the Rewritten Criterion, then there must exist some h ∈ G such
that index(h) < index(f) and

τ(g , h)
lm(g) ∣ τ(f , g)lm(g) .

�is means that τ(g , h) ∣ τ(f , g). By Lemma 2.4.1 it follows that τ(f , h) ∣ τ(f , g) and thus
τ(f , h)
lm(f) ∣ τ(f , g)lm(f) .

By the algorithm’s design the critical pair generated by f and h is considered before (u f , vg).
�e following two situations are possible:

(1) �e critical pair generated by f and h is computed, then the rule
τ(f ,h)
lm(f)

is added to

R[k]. It follows that (u f , vg) is detected by this rule.

(2) �e critical pair generated by f and h is detected either by the F5 or the Rewritten
Criterion. In any case, this implies that (u f , vg) is detected, too.

Corollary 6.2.8. In F5C there is no need to recompute rules in ReduceF5.

Proof. Aswe have already seen the one place where rules of lower index are needed is when
checking generators of critical pairs, which have lower index. By Lemma 6.2.7 we see that
this is not needed at all.

210 6 Faugère’s F5 Algorithm

Algorithm 55 Incremental F5C step (IncF5C)

Input: fi a polynomial, G i−1 = {p1 , . . . , ps−1} a standard basis for ⟨ f1 , . . . , fi−1⟩
Output: B a standard basis for ⟨ f1 , . . . , fi⟩ w.r.t. <
1: B ← ∅,G ← ∅, P ← ∅, R ← empty list
2: S ← ∅
3: ps ← fi
4: t ← s
5: for (k = 1, . . . , s − 1) do
6: gk ← (0, pk)
7: S ← S ∪ {lt(pk)}
8: gs ← (es , ps)
9: G ← {g1 , . . . , gs}
10: for (k = 1, . . . , s − 1) do
11: u ← lc(gk) τ(gs ,gk)lm(gs)

12: v ← lc(gs) τ(gs ,gk)lm(gk)

13: if (!NonMinF5? (ugs , S) then
14: P ← P ∪ {(ugs , vgk)}
15: while (P ≠ ∅) do
16: P′ ← Select(P) (critical pairs of minimal degree)
17: while (P′ ≠ ∅) do
18: Choose (u f , vg) from P′ with max≺ {u sig(f), v sig(g)}minimal w.r.t. ≺.
19: if (! RewriteF5?(u, f , R)) then
20: if ((index(g) < s) or !RewriteF5?(v , g , R)) then
21: P′ ← P′/ {(u f , vg)}
22: l ← max≺ {u sig(f), v sig(g)}
23: R ← addRule(l , R)
24: r ← (l , u poly(f) − v poly(g))
25: poly(r) ← Reduce (poly(r), poly(G i−1))
26: (r, P′)← SigRedF5(r,G , S , R, s, P′)
27: if (poly(r) ≠ 0 and r not sig–redundant w.r.t. G) then
28: for (k = 1, . . . , t) do
29: if (lm(gk) ∤ lm(r)) then

30: u ← lc(gk) τ(r ,gk)lm(r)

31: v ← lc(r) τ(r ,gk)
lm(gk)

32: if (lm(u) siglm(r) ≠ lm(v) siglm(gk)) then
33: if (!NonMinF5? (ur, S)) then
34: if ((index(gk) < s) or !NonMinF5?(vgk , S)) then
35: P ← P ∪ {(ur, vgk)}
36: t ← t + 1
37: gt ← r
38: G ← G ∪ {gt}
39: B ← poly(G)
40: return B

6.3 Classifying F5 in the signature–based world 211

All in all we have stripped down the complexity of the interreduction step quite a lot.
Interreducing the intermediate standard bases does not only optimize reductions and re-
duces the number of useless critical pairs, it also provides a lot easier handling of the criteria
and less checks. In the end we see that F5C is nothing else but a variant of SigStdRed. For
this let us present the incremental part of F5C in Algorithm 55.

�e main changes from IncF5 to Algorithm 55 should be clear:

▷ easier structures for S and R,

▷ initializing G completely similar to IncSigCrit,

▷ criteria checks only for elements of current index.

A�er all this optimizations, let us clarify what we mean when talking about F5C in the
following:

De�nition 6.2.9. F5C denotes the variant of SigStdRed calling IncF5C, NonMinF5?, and
RewriteF5?.

Besides having achieved an optimized variant of F5, F5C represents an algorithm which
is quite similar to SigStdRed and its derivatives. �us we are ready to give a detailed
discussion on similarities and di�erences of the various attempts in the signature–based
world presented in this thesis.

6.3 Classifying F5 in the signature–based world

A�er this extensive introduction to the F5 Algorithm, also including optimizations due
to interreducing intermediate standard bases, let us take a small break and try to collect
di�erences and similarities of F5, SigStd, and all their derivatives. �is is also helpful when
we go on optimizing and generalizing F5 in the following sections.

We start with a comparison of F5 to SigStd. As SigStd is the common core of all other
algorithms presented in Chapter 5, this is a natural point to start at.

(1) Comparing Algorithm 46 and Algorithm 32 with each other we see that F5 keeps
track of two global lists, S and R, which consist of the criteria used to reject useless
critical pairs. Due to the fact that the F5 Criterion and the Rewritten Criterion in F5
are a lot more aggressive than NonMin? and Rewrite? in SigStd, this bookkeeping
is crucial.

(2) Based on the �rst point, F5 handles and passes always sets of labeled polynomials to
IncF5, and not just polynomial sets, i.e. previously computed intermediate standard
bases. It follows that as opposed to IncSigCrit IncF5 does not initialize the elements
of G i−1 since they already carry their signatures.

212 6 Faugère’s F5 Algorithm

(3) �e Rewritten Criterion detects waymore useless critical pairs than SigStd’s imple-
mentation of (RW). In (RW) it is essential that another critical pair with the same sig-
nature exists, for the Rewritten Criterion only divisibility is neccessary. �is is some
optimization we have already found in AP, which requires in RewriteAP? also only
divisibility for detecting useless critical pairs. Whereas AP rewrites elements based
on comparing the corresponding leading terms, F5 uses the information stored in the
signatures. If F5 detects a critical pair (u f , vg) to be useless based on the Rewritten
Criterion, then there exists some other combination of elements which have a sig-
nature greater than the one of the detected generator of (u f , vg).5 In this sense the
algorithm assumes that there exist “better” elements inG describing the polynomial
data of (u f , vg). �is “better” can be interpreted as better reduced, sparser, and so
on. It is mainly based on the fact that the rewriting labeled polynomials are added
to G later than f resp. g, thus the likelihood to get a better representation is taken
into account.

(4) Looking at the F5 Criterion two diverging statements must be done:

a) On the one hand, the F5 Criterion is way stronger than the general (NM) Cri-
terion. NonMinF5? does check both generators of the critical pairs, whereas
NonMin? checks only the one corresponding to the signature of the resulting
s–vector. �is means that F5 must be able, in contrary to SigStd, to check also
labeled polynomials of lower index. �is leads to the more complex structure
of S in F5. Whereas S is just a set of leading terms of labeled polynomials of
lower index in SigStd, S is a list of lists S[i] carrying the leading terms of the
labeled polynomials of index i. �is enables NonMinF5? to check an element
of any given index correctly.

b) On the other hand, SigStd and all its derivatives use zero reductions actively
by adding the corresponding signature to the set S. F5 does not do this, but
also uses the corresponding signatures as rules in the Rewritten Criterion. �e
disadvantage of this attempt is that searching in lists of rules is a bigger com-
putational e�ort than just checking for the F5 Criterion.

(5) F5 chooses critical pairs of P by lowest possible degree, not by lowest possible sig-
nature. �us the computations can only be done for homogeneous polynomials,
otherwise later on computed elements of lower degree could destroy correctness of
F5.

(6) F5 distincts between current index reductions, whichmust be ensured to be sig–safe,
and lower index reductions, which are processed on the polynomial side only, since
all elements to be reduced have the current index k, and all reducers of Gk−1 have
lower index. �us no sig–unsafe reduction can happen. Note that this is true for
SigStd and all its derivatives, too. �us we can adopt this idea easily.

(7) Instead of allowing only sig–safe reductions in SigRedF5 as it is done in SigRed, F5
also allows sig–unsafe reductions. �ese are not real reductions, but a sig–unsafe

5Clearly the signature of the combination of those multiplied labeled polynomials has a signature smaller or
equal to the one of the s–vector corresponding to the rejected critical pair.

6.3 Classifying F5 in the signature–based world 213

reduction leads to a new critical pair for P′. In SigStd the construction of these
critical pairs is postponed to IncSigCrit at the point the new element is already
reduced and prepared for addition to G. �e only real di�erences can be found in
the following situation:

Assume a labeled polynomial f to be reduced by some other labeled polynomial of
the same index, say g. Furthermore, assume that

lt(f) = u lt(g) and siglm(f) ≺ u siglm(g)
for some u ∈ P . Moreover, there exists a third labeled polynomial of the same index,
h, and a term v ∈ P such that

lt(f) = v lt(h) and siglm(f) ≻ v siglm(h).
What actions take place in the two algorithms?

▷ In F5 the new critical pair (ug , f) is added to P′ and later on f is reduced by
vh.

▷ In SigStd f is not reduced by ug, but by vh. �us in the end an element not
equal to f is added to G. It follows that SigStd does not generate the critical
pair (vg , f) due to the lack of existence of f resp. lt(f) in G.

�is means that the way of searching a possible reducer of current index is quite im-
portant for the following steps. A sig–safe reduction always takes place, correctness
of the algorithms is ensured. But in a situation like the one above di�erent critical
pairs can be generated by the two algorithms. Finding heuristics for this selection of
possible reducers of G is an area of active research these days.

(8) In SigRedF5 the possible reducers are checked by the two criteria. �is is the one
di�erence which leads to several important facts:

a) F5 computes way less reduction steps than SigStd and all other variants.

b) Proving termination of F5 cannot be done the same way as the corresponding
proof for SigStd. We show in Section 6.5 how to handle the termination issues
of F5 quite elegant and without losing any performance at all. �ere we also
give a more detailed discussion on how this process of rejecting reducers really
works in the interior of F5.

We have seen at the end of Section 6.2 that SigStdRed and F5C are not so far apart as
it seems from the above discussion of the respective basic algorithms.

AP,MM, andG2V are using SigStdRed as a basis, not SigStd, thus it is clear that when
comparing Faugère’s attempt to these we should switch fromF5 to F5C. Looking at G2V, its
description is a lot easier than F5’s. �is is based on the fact that coming from SigStdRed
G2V uses mainly (NM) only. So assuming SigStdRed as some zero point between F5C
and G2V we describe the algorithms’ connection in the following way:

▷ G2V strips the criteria checks down: (RW) is only used in some special situation
when generating new critical pairs. �us it does more computations, but has less
interrupts checking labeled polynomials.

214 6 Faugère’s F5 Algorithm

▷ F5C focusses on more checks, less computations. �is is not only present in the ag-
gressiveness of the Rewritten Criterion, but also in the idea of checking the possible
current index reducers in SigRedF5.

AP however has a really di�erent origin than G2V. AP is rather a variant of F5 resp. F5C
than a variant of SigStd. As it is described in [7] it is more or less a fork of F5. Besides giv-
ing a non–incremental description of the algorithm (see Section 7.4 for more details), the
main purpose of AP is to illustrate the F5 Criterion with a simpler version of the Rewritten
Criterion. �is has two e�ects:

(1) AP’s inner workings are readily understood in contrast to F5’s quite complicated sub-
algorithms.

(2) One can easily prove termination ofAP. We see in Section 6.5 that the corresponding
proof is a real problem for F5.

Based on the above discussion we can optimize the F5 Criterion even more: By (4)b we
can achieve an easy, but as we see in the experimental results quite useful optimization:
In the same way as SigStdRed uses zero reductions in its implementation of (NM) we
can add the signature of an element which reduced to zero in F5 to S. As we have already
mentioned, checking the F5 Criterion is, from a computational point of view, much faster
than searching in a list of rewrite rules.

�us we can de�ne the following variant of F5C:

De�nition 6.3.1. F5E denotes the variant of SigStdRed calling IncF5E, NonMinF5?, and
RewriteF5?.

�e “E” in F5E stands for “enhanced” as it incorporates not only the optimization of in-
terreducing intermediate standard bases of F5C, but also the active usage of zero reductions
introduced in SigStdRed. �e di�erences between IncF5C and IncF5E are quite clear, but
due to its impact on the algorithm let us give the pseudocode in detail in Algorithm 56:

�e steps in Lines 39– 41 are clear from our discussion: We can delete the last rule from
R, because we add this signature to S. �e e�ect on the whole algorithm can be found in
a new addition of calls of NonMinF5? in Lines 19 and 20: As we dynamically update S it
is useful to check the F5 Criterion again when entering the reduction process of a critical
pair.

With this last optimization of F5 the di�erences between F5E and the other signature–
based standard basis algorithms drop down to

▷ using homogeneous input data in F5 only (we see in Section 7.1 that even this restric-
tion can be removed from F5.),

▷ checking elements by a more aggressive implementation of (RW), and

▷ checking possible reducers in the current index reduction steps, too.

6.3 Classifying F5 in the signature–based world 215

Algorithm 56 Incremental F5E step (IncF5E)

Input: fi a polynomial, G i−1 = {p1 , . . . , ps−1} a standard basis for ⟨ f1 , . . . , fi−1⟩
Output: B a standard basis for ⟨ f1 , . . . , fi⟩ w.r.t. <
1: B ← ∅,G ← ∅, P ← ∅, R ← empty list
2: S ← ∅
3: ps ← fi
4: t ← s
5: for (k = 1, . . . , s − 1) do
6: gk ← (0, pk)
7: S ← S ∪ {lt(pk)}
8: gs ← (es , ps)
9: G ← {g1 , . . . , gs}
10: for (k = 1, . . . , s − 1) do
11: u ← lc(gk) τ(gs ,gk)lm(gs)

12: v ← lc(gs) τ(gs ,gk)lm(gk)

13: if (!NonMinF5? (ugs , S) then
14: P ← P ∪ {(ugs , vgk)}
15: while (P ≠ ∅) do
16: P′ ← Select(P) (critical pairs of minimal degree)
17: while (P′ ≠ ∅) do
18: Choose (u f , vg) from P′ with max≺ {u sig(f), v sig(g)}minimal w.r.t. ≺.
19: if (!NonMinF5?(u f , S) and !RewriteF5?(u, f , R)) then
20: if ((index(g) < s) or (!NonMinF5?(vg , S) and !RewriteF5?(v , g , R)))

then
21: P′ ← P′/ {(u f , vg)}
22: l ← max≺ {u sig(f), v sig(g)}
23: R ← addRule(l , R)
24: r ← (l , u poly(f) − v poly(g))
25: poly(r) ← Reduce (poly(r), poly(G i−1))
26: (r, P′) ← SigRedF5(r,G , S , R, s, P′)
27: if (poly(r) ≠ 0 and r not sig–redundant w.r.t. G) then
28: for (k = 1, . . . , t) do
29: if (lm(gk) ∤ lm(r)) then

30: u ← lc(gk) τ(r ,gk)lm(r)

31: v ← lc(r) τ(r ,gk)
lm(gk)

32: if (lm(u) siglm(r) ≠ lm(v) siglm(gk)) then
33: if (!NonMinF5? (ur, S)) then
34: if ((index(gk) < s) or !NonMinF5?(vgk , S)) then
35: P ← P ∪ {(ur, vgk)}
36: t ← t + 1
37: gt ← r
38: G ← G ∪ {gt}
39: else if (poly(r) = 0) then
40: Delete last rule from R.
41: S ← S ∪ {slm(l)}
42: B ← poly(G)
43: return B

216 6 Faugère’s F5 Algorithm

Figure 6.4.1: Coloration of the results for di�erent variants of F5

All in all it is quite amazing how all these di�erent algorithms, with their various ap-
proaches and origins �t together so well. Optimizing F5 does not only have a positive ef-
fect on its performance, but yields suprisingly to even more similarities with SigStd resp.
SigStdRed.

6.4 Experimental results

Let us try to give a comparison of the 3 variants of F5 we have discussed until now:

(1) the initial F5 Algorithm,

(2) the variant F5C interreducing the intermediate standard bases, and

(3) the variant F5E, an F5C Algorithm actively using zero reductions.

As in Section 5.6 we use colors to classify the timings. �is time we compare only 3
di�erent algorithms, Figure 6.4 illustrates the coloration.

�e presented variants of F5 are implemented in Singular and can be also downloaded
from

git@github.com:ederc/Sources.git6 .

We used the same revision of Singular as for the algorithms of Chapter 5. Moreover,
the very same computer was used for the following computations. In this series of tests
we always compute in the respective polynomial ring over a �eld of characteristic 32, 003
using the graded reverse lexicographical order <dp.

Looking at the timings given in Table 6.1 one sees that, besides the Katsura-n-hexam-
ples, F5C is always faster than F5, and F5E is always faster than F5C. Looking at examples
like Eco-n-h there is a factor of nearly 10 between F5 and F5E. Whereas we see a clear
bene�t of interreducing the intermediate standard bases in F5C in all examples, again be-
sides the Katsura-n-h ones, the positive e�ect of using zero reductions actively in F5E
di�ers for the examples. For Cyclic-n-h the bene�t is much less than, for example, for
Eco-n-h or F-xxx-h. �e reason for this lies in the fact that whereas in Cyclic-n-h

not so many zero reductions appear, F5E does not bene�t as much as it does in Eco-n-h

6You can get the git repository by typing git clone git@github.com:ederc/Sources.git.

git@github.com:ederc/Sources.git

6.5 Termination–ensured variants of F5 217

where the number of zero reductions is going down by a factor of 10 switching from F5C
to F5E (see Table 6.2). Moreover, F5 and F5C are not able to compute a standard basis for
Eco-11-h. Here the idea of using zero reductions actively, improving the F5 Criterion
check, is fundamental for the computations.

Why do the Katsura-n-h examples not take advantage when using F5C or F5E? �e
explanation can be found in Table 6.2: �ose examples correspond to complete intersec-
tion, that means that neither F5 nor F5C nor F5E compute any zero reduction. With this
in mind none of the optimizations mentioned in the last sections can improve the compu-
tations, as all useless critical pairs are already found by the default F5 Criterion. Moreover,
interreducing the intermediate standard bases and bookkeeping of the zero reductions cre-
ate an overhead on the computations such that the timings of F5C and F5E are even worse
than those of F5. On the other hand, one really should point out that F5C and F5E have
a much smaller memory footprint than F5 due to the fact that whereas the interreduction
and the newly added criteria do not lead tomore rejections of critical pairs or less reduction
steps (see tables 6.5 and 6.4), they detect those useless elements faster and more e�cient.

Comparing the 3 variants of F5 to the algorithms presented in Chapter 5 we should
mention that F5C and F5E are implemented in the same framework as AP, MM, and G2V.
�us comparing the results of this section with the ones given in Section 5.6 is possible.

Clearly, the fact that F5C does not actively use zero reductions in the F5 Criterion check
is a huge drawback, leading to worse timings than most of the algorithms of Chapter 5,
besides examples like Cyclic-n-h and Katsura-n-h. �e variants of F5 bene�t from
using the criteria to detect also useless reducers in SigRedF5. �is leads to less reduction
steps and thus less memory consumption. Having a closer look at G2V, F5E is always faster
and less memory hungry. �e only algorithm of Chapter 5 beating F5E in some examples is
AP: AP is the fastest algorithm for the Eco-n-h examples as well as the F-855-h example.
�ere it takes advantage of chosing critical pairs in (RW) by the least common multiple of
the polynomial leading terms.

All in all one can summarize the experimental results to the following statement: F5E
is the fastest algorithm in a wide range of example classes. In some settings AP, which is
also just a variant of F57, gives the best results. In these examples the choice by a minimal
leading term seems to be the best possible one. It boils down to use these two variants of F5
for an e�cient signature–based standard basis computation. Having a heuristic to decide
when to use which of the two variants is an ongoing research project of the author.

6.5 Termination–ensured variants of F5

An open question surrounding F5 regards its termination. In a traditional standard
basis algorithm, like the ones presented in chapters 1 and 2, termination is based on the
ability of the algorithm to exploit the fact that the polynomial ring is Noetherian: Each

7See Section 6.3 for more details.

218 6 Faugère’s F5 Algorithm

Test case F5 F5C F5E

Cyclic-7-h 13.270 5.880 5.630

Cyclic-8-h 77, 789.770 7, 247.690 5, 266.440

Eco-8-h 2.920 1.930 0.300

Eco-9-h 226.830 61.500 6.650

Eco-10-h 12, 121.180 2, 592.830 198.230

Eco-11-h −.− −.− 8, 367.680

F-633-h 0.000 0.000 0.000

F-744-h 72.970 36.740 20.520

F-855-h 18, 174.560 3, 019.870 620.880

Gonnet-83-h 7, 037.670 220.540 11.860

Katsura-8-h 0.050 0.050 0.050

Katsura-9-h 0.390 0.400 0.400

Katsura-10-h 4.070 4.430 4.410

Katsura-11-h 49.880 61.080 61.170

Schrans-Troost-h 2.860 3.600 3.550

Table 6.1: Time needed to compute a standard basis, given in seconds.

Test case F5 F5C F5E

Cyclic-7-h 76 76 36

Cyclic-8-h 1,540 1,540 244

Eco-8-h 322 322 57

Eco-9-h 929 929 120

Eco-10-h 2,544 2,544 247

Eco-11-h - - 502

F-633-h 2 2 2

F-744-h 498 498 323

F-855-h 2,829 2,829 835

Gonnet-83-h 8,129 8,129 2,005

Katsura-8-h 0 0 0

Katsura-9-h 0 0 0

Katsura-10-h 0 0 0

Katsura-11-h 0 0 0

Schrans-Troost-h 0 0 0

Table 6.2: Number of zero reductions computed by the algorithms.

6.5 Termination–ensured variants of F5 219

Test case F5 F5C F5E

Cyclic-7-h 29.022 19.031 18.031

Cyclic-8-h 1, 833.085 1, 250.106 569.513

Eco-8-h 23.046 17.062 4.061

Eco-9-h 198.151 151.168 26.684

Eco-10-h 1, 655.040 1, 345.006 168.827

Eco-11-h −.− −.− 1, 046.751

F-633-h 0.000 0.036 0.036

F-744-h 133.256 79.814 54.314

F-855-h 1, 375.004 985.874 313.612

Gonnet-83-h 160.621 52.533 15.889

Katsura-8-h 2.000 1.500 1.500

Katsura-9-h 8.500 6.000 6.000

Katsura-10-h 36.500 23.018 23.018

Katsura-11-h 174.051 105.602 105.602

Schrans-Troost-h 34.029 20.037 20.037

Table 6.3: Memory used to compute a standard basis, given in Megabyte.

Test case F5 F5C F5E

Cyclic-7-h 1,018 1,018 978

Cyclic-8-h 7,066 7,066 5,770

Eco-8-h 830 830 565

Eco-9-h 2,087 2,087 1,278

Eco-10-h 5,123 5,123 2,826

Eco-11-h - - 6,219

F-633-h 56 56 56

F-744-h 2,089 2,089 1,914

F-855-h 7,922 7,922 5,928

Gonnet-83-h 12,111 12,111 5,987

Katsura-8-h 120 120 120

Katsura-9-h 247 247 247

Katsura-10-h 502 502 502

Katsura-11-h 1,013 1,013 1,013

Schrans-Troost-h 393 393 393

Table 6.4: Number of critical pairs not detected by the respective criteria used.

220 6 Faugère’s F5 Algorithm

Test case F5 F5C F5E

Cyclic-7-h 100,569 100,569 83,880

Cyclic-8-h 14,823,873 14,823,873 3,403,874

Eco-8-h 186,854 186,854 18,514

Eco-9-h 1,996,849 1,996,849 136,842

Eco-10-h 19,755,560 19,755,560 1,019,439

Eco-11-h - - 7,374,779

F-633-h 366 366 366

F-744-h 789,072 789,072 435,869

F-855-h 12,294,951 12,294,951 2,633,666

Gonnet-83-h 278,419 278,419 64,788

Katsura-8-h 1,634 1,634 1,634

Katsura-9-h 5,371 5,371 5,371

Katsura-10-h 18,343 18,343 18,343

Katsura-11-h 63,194 63,194 63,194

Schrans-Troost-h 14,010 14,010 14,010

Table 6.5: Number of all reduction steps during the computations.

Test case F5 F5C F5E

Cyclic-7-h 949 758 758

Cyclic-8-h 5,534 3,402 3,402

Eco-8-h 516 249 249

Eco-9-h 1,167 499 499

Eco-10-h 2,589 979 979

Eco-11-h - - 1,968

F-633-h 62 60 60

F-744-h 1,602 204 204

F-855-h 5,106 688 688

Gonnet-83-h 3,999 1,156 1,156

Katsura-8-h 128 105 105

Katsura-9-h 256 202 202

Katsura-10-h 512 399 399

Katsura-11-h 1,024 784 784

Schrans-Troost-h 401 189 189

Table 6.6: Size of the resulting standard basis.

6.5 Termination–ensured variants of F5 221

polynomial added to the standard basis G during the computations expands the leading
ideal of G. �is can happen only a �nite number of times.

Moreover, even for the signature–based algorithms presented in Chapter 5 termination
can be shown (see �eorem 4.2.7; termination of all variants of SigStd is proven in the
very same way).

In F5 an optimization during the reduction step introduces unforeseen issues regarding
termination: Possible, also sig–safe reductions are rejected due to F5’s criteria. �is leads
to the fact that F5 can add new elements to G which are redundant for the standard basis.
On the one hand, until today no non–terminating example for F5 is known8 , but on the
other hand there is still a correct and gapless proof of termination missing.

Di�erent approaches tackling this problem have been published:

(1) In [8] Ars tries to use Buchberger’s criteria to determine a degree bound for F5.

(2) In [78] Gash uses the Macaulay bound and breaks the computations down to a basic
standard basis algorithmwithout any criteria checks for everything above the bound.

Besides presenting the abovementionedmethods to ensure termination, and discussing
their drawbacks from a computational point of view, we give a variant of F5 which ensures
termination using data F5 computes itself. �is variant changes just a few lines of code
in an existing F5 implementation, but terminates for sure and introduces no penalty to
performance at all. Later on we even combine our ideas with Ars’ leading to a terminating
algorithm which is sometimes even faster than F5.

Remark 6.5.1. Proving termination of Faugère’s attempt computing standard bases is not a
mere problem of F5, but of all its variants. It is mainly based on the usage of the Rewritten
Criterion and the fact that possible reductions are rejected not only due to sig–unsafeness,
but also based on criteria checks. �us speaking about F5 in the following, the very same
holds for F5C and F5E.

De�nition 6.5.2. A labeled polynomial f computed in F5 is called redundant if there exists
g ∈ G at the moment SigRedF5 returns f such that lt(g) ∣ lt(f).
Remark 6.5.3.

(1) Note that also in a Buchberger–like algorithm a standard basis G can be computed
such that there exist p, q ∈ G with lt(q) ∣ lt(p). �e important di�erence to the above
de�nition is that if this situation appears in Buchberger–like algorithm p is added to
G before q, not the other way around. In De�nition 6.5.2 we explicitly require that f
is added toG a�er g.�is is a situation which is only possible in the signature–based
world due to the fact that some reductions are not allowed.

(2) Furthermore the above situation really is a problem only in F5 as we see in the fol-
lowing: Whenever a redundant labeled polynomial is added to any of the algorithms
presented in Chapter 5 a sig–unsafe reduction has been rejected. �us in the next
round of critical pairs the corresponding reduction is available and computed. So
termination of the algorithm can be ensured as shown in�eorem 4.2.7. In contrast

8In the past, non–terminating examples were always based on implementational errors.

222 6 Faugère’s F5 Algorithm

to this F5 can reject a reduction not only based on its sig–unsafeness, but also due to
detecting themultiplied reducer by one of its criteria. In this situation no critical pair
corresponding to this reduction step is generated later on, which leads to problems
in proving termination of F5.

Even using the restriction to homogeneous input in F5 does not help us tackling this
problem:

Convention. Let us assume that the critical pairs in P′ have degree d during a call of IncF5.
It is clear that all critical pairs le� in P have a degree > d. �is means that at the moment
P′ = ∅ in the kth call of IncF5 G is a d–standard basis for ⟨ f1 . . . , fk⟩.
De�nition 6.5.4. We denote the set of elements added to G during the step of degree d in
a certain call of IncF5 by Rd .

Let us de�ne the problematic situation.

Situation 6.5.5. Suppose that Rd ≠ ∅ and for every element f ∈ Rd f is redundant.

At �rst glance this situation seems to be completely theoretical, but it does appear in
practice: Reviewing Example 6.1.17 we see that at degree 7 F5 adds

g8 = (x2ze3 , y5t2 − x4zt2)
to G. At degree 8, however, R8 = {g10} with

g10 = (z3te3 , y6t2 − xy2zt4).
�e reduction of g10 by yg8 in SigRedF5 is rejected due to the F5 Criterion. �us Situa-
tion 6.5.5 occurs even in small examples.

Lemma 6.5.6. �ere exists a �nite subset F = { f1 , . . . , fr} ⊂ P of homogeneous polynomials
as input of F5, a degree d, and a point of IncF5’s computation where poly(G) is (d − 1)–
standard basis for ⟨ f1 , . . . , fr⟩ such that
(1) Rd ≠ ∅, and

(2) L (poly(G ∪ Rd)) = L (poly(G)).
Proof. Such an input F is given in Example 6.1.17: Computing a standard basis for I =⟨x2 y − z2t, xz2 − y2t, yz3 − x2 t2⟩ we end with a set G = {g1 , . . . , g9} where poly(G) is 7–
standard basis for I. R8 = {g10} with lt(g8) ∣ lt(g10), so L (poly(G ∪ R8)) = L (poly(G)).
Remark 6.5.7. In [63] Faugère argues in Corollary 2 that termination of F5 follows from
the (unproven) assertion that if F5 does not reduce any polynomial to zero, then for any d
L (poly(G)) ≠ L (poly(G ∪ Rd)) where poly(G) is a (d − 1)–standard basis for the input
ideal. We see that although there is no zero reduction in Example 6.1.17 L (poly(G ∪ R8)) =
L (poly(G)). �us we have found a counterexample showing that �eorem 2 and, by as-
sociation, Corollary 2 of [63] are incorrect. It follows that termination of F5 remains un-
proven, even for regular sequences: �ere could be in�nitely many steps where redundant
labeled polynomials are added to G.

6.5 Termination–ensured variants of F5 223

By contrast, Lemma 6.5.6 is not true for a Buchberger–like algorithm. Such an algo-
rithm always expands the leading ideal when a polynomial does not reduce to zero, which
ensures termination.

In the last couple of years two approaches to solve the termination issue of F5 have been
published. We discuss them shortly, give the rough ideas and show the drawbacks of the
attempts:

(1) In 2005 Ars presented a variant of F5 in [8] which suggests to determine a degree
bound using Buchberger’s 2nd Criterion. �e following three facts outline the gen-
eral idea:

▷ A global variable dmax = 0 is initialized, which stores a degree of a polynomial.

▷ P′ is a second set of the critical pairs, like P. �is set is used to determine a
degree bound only, not giving any other impact on the standard basis compu-
tation at all.

▷ Whenever a new element f is added to G in IncF5 a copy of each critical pair
generated by f and not detected by Buchberger’s 2nd Criterion is stored in P′.
Moreover, the elements already in P′ are again checked by Buchberger’s 2nd
Criterion, and removed from P′ when detected to be useless. A�er this process
has �nished, dmax is set to be the highest degree of an element of P′.

If the degree of all critical pairs in P exceeds dmax, then Buchberger’s 2nd Criterion
implies that the algorithm has already computed a standard basis, and can terminate.

It is important to maintain the distinction between the two sets of critical pairs, as
otherwise the correctness of the algorithm is no longer assured: Buchberger’s 2nd
Criterion does not take the signatures of the labeled polynomials into account.

Two major drawbacks of this approach are clear:

a) Every critical pair is computed and checked twice: once for Buchberger’s 2nd
Criterion, and again for F5’s criteria. Although the F5 Criterion also checks for
divisibility, it checks only labeled polynomials of smaller index, whereas Buch-
berger’s 2nd Criterion checks all labeled polynomials. For most input data the
number of elements of the current index in IncF5 is much larger than the total
of all labeled polynomials of smaller index. We see in the experimental results
of the algorithm that this inconspicuous check can accumulate a signi�cant
time penalty.

b) To make things even worse, the standard F5 Algorithm generally terminates
from its own internal mechanisms before the degree dmax is even reached.
�us, except for pathological cases, the penalty for this short–circuiting ma-
chinery is not compensated by a discernible bene�t.

We denote this variant of F5 by F5B, the “B” stands for “Buchberger” in this setting.

(2) Gash presented another approach in [78], which reintroduces somemore reductions
to zero due to switching between di�erent criteria checks of useless critical pairs.
Gash denotes his variant by F5t, where the “t” indicates an ensured termination of
the algorithm.

224 6 Faugère’s F5 Algorithm

Again, let us give a short summary of the ideas behind F5t:

▷ As in F5B a degree bound is initialized. Here theMacaulay boundM for regular
sequences (see [16, 114] and Section 1.9 for more details) is used.

▷ Once the degree of the labeled polynomials cosidered in F5t exceeds 2M, re-
dundant labeled polynomials are stored in a set D di�erent from G.

▷ Whenever Situation 6.5.5 happens for degrees d > 2M all elements of Rd are
reduced completely w.r.t. G ∪ D not taking care of sig–safeness at all. Any
polynomial which does not reduce to zero in this process is added to D instead
of G.

▷ Due to the possible sig–unsafeness of the reduction described in the previous
point all rewrite rules in R coming from such labeled polynomials in Rd are
deleted.

▷ Subsequently, s–vectors generated using an element of D are reduced without
regard to any criterion, and those that do not reduce to zero are also added to
D, generating new critical pairs.

�ere are 4 major drawbacks of this approach:

a) �e reintroduction of zero reductions incurs a performance penalty. In Gash’s
experiments this penalty is minimal, but these were performed on relatively
small systems without many redundant polynomials. In some systems, like
Katsura-9-h, F5 generates hundreds of redundant labeled polynomials.

b) F5t needs to keep track of two di�erent sets of labeled polynomials, G and
D, for generating critical pairs. Moreover, it uses a completely new reduction
process at some point of the computations. Trying to incorporate the ideas of
F5t to an existing F5 implementation adds a signi�cant amount of complicated
code, which is quite hard to handle in an optimized way.

c) It has to abandon some signatures due to the new, sig–unsafe reduction pro-
cess. �us, a large number of useless critical pairs can be le� undetected and
increase the computational overhead leading to zero reductions.

d) �e doubled Macaulay bound 2M controls the point at which D is introduced
to the computation, and thus the number of elements in D. Nevertheless this
bound is quite imprecise and ad–hoc: In some experiments from [78], F5t ter-
minates on its own before polynomials reach degree 2M. For other input, F5t
yields polynomials of degrees well beyond 2M, and a higher bound would be
desirable.

Both approaches are based on the idea to get some information from outer sources
about the standard basis computation F5 is doing. �is leads to the fact that a terminat-
ing variant of F5 can only be achieved by being highly dependent on di�erent algorithms.
Moreover, implementing a high–performance, low–level F5 Algorithm is a long–term at-
tempt. Adding this high amount of changes, regardless of whether going to Ars’ or Gash’s
approach, can be nearly impossible without rewriting a greater part of already existing
code, besides the implementation of the new ideas.

6.5 Termination–ensured variants of F5 225

So we need to �nd a less thwarting way to solve the issue of termination for F5. �e
idea presented in the following was �rst published in [57] by Gash, Perry, and the author.
Starting the search for a solution, the �rst idea that comes into one’s mind is to ignore the
redundant labeled polynomials in F5’s computations. Sadly it is not that easy to sort the
wheat from the cha�.

Example 6.5.8. Suppose we modify the F5 Algorithm to discard all critical pairs that have
at least one generator being a redundant labeled polynomial. Furthermore, consider for
the following two examples polynomial rings over a ground �eld of characteristic 7583:

(1) For Katsura-5-h, the algorithm no longer terminates. It computes an increasing
chain of labeled polynomials with leading terms x2x

k
3 x5x6 and signatures xk

2 x4 for
k ≥ 1.

(2) For Cyclic-8-h, the algorithm terminates, but its output is not a standard basis at
all.

�is is a quite amazing fact: How can critical pairs involving “redundant” polynomials
be necessary? To answer this question, let us de�ne a more consistent notation.

De�nition 6.5.9. Let f and g be two labeled polynomials computed in F5. A critical pair(u f , vg) is called an SB–critical pair if neither f nor g is redundant. If a critical pair is not
an SB–critical pair, then we call it an F5–critical pair.

In the following we show that F5–critical pairs are necessary for the correctness of the
F5 Algorithm. On this way, the intention of the above de�nition gets clearer.

Lemma 6.5.10. Let f and g be two labeled polynomials in G and assume that lt(g) ∣ lt(f).
�en the s–vector f − vg is not generated in IncF5.

Proof. Before entering IncF5 the next generator of the input ideal is reduced w.r.t. the
intermediate standard basis in F5. So it follows that poly(f) is not in the input of IncF5.
�is means that the reduction of f by vgmust have been rejected, i.e. vg is detected by one
of F5’s criteria. But then it is also detected, either when generating the critical pair (f , vg)
or before constructing f − vg.

Lemma 6.5.11. If Rd satis�es Situation 6.5.5 and f ∈ Rd , then we �nd an element g ∈ G such
that g is not redundant and lt(g) ∣ lt(f).
Proof. If a reducer h of f is redundant, then there needs to exist another element g ∈ G
such that lt(g) ∣ lt(h). Clearly, then also lt(g) ∣ lt(f) holds. Due to the homogeneous input
of F5 we can go down this chain of reducers to the minimal degree, say d. At this point it
is le� to show that there do not exist two polynomials g , h with deg(g) = deg(h) = d such
that lm(g) = lm(h).

Let us prove this by contradiction: Assume that g and h with the above properties exist
in G. It follows that the reduction of one by the other in SigRedF5 was rejected. W.l.o.g.
we assume that g was computed before h, so the reduction of h by g was forbidden. �ere
are three possibilities:

226 6 Faugère’s F5 Algorithm

(1) If index(g) < index(h), then the reduction of h by g would always take place and
SigRedF5 could not reject it at all. So we can assume that index(g) = index(h).

(2) If g is rejected by the F5 Criterion, then g should not have been computed in the �rst
place.

(3) If g is rejected by the Rewritten Criterion, then there exists an element r ∈ G such
that slt(r) ∣ slt(g) and r has been computed a�er g. As F5 computes incrementally
on the degree of the homogeneous elements it follows that deg(r) = deg(g). Hence
slt(r) = slt(g) and due to the homogeneity of the elements r cannot be a predecessor
of g.�us the computation of r would have been rejected by the Rewritten Criterion.

�us lm(g) ≠ lm(h). It follows that we arrive at a reducer, which is not redundant, a�er
�nitely many steps.

Using the above two lemmata we can prove the following main result concerning re-
dundancy in F5:

�eorem 6.5.12. Let f and g be labeled polynomials computed in F5. If (u f , vg) is an F5–
critical pair, then one of the following statements holds at the moment of creation of the cor-
responding s–vector u f − vg:

(1) u poly(f) − v poly(g) has a standard representation w.r.t. poly(G).
(2) �ere exist an SB–critical pair (u′ f ′ , v′g′), a �nite set W ⊂ {1, . . . ,m} with m =

#(G), and terms tw for all w ∈W such that

u poly(f) − v poly(g) = u′ poly(f ′) − v′ poly(g′) + ∑
w∈W

tw poly(gw), (6.5.1)

where τ(f , g) = τ(f ′ , g′), and τ(f ′ , g′) > tw lt(gw) for all w ∈W.

Proof. W.l.o.g. we assume that both f and g are redundant, the case where only one of
them is redundant is similar. By Lemma 6.5.11 there exists for f resp. g at least one re-
ducer f ′ resp. g′ which is not redundant. By Lemma 6.5.10 we can assume that d =
max {deg(f), deg(g)} < deg(u f − vg). Let

λ =
lt(f)
lt(f ′) ,

σ =
lt(g)
lt(g′) .

We know that poly(G) is a d–standard basis, thus we can represent

poly(f) = λ poly(f ′) + ∑
u∈U

tu poly(gu),
poly(g) = σ poly(g′) + ∑

v∈V

tv poly(gv),

6.5 Termination–ensured variants of F5 227

where λ lt(f ′) > tu lt(gu) for all u ∈ U , σ lt(g′) > tv lt(gv) for all v ∈ V , and U ,V ⊂{1, . . . ,m}. By construction τ(f ′ , g′) ∣ τ(f , g), so there exists a term γ ∈ P such that

u poly(f) − v poly(g) = γ (u′ poly(f ′) − v′ poly(g′)) + ∑
w∈W

tw poly(gw) (6.5.2)

where W = U ∪ V , and tw =
τ(f ,g)
lt(f)

tu if w ∈ U/V , tw =
τ(f ,g)
lt(g)

tv if w ∈ V/U , and tw =
τ(f ,g)
lt(f)

tu −
τ(f ,g)
lt(g)

tv if w ∈ U ∩ V . In Equation 6.5.2 we must distinguish two cases:

(1) If γ > 1, then deg(u′ f ′ − v′g′) < deg(u f − vg).�us u′ f ′ − v′g′ is already computed
(or rewritten a�er detection by one of F5’s criteria) using a lower degree computation,
which has already �nished. It follows that there exists a standard representation of
u′ poly(f ′) − v′ poly(g′) w.r.t. poly(G), and thus also a standard representation of
u poly(f) − v poly(g) w.r.t. poly(G).

(2) If γ = 1, then two things can happen: Statement (1) holds if u′ f ′ − v′g′ is already
computed in IncF5, otherwise Statement (2) holds.

Remark 6.5.13.

(1) �eorem 6.5.12 implies that an F5–critical pair might not generate a redundant poly-
nomial, but it can be used to rewrite an SB–critical pair which is not computed. For
example, suppose that F5 adds f to G, where f is redundant, as there already exists
g ∈ G such that u lt(g) = lt(f) for some term u ∈ P . �is means that the reduction
of f by ug was, for example, rejected by one of F5’s criteria. In the following it is
not uncommon that the algorithm encounters some h ∈ G, h not redundant, such

that v = τ(g ,h)
lt(g)

, w = τ(g ,h)
lt(h)

, and u ∣ v. In this situation the SB–critical pair (vg ,wh)
is not computed, since it is rejected as vg is again detected by the very same crite-
rion ug was beforehand. Moreover, assume that lt(f) ∣ τ(g , h). Now it is possible
that (vg ,wh) is necessary for the correctness of the standard basis poly(G) in the
end, but it is not computed as F5 renders it as useless under the assumption that(v′ f ,w′h) exists.

(2) Due to these facts, the notions of “necessary” and “redundant” critical pairs or la-
beled polynomials are somewhat ambiguous in F5. On the other hand, the notions
of F5– and SB–critical pairs are absolute and do not change during the ongoing com-
putations of F5.

Let us state the situation, essential for the understanding of the necessity of F5–critical
pairs, covered by�eorem 6.5.12:

Situation 6.5.14. Let (u f , vg) be an F5–critical pair. Suppose that all SB–critical pairs(u′ f ′ , v′g′) corresponding to Statement (2) of �eorem 6.5.12 are rejected by one of F5’s
criteria, but lack a standard representation w.r.t. G.

Note that Situation 6.5.14 is possible, for example, the Rewritten Criterion can reject all
SB–critical pairs (u′ f ′ , v′g′). With this we can state the main observation made from our
discussion on F5– and SB–critical pairs:

228 6 Faugère’s F5 Algorithm

Corollary 6.5.15. In Situation 6.5.14 the computation of a standard representation of (u f , vg)
w.r.t. G is necessary for the correctness of F5.

Proof. Since (u′ f ′ , v′g′) is an SB–critical pair rejected by at least one of F5’s criteria and
u′ poly(f ′)−v′ poly(g′) has no standard representation w.r.t. poly(G), the only possibility
to receive a standard representation for u′ poly(f ′)− v′ poly(g′) is to compute a standard
representation for u f − vg w.r.t. G and rewrite Equation 6.5.1.

Nowour task is to use the information from the connection between F5– and SB–critical
pairs we have found in�eorem 6.5.12: Sincewe cannot rely on an expanding of the leading
ideal when adding new labeled polynomials to G in F5, we use a similar starting point as
F5B and F5t, a degree bound dSB up to which computations in F5 are done. dSB stores the
maximal possible degree of an SB–critical pair found until that point of the computation.
By�eorem 6.5.12 we know that we need to include all SB–critical pairs in the computation
of dSB , not only the ones not detected by F5’s criteria. �e idea is to process new elements
until the minimal degree d of elements in the pair set P (i.e. the degree of the elements
in P′) is greater than dSB. At this point only F5–critical pairs are le�, thus no SB–critical
pair relies on their computations and reductions. �e information stored in the F5–critical
pairs le� over is not relevant for G, thus we can terminate the computations of F5.

In the following we describe how one has to adjust F5 to receive a variant incorporating
the above mentioned ideas and ensures termination. As we see in the presented pseudo
code the changes to be made are minimal, just adding a few more lines to the code. Based
on this we denote the variant F5+, illustrating the little topping needed to achieve a solution
to the termination issue of F5.

�e motivation of F5+’s attempt is that F5 knows that a labeled polynomial f is redun-
dant if a reduction of f in SigRedF5 is not processed due to one of F5’s criteria. �us F5
knows that f is redundant at this point of the computation. Our aim is to ensure in F5+
that the algorithm does not forget this fact. As long as this information remains available
to the algorithm, identifying F5– and SB–critical pairs is trivial.

We explain how to achieve this task presenting the di�erences in the pseudo code of
F5+’s implementation of IncF5 in Algorithm 57.

(1) As a �rst stepwe need tomodify the data structure of a labeled polynomial f in order
to distinguish redundant and not redundant elements. For this we add a third entry,
a boolean �ag b such that

b =
⎧⎪⎪⎨⎪⎪⎩
1 if f is redundant,

0 otherwise.

With this the data structure of a labeled polynomial handled in the kth iteration of
the algorithm changes to

f = (l , p, b) ∈ P k ×P × {0, 1} .
�e new input to the current iteration step of IncF5+ is assumed to be not redun-
dant9 , so it is initialized with b = 0 in Line 3.

9It is already reduced w.r.t. poly(Gi−1) in F5.

6.5 Termination–ensured variants of F5 229

(2) Having added the information about redundancy to the labeled polynomials we can
update the value of dSB whenever we are in the process of generating an SB–critical
pair. �is happens at two di�erent points of IncF5+: Once when initializing the
�rst batch of critical pairs (Lines 9 and 10). �ere we know that one generator of
the critical pairs is always gs , which is assumed to be not redundant, thus checking
for redundancy is enough on the second generator. Later on, when having added a
new labeled polynomial r to G we again update the data structure when we recover
an SB–critical pair. Note that this time it is important to check both generators of
the pair for redundancy, since r could be a redundant element added to G (Lines 32
and 33).

(3) At this point it is le� to set the redundancy �ag correctly for the newly generated
element r. Clearly, this needs to be done during the reduction process. We illustrate
this in the pseudo code of F5+’s variant of SigRedF5 given in Algorithm 58. �ere we
initialize the redundancy �ag b by 0 in Line 1. From this on we only need to update
b’s value based on the execution of the reduction step:

▷ Whenever a reduction is rejected by F5’s criteria, or due to sig–unsafeness, we
set b to 1, the labeled polynomial is redundant at this moment (Line 18).

▷ If a reduction takes place, set b to 0, the labeled polynomial is not redundant
at this point of the algorithm (Line 13).

In the end, the returned element h gets the correct redundancy �ag (Line 19).

Remark 6.5.16. Note that it is not necessary to set the redundancy �ag for an s–vector
correctly at its initialization in Line 23 in Algorithm 57. Not until r is returned by SigRedF5
the redundancy �ag b of r can be set. Being redundant is by De�nition 6.5.2 a question of
not allowed reductions and not based on the redundancy of the elements of which the
s–vector arises from.

With this we can give a more precise de�nition of our naming convention:

De�nition 6.5.17. We denote the variant of F5 calling IncF5+, and SigRedF5+ by F5+.

Let us show the main property of F5+, namely the fact that it is an algorithm:

�eorem 6.5.18. Let F = { f1 , . . . , fr} ⊂ P be a �nite set of homogeneous polynomials, the
input of F5+. If F5+ terminates, then its result is a standard basis for I = ⟨ f1 , . . . , fr⟩.
Proof. �e statement is clear by the correctness of F5, which is proven in �eorem 6.1.13.

230 6 Faugère’s F5 Algorithm

Algorithm 57 Termination ensured incremental F5 step (IncF5+)

Input: fi a polynomial, G i−1 = {g1 , . . . , gs−1} a set of labeled polynomials such that
poly(G i−1) is a standard basis for ⟨ f1 , . . . , fi−1⟩, S a list of lists of terms in P , R a list of(i − 1) lists of terms in P

Output: G a set of labeled polynomials such that poly(G) is a standard basis for⟨ f1 , . . . , fi⟩, S a list of i lists of terms in P , R a list of i lists of terms in P
1: B ← ∅,G ← ∅, P ← ∅, P′ ← ∅, R[i]← empty list, S[i]← empty list, dSB ← 0, d ← 0
2: t ← s
3: gs ← (e i , fi , 0)
4: S[i]← addF5Crit (lt(gs), S[i])
5: G ← {g1 , . . . , gs}
6: for (k = 1, . . . , s − 1) do
7: u ← lc(gk) τ(gs ,gk)lm(gs)

8: v ← lc(gs) τ(gs ,gk)lm(gk)

9: if (gk not redundant) then
10: dSB = max {dSB , deg(ugk)}
11: if (!NonMinF5? (ugs , S) and !NonMinF5? (vgk , S)) then
12: P ← P ∪ {(ugs , vgk)}
13: while (P ≠ ∅) do
14: P′ ← Select(P) (critical pairs of minimal degree)
15: d ← degree of critical pairs in P′

16: if (d ≤ dSB) then
17: while (P′ ≠ ∅) do
18: Choose (u f , vg) from P′ with max≺ {u sig(f), v sig(g)}minimal w.r.t. ≺.
19: if (! RewriteF5?(u, f , R) and !RewriteF5?(v , g , R)) then
20: P′ ← P′/ {(u f , vg)}
21: l ← max≺ {u sig(f), v sig(g)}
22: R[i]← addRule(l , R[i])
23: r ← (l , u poly(f) − v poly(g))
24: poly(r) ← Reduce (poly(r), poly(G i−1))
25: (r, P′)← SigRedF5+(r,G , S , R, s, P′)
26: if (poly(r) ≠ 0 and r not sig–redundant w.r.t. G) then
27: S[i]← addF5Crit(lt(r), S[i])
28: for (k = 1, . . . , t) do
29: if (lm(gk) ∤ lm(r)) then

30: u ← lc(gk) τ(r ,gk)lm(r)

31: v ← lc(r) τ(r ,gk)
lm(gk)

32: if (r and gk not redundant) then
33: dSB = max {dSB , deg(ugk)}
34: if (lm(u) siglm(r) ≠ lm(v) siglm(gk)) then
35: if (!NonMinF5? (ur, S) and !NonMinF5? (vgk , S)) then
36: P ← P ∪ {(ur, vgk)}
37: t ← t + 1
38: gt ← r
39: G ← G ∪ {gt}
40: else

41: break
42: return (G , S , R)

6.5 Termination–ensured variants of F5 231

Algorithm 58 F5’s semi–complete sig–safe reduction algorithm (SigRedF5+)

Input: f a labeled polynomial, G = {g1 , . . . , gt} a �nite set of labeled polynomials, S a
list of lists of terms in P , R a list of lists of terms in P , s the index of the �rst labeled
polynomial of current index, P′ a set of critical pairs

Output: h a labeled polynomial sig–safe reduced w.r.t. G, P′ a set of critical pairs
1: b ← 0
2: D ← {gs , . . . , gt}
3: B i−1 ← {poly(g1), . . . , poly(gs−1)}
4: l ← siglm(f)
5: p ← poly(f)
6: while (p ≠ 0 and Dp ← {g ∈ D ∣ lm (poly(g)) ∣ lm(p)} ≠ ∅) do
7: Choose any g ∈ Dp .

8: u ←
lt(p)

lt(poly(g))

9: if (!NonMinF5?(ug , S) and !RewriteF5?(u, g , R)) then
10: if (lm(u) siglm(g) < l) then
11: q ← Reduce (u poly(g), B i−1)
12: p ← p − q
13: b ← 0
14: else if (lm(u) siglm(g) > l) then
15: P′ ← P′ ∪ {(ug , (sig(f), p, b))}
16: b ← 1
17: else
18: b ← 1
19: h ← (sig(f), p, b)
20: return (h, P′)
�eorem 6.5.19. For any given �nite input F = { f1 , . . . , fr} ⊂ P of homogeneous polynomi-
als, F5+ terminates a�er �nitely many steps.

Proof. We need to show that a call of IncF5+ performs only �nitely many steps until it
terminates.
We �rst claim that a�er generating new critical pairs for P IncF5+ satis�es #(P) < ∞
throughout the algorithm’s ongoing. To prove this, we show that at any given degree d the
algorithm generates only �nitely many labeled polynomials and critical pairs. We proceed
by induction on d: Certainly, at the beginning of IncF5+, when initializing the �rst bunch
of critical pairs, #(P) ≤ s − 1 < ∞. So it follows that #(P′) < ∞ for the �rst call in Line 14.
Some of the critical pairs in P′ might be rejected by F5’s criteria, others generate s–vectors,
which are reduced �rst w.r.t. G i−1, then sig–safe in SigRedF5+. In SigRedF5+ 3 di�erent
cases must be distinguished:

(1) Clearly, the case where poly(r) = 0 a�er calling SigRedF5+ is trivial.

(2) If no reducer of p is found, h is returned and added to G. All new critical pairs have
a higher degree, so they are not added to P′. Moreover, only �nitely many new pairs
are generated due to the fact that #(G) < ∞.

232 6 Faugère’s F5 Algorithm

(3) If a reducer ug of p is found and not detected by any of F5’s criteria two situations
are possible:

a) If u siglm(g) < l , then the reduction p ∶= p − u poly(g) takes place. p is again
checked for reducers, but lt(p) has decreased in this step.

b) If u siglm(g) > l , then the reduction does not take place directly, but the new
critical pair (ug , (sig(f), p, b)) is added to P′. In this case p is kept for further
reduction checks. Note that only �nitely many such reducers ug could lead
to new critical pairs. As u slm(g) is added to the rules list R when this new
critical pair is further processed in IncF5+. So the Rewritten Criterion implies
that ug is not chosen again as a reducer in the following. At degree d there are
only �nitely many di�erent signatures of current index, so only �nitely many
new elements can be added in this way.

�us only �nitely many new labeled polynomials can be generated until P′ = ∅. All in all
it follows that the number of labeled polynomials as well as the number of critical pairs is
�nite throughout IncF5+’s computations.

To �nish the proof we have to show that a�er �nitely many steps, only F5–critical pairs
are le� in P. Generating labeled polynomials of SB–critical pairs have to be not redundant.
SinceP is Noetherian, there can only be �nitely many not redundant labeled polynomials.
It follows that also the number of SB–critical pairs is �nite.

�us F5+ terminates a�er �nitely many steps.

From a computational point of view it is clear that F5 and F5+ have the very same per-
formance. Computing the degrees of the critical pairs when generatingmust be done either
way, so the only real overhead introduced by F5+ is the following:

▷ Compare dSB with the degree d of the actual SB–critical pairs to be generated.

▷ Keep the redundancy �ag correct during the reduction steps in SigRedF5+.

Clearly, thinking about the overall computations done during a run of F5 resp. F5+ this
does not make any di�erence at all. �us we do not present a table with timings here, since
those would be equal regardless of the example. �e only real worthwhile information F5+
carries is the value of dSB. It turns out (see Table 6.7) that the values of dSB are mostly too
high, i.e. F5 terminates at a degree d which is smaller than dSB in nearly all examples we
have checked. So we can summarize our outcomes of F5+ thusly:

▷ F5+ is a variant of F5, whose termination is ensured. �is property is obtained by
collecting data computed in F5 either way, no outer algorithm or source needs to be
used to get this information.

▷ F5+ does not introduce any penalty on performance, the overhead is minimal.

▷ Having already a working implementation of F5, transforming it to F5+ is done
adding very few lines of easy code.

6.5 Termination–ensured variants of F5 233

�e point is that one can see that the degree bound predicted in F5B, i.e. by Buchberger’s
2nd Criterion, is way better than dSB . So the question arises if one can combine the ideas
of F5+ and F5B to get an algorithm, which is possibly even faster than F5.

We want to achieve a lower degree bound for F5, without introducing computational
overhead by bookkeeping another set of critical pairs during the whole computation as it
is done in F5B. To reduce the degree we can use the following idea: Instead of covering the
maximal degree of all SB–critical pairs handled in F5, we store only the degree dF, which is
the degree of all SB–critical pairs not detected by the F5 Criterion. It is clear that dF ≤ dSB .
�e problem is that we do not know if dF is too low (see Conjecture 6.5.23 at the end of this
section). Situation 6.5.14 implies that this choice of a degree bound might be incorrect.
In this situation we drop in the idea F5B is based on: Perhaps some of the critical pairs
of degrees > dF are needed for the correctness of the standard basis, but we cannot see
this with F5’s criteria. �us we use Buchberger’s 2nd Criterion once the algorithm exceeds
degree dF and check the remaining critical pairs. If Buchberger’s 2nd Criterion veri�es that
all those critical pairs are not needed for the standard basis, we terminate the algorithm.
Otherwise we go on with the next degree step.

�is di�ers in two important ways from F5B’s approach:

(1) Rather than checking all critical pairs with Buchberger’s 2nd Criterion, it checks
only SB–critical pairs that F5 also rejects as unnecessary. A�er all, it follows from
�eorem 6.5.12 that F5–critical pairs can be necessary only if they substitue for an
SB–critical pair.

(2) It checks the SB–critical pairs only once F5’s criteria suggest that it should terminate.

�is leads to a way lower overhead in computational time as well as memory consumption.
We illustrate the implementation of this attempt in the pseudo code of Algorithm 59.

�e main changes to Algorithm 57 are:

(1) �e degree bound dF is recomputed only if the corresponding SB–critical pair is not
detected by the F5 Criterion (Lines 11 and 38).

(2) If a critical pair is rejected by the F5 Criterion, it is added to a second set of critical
pairs, P̂ (Lines 15 and 42).

(3) Whenever the computations exceed the degree dF the critical pairs of the current
degree in P̂ are checked by Buchberger’s 2nd Criterion. Only if all elements of P̂
are rejected by Buchberger’s 2nd Criterion, the algorithm terminates. Otherwise the
computations go on (Line 19).

De�nition 6.5.20. We denote the variant of F5 calling IncF5B+, and SigRedF5+ by F5B+.

Whereas termination of F5B+ is a trivial corollary of�eorem 6.5.19, also its correctness
can be seen easily.

�eorem 6.5.21. Let F = { f1 , . . . , fr} ⊂ P be a �nite set of homogeneous polynomials, the
input of F5B+. If F5B+ terminates, then its result is a standard basis for I = ⟨ f1 , . . . , fr⟩.
Proof. �e statement follows from Buchberger’s 2nd Criterion, Lemma 2.3.4.

234 6 Faugère’s F5 Algorithm

Figure 6.5.1: Coloration of the results for termination variants of F5

We implemented the presented variants of F5 in the Singular kernel to compare per-
formance. �e code is open source and publicly available at

git@github.com:ederc/Sources.git10.

As already mentioned in Section 5.6 we use Singular 3–1–3, revision 14,372 in the SVN
trunk available at

http://www.singular.uni-kl.de/svn/trunk/.

In Table 6.7 we compare timings and degree bounds for some examples. All systems
are homogeneous and computed over a �eld of characteristic 32003. �e random systems
are generated using the function sparseHomogIdeal from random.lib in Singular;
generating polynomials with a sparsity of 85 − 90% and degrees ≤ 6.

All examples where computed on a computer with the following speci�cations:

▷ 2.6.31–gentoo–r6 GNU/Linux 64–bit operating system,

▷ INTEL® XEON® X5460 @ 3.16GHz processor,

▷ 64 GB of RAM, and

▷ 120 GB of swap space.

Remark 6.5.22. Note that due to the decisions made in F5t to start at some point computing
new elements without any criteria checks at all, it is clear that the timings of F5t are much
worse than those of F5 resp. F5+. As an implementation of F5t needs lots of costumizations
in an existing F5, we have abandoned to do so and do not add any computational results
of F5t to Table 6.7.

As in sections 5.6 and 6.4 we use colors to classify the timings. �is time we compare,
similar to Section 6.4 only 3 di�erent algorithms, Figure 6.5 illustrates the coloration.

10You can get the git repository by typing git clone git@github.com:ederc/Sources.git.

git@github.com:ederc/Sources.git
http://www.singular.uni-kl.de/svn/trunk/

6.5 Termination–ensured variants of F5 235

Algorithm 59 Termination ensured incremental F5 step (IncF5B+)

Input: fi a polynomial, G i−1 = {g1 , . . . , gs−1} a set of labeled polynomials such that
poly(G i−1) is a standard basis for ⟨ f1 , . . . , fi−1⟩, S a list of lists of terms in P , R a list of(i − 1) lists of terms in P

Output: G a set of labeled polynomials such that poly(G) is a standard basis for⟨ f1 , . . . , fi⟩, S a list of i lists of terms in P , R a list of i lists of terms in P
1: B ← ∅,G ← ∅, P ← ∅, P′ ← ∅,P̂ ← ∅, R[i] ← empty list, S[i] ← empty list,
dF ← 0, d ← 0

2: t ← s
3: gs ← (e i , fi , 0)
4: S[i]← addF5Crit (lt(gs), S[i])
5: G ← {g1 , . . . , gs}
6: for (k = 1, . . . , s − 1) do
7: u ← lc(gk) τ(gs ,gk)lm(gs)

8: v ← lc(gs) τ(gs ,gk)lm(gk)

9: if (!NonMinF5? (ugs , S) and !NonMinF5? (vgk , S)) then
10: if (gk not redundant) then
11: dF = max {dF , deg(ugk)}
12: P ← P ∪ {(ugs , vgk)}
13: else

14: if (gk not redundant) then
15: P̂ ← P̂ ∪ (ugs , vgk)
16: while (P ≠ ∅) do
17: P′ ← Select(P) (critical pairs of minimal degree)
18: d ← degree of critical pairs in P′

19: if ((d ≤ dF) or (∃p ∈ P̂ not satifsying Buchberger’s 2nd Criterion)) then
20: while (P′ ≠ ∅) do
21: Choose (u f , vg) from P′ with max≺ {u sig(f), v sig(g)}minimal w.r.t. ≺.
22: if (! RewriteF5?(u, f , R) and !RewriteF5?(v , g , R)) then
23: P′ ← P′/ {(u f , vg)}
24: l ← max≺ {u sig(f), v sig(g)}
25: R[i]← addRule(l , R[i])
26: r ← (l , u poly(f) − v poly(g))
27: poly(r) ← Reduce (poly(r), poly(G i−1))
28: (r, P′) ← SigRedF5+(r,G , S , R, s, P′)
29: if (poly(r) ≠ 0 and r not sig–redundant w.r.t. G) then
30: S[i]← addF5Crit(lt(r), S[i])
31: for (k = 1, . . . , t) do
32: if (lm(gk) ∤ lm(r)) then

33: u ← lc(gk) τ(r ,gk)lm(r)

34: v ← lc(r) τ(r ,gk)
lm(gk)

35: if (lm(u) siglm(r) ≠ lm(v) siglm(gk)) then
36: if (!NonMinF5? (ur, S) and !NonMinF5? (vgk , S)) then
37: if (r and gk not redundant) then
38: dF = max {dF , deg(ugk)}
39: P ← P ∪ {(ur, vgk)}
40: else

41: if (r and gk not redundant) then
42: P̂ ← P̂ ∪ (ur, vgk)
43: t ← t + 1
44: gt ← r
45: G ← G ∪ {gt}
46: else

47: break
48: return (G , S , R)

236 6 Faugère’s F5 Algorithm

Let us give a short overview of the values and results presented in Table 6.7:

(1) �e notation (a, b, c)denotes a random system of a generators withmaximal degree
b in a polynomial ring of c variables generated with random.lib in Singular .

(2) dmax denotes the maximal degree in the resulting standard basis.

(3) dF5 denotes the observed degree of termination of F5.

(4) dSB denotes the maximal degree of the SB–critical pairs taken into account in F5.

(5) dB denotes the maximal degree estimated by Buchberger’s 2nd Criterion

(6) dF denotes the maximal degree of all SB–critical pairs not detected by the F5 Crite-
rion.

(7) dFR denotes the maximal degree of all SB–critical pairs not detected by the F5 Cri-
terion or the Rewritten Criterion.

In this series of tests we always compute in the respective polynomial ring over a �eld
of characteristic 32, 003 using the graded reverse lexicographical order <dp .

Table 6.7 shows that the tests for F5B+ do not slow it down signi�cantly. But this is
expected, since the modi�cations add trivial overhead, and rely primarily on information
that the algorithm already has available.

�e computed degrees in Table 6.7 bear some discussion. We have implemented F5B+
in two di�erent ways. Both are the same in that they estimate the maximum necessary
degree by counting the maximal degree dF of SB–critical pairs not discarded by the F5 Cri-
terion. However, one can implement a slightly more e�cient F5B+Algorithm by counting
the maximal degree dFR only of those SB–critical pairs that pass the F5 Criterion and the
Rewritten Criterion. We denote the degree where the original F5 terminates by dF5, and
the maximal degree of a polynomial generated by dmaxGB . Recall also that the maximal
degree estimated by F5B is dB .

It is always the case that dmaxGB ≤ dF5; indeed, we will have dmaxGB ≤ dA for any al-
gorithm A that computes a standard basis for a homogeneous system incrementally by
degree.

On the other hand, it is always the case that max {dF , dFR} ≤ dF5; dF5 counts F5–critical
pairs as well as SB–critical pairs, whereas dF , dFR count only SB–critical pairs that are
not rejected by one or both of F5’s criteria. �us F5B+ always starts its manual check for
termination no later than F5 would terminate, and sometimes terminates before F5. For
example, the termination mechanisms activate for F-855-h, Eco-10-h, Eco-11-h, and
Cyclic-8-h, so F5B and F5B+ both terminate at lower degree than F5. With little to no
penalty, F5B+ terminates �rst, but F5B terminates well a�er F5 in spite of the lower degree!
Even in Katsura-9-h and Katsura-10-h, where dmaxGB = dB < dF = dFR = dF5, the
termination mechanism of F5B+ incurs almost no penalty, so its timings are equivalent to
those of F5, whereas F5B is slower. In other examples, such as Cyclic-7-h and (4,5,12),
F5 and (therefore) F5B+ terminate at or a little a�er the degree(s) predicted by dF and dFR,
but before reaching the maximal degree computed by dB .

We �nish this section with a conjecture about the degree bound needed in F5:

6.5 Termination–ensured variants of F5 237

Conjecture 6.5.23. �e F5 Algorithm can terminate once the maximal degree of all SB–
critical pairs not detected by any of F5’s criteria is exceeded.

Note that this conjecture is not a corollary of �eorem 6.5.19. �e conjecture implies
to drop the check with Buchberger’s 2nd Criterion in an implementation of F5B+. Proving
this conjecture could give a way lower degree bound and improve timings of F5 a lot.

Let us close with the following remark:

Remark 6.5.24. �e changes that need to be done to get F5+ or F5B+ fromF5 can be applied
to F5C or F5E without any modi�cation. �us algorithms like F5C+ and F5EB+ are clear
from a theoretical point of view. We abandon to give extensive pseudo codes due to the
clarity of how to achieve these variants.

238
6
F
au

gère’s
F
5
A
lgorith

m

Examples F5 F5B F5B+ F5/F5B F5/F5B+ dmax dF5 dSB dB dF dFR

Katsura-9-h 39.951 53.973 40.231 0.74 0.99 13 16 21 13 16 16

Katsura-10-h 1, 145.473 1, 407.927 1, 136.437 0.80 1.00 15 18 26 15 18 18

F-855-h 9, 831.814 11, 364.473 9, 793.178 0.86 1.00 14 18 20 17 17 16

Eco-10-h 47.266 57.975 46.671 0.82 1.01 15 20 23 17 17 17

Eco-11-h 1, 117.139 1, 368.448 1, 072.472 0.82 1.04 17 23 26 19 19 19

Cyclic-7-h 6.243 9.182 6.217 0.67 1.00 19 23 28 24 23 21

Cyclic-8-h 3, 791.548 4, 897.631 3, 772.668 0.77 1.00 29 34 41 33 32 30

(4,6,8) 195.455 204.887 195.691 0.95 1.00 22 36 42 34 34 34

(5,4,8) 45.103 46.930 45.123 0.96 1.00 20 22 35 23 20 20

(6,4,8) 46.180 46.880 46.247 0.99 1.00 20 20 34 22 20 20

(7,4,8) 0.827 0.780 0.830 1.06 1.00 14 19 27 14 17 15

(8,3,8) 122.972 126.816 123.000 0.97 1.00 22 37 35 26 31 29

(4,5,12) 4.498 5.680 4.590 0.79 0.98 29 33 37 42 32 30

(6,5,12) 12.071 21.150 12.060 0.57 1.00 50 54 73 55 54 50

(8,4,12) 46.122 47.613 47.750 0.97 0.97 27 35 44 30 34 29

(12,4,12) 14.413 14.897 14.360 0.97 1.00 42 55 60 43 53 43

(4,3,16) 1.439 1.403 1.450 1.03 0.99 15 15 23 18 15 15

(6,3,16) 36.300 37.136 36.300 0.98 1.00 10 14 23 15 14 13

(8,3,16) 467.560 471.737 467.530 0.99 1.00 12 16 21 13 15 13

(12,3,16) 210.327 206.441 210.311 1.02 1.00 21 25 34 20 24 23

(4,3,20) 1.512 1.680 1.500 0.90 1.01 16 22 24 22 21 21

(6,4,20) 1, 142.433 1, 327.540 1, 144.370 0.86 1.00 27 37 39 29 35 31

(8,4,20) 8.242 8.230 8.251 1.00 1.00 35 40 48 36 40 37

(12,3,20) 0.650 0.693 0.650 0.94 1.00 22 26 34 27 26 23

(16,3,20) 2.054 2.060 2.050 1.00 1.00 26 26 41 27 26 26

Table 6.7: Timings (in seconds) & degrees of F5, F5B, and F5B+

7 Generalizing signature–based
algorithms

In this chapter we give some new approaches for using the ideas of signature–based
algorithms in a more general setting. �e chapter is a mixture of various topics in the area
of standard basis computations. It should be understood and read in three di�erent views:

(1) �is chapter presents results of current research. All of them are not published any-
where else and unique to this publication.

(2) Due to the �rst point, some of the topics covered are still in the process of being
investigated and further developed, not only by the author, but also lots of other
people in the computer algebra community. In some sections we can only present
�rst results and give some discussion on future research.

(3) Other sections contain completey new results which are proven there in complete,
but which still lack implementation. �is is due to di�erent reasons, e.g. the com-
plexity of the implementation which needs more time, or the problem of not avail-

240 7 Generalizing signature–based algorithms

able features in Singular , like a thread–safe memory manager, whose implemen-
tation must be done �rst.

In Section 7.1 we show how to generalize all signature–based algorithms to be capable
of inhomogeneous input, giving an in–depth discussion on selection strategies for critical
pairs and problems with the sig–safe reduction. E�ciently computing the ideal quotient⟨ f1 , . . . , fk⟩ ∶ fk+1 is a property which is known for G2V. In Section 7.2 we do not only
explain how this is done, but show that all signature–based algorithms are capable of this.
�ereby we give a complete new proof of this feature, improving the computation of ideal
quotients even more. Following this we explain how to generalize the notion of a signature
which turns out to have various applications for standard basis computations, for example
in non–incremental signature–based algorithms (see Section 7.4) or parallelization of those
(see Section 7.5). We �nish this chapter with a new theoretical result, which uses signature–
based algorithms for the computation of standard bases for corresponding �rst modules
of syzygies in Section 7.6.

All in all this chapter gives a nice insight in what can be expected from the signature–
based world in the near future, not only in terms of optimizations and improvements, but
above all speaking about generalizing the algorithms to a wider �eld of systems they are
usable on.

7.1 Signature–based algorithms and inhomogeneous

input

In [63] Faugère restricted F5 to work on homogeneous ideals in P only. Clearly, when-
ever one wants to compute a standard basis for an inhomogeneous ideal the ideas of Sec-
tion 2.2 can be used:

(1) Homogenize the inhomogeneous ideal I w.r.t. some new variable.

(2) Compute the standard basis Gh for this homogeneous ideal Ih.

(3) Cut down Gh to a standard basis G for I.

�e problem of this approach is that computing a standard basis for Ih can bemuch harder
than the computations in the inhomogeneous case.1 �us it is desired to compute standard
bases for inhomogeneous input with signature–based algorithms, too.

In Chapter 5 we have not restricted our discussion to the homogeneous case. All algo-
rithms presented in that chapter can be used in the inhomogeneous setting, too. �is we
have also seen by the results of example computations given in Section 5.6. �e great fact is
that also F5 can compute standard bases for inhomogeneous input! A�er a discussion on

1In some cases it is even not possible to compute a standard basis in the homogenized setting.

7.1 Signature–based algorithms and inhomogeneous input 241

how F5 must be changed to achieve this property we give a short summary on the general
problems of signature–based algorithms and inhomogeneous input. �is is a �eld of active
research these days.

What is really needed for the correctness of any signature–based algorithm? �e ques-
tion is pretty easy, one must compute all critical pairs by increasing signatures, otherwise
criteria checks may corrupt data, and wrong pairs are marked to be useless. So whereas
this is ensured in SigStd and all its variants due to the fact we always take the next element
out of the pair set P with lowest possible signature, we must be more careful in F5: A closer
look to Algorithm IncF5 (and its optimized variants) shows that F5 presorts a bunch of
elements of P in a second pair set P′ which consists of all critical pairs of minimal possible
degree, which are not detected to be useless by the F5 Criterion. In P′ then the element of
lowest possible signature is chosen. Two questions arise from this investigation:

(1) Does F5 compute new elements by increasing signature throughout the algorithm’s
working?

(2) If the answer to the �rst question is positive, does this also hold using inhomoge-
neous input?

To answer the �rst questionweneed to �nd a connection between the degree of a labeled
polynomial (i.e. the degree of the polynomial part of it) and its signature. For this we
assume homogeneous polynomial data as input of F5, and < to be a well–order on P . In
Section 2.2 we have already seen the following nice property of homogeneous polynomials
when constructing s–vectors:

Let f and g be two homogeneous polynomials in P . Computing corresponding multi-
ples u and v such that u lt(f) = v lt(g) we can construct their s–vector u f − vg. It clearly
holds that deg (u lt(f)) = deg (v lt(g)). As both f and g are homogeneous, u f and vg are
homogeneous, too. �us for all terms t ∈ supp(f) it holds that

deg (ut) = deg (u lt(f)) = deg(u) + deg(f).
A similar statement holds for the terms in supp(g).

With this in mind let us see how the signature and the degree of a labeled polynomial,
with homogeneous polynomial part, computed in F5 are related to each other. For this let
us assume the ith call of IncF5, i.e. there exists a module morphism

π ∶ P i
→ ⟨ f1 , . . . , fi⟩,

ek ↦ fk

for all 1 ≤ k ≤ i. Let us have a closer look at the labeled polynomials computed during the
actual call of IncF5.

▷ In the beginning a �rst current index labeled polynomial is initialized, gs = (e i , fi).
In this situation we know that

sig-deg (gs) = deg (gs) .
Note that this even holds if poly(gs) is inhomogeneous.

242 7 Generalizing signature–based algorithms

▷ �e �rst critical pairs are generated by gs and elements gk of lower index in G. Let u
and v be the corresponding multipliers such that u lt(gs) = v lt(gk). Since gs and gk
are both homogeneous the degree of the critical pair (ugs , vgk) and ugs − vgk is the
same. Moreover, reductions by homogeneous elements do not change the degree of
the s–vector. Sowhenever SigRedF5 returns a labeled polynomial r with poly(r) ≠ 0
deg(r) = deg(ugs−vgk) = deg(ugs). On the other hand, we know that sig(r) = ue i ;
in other words

sig-deg(r) = deg (uπ(e i)) = deg(ugs) = deg(r).
�us all labeled polynomials f constructed in this way ful�ll sig-deg(f) = deg(f).

▷ Labeled polynomials derived from critical pairs (u f , vg) generated by elements f
and g of current index i are le� to be investigated. By the above discussion we can
assume that

sig-deg(f) = deg(f) and sig-deg(g) = deg(g).
W.l.o.g. let u sig(f) ≻ v sig(g). As deg(r) = deg(u f − vg) = deg(u f) for the corre-
sponding reduced labeled polynomial r a�er SigRedF5 (assuming that poly(r) ≠ 0,
the other case is trivial), we see that also in this situation equality of the polynomial
degree and the signature degree holds:

sig-deg(r) = sig-deg(u f) = deg(u) + sig-deg(f) = deg(u)+ deg(f) = deg(r).
We see that, assuming homogeneous input of a signature–based standard basis algo-

rithms, it is useless to presort the pair set P by increasing degree of the critical pairs and
later on sort the part P′ of pairs of minimal degree by the signature: �e signature of any
s–vector corresponding to a critical pair in P′ is smaller than the signature of an s–vector
generated out of a pair from P.

It follows that we can remove this presorting in IncF5 without changing any compu-
tational step of F5 at all! �is means that IncF5 can use exactly the same while loop as
IncSigCrit and di�erences between F5 and SigStd vanish more and more. We waive
stating the updated pseudo code of IncF5 implementing this change since it is trivial.

Next we need to look at the above discussed degree connections, this time under the
assumption that the underlying polynomial data is not homogeneous. In this situation the
connection between sig-deg and deg becomes more complicated:

▷ Clearly, for the initial labeled polynomial of the ith iteration step of F5 nothing
changes: gs = (e i , fi) with

sig-deg(gs) = deg(fi) = deg(gs).
▷ For critical pairs (ugs , vgk) generated by gs and lower index element gk ∈ G it still

holds that the degree of the critical pair, deg (τ(gs , gk)), is equal to sig-deg(ugs).
However, computing the s–vector and reducing it even further the degree can drop.

7.1 Signature–based algorithms and inhomogeneous input 243

So the reduced labeled polynomial r in the end only ful�lls the much weaker in-
equality

deg(r) ≤ sig-deg(r) = sig-deg(ugs) = deg(ugs) = deg (τ(gs , gk)) .
So from this point on for all current index labeled polynomials g, besides the initial
one gs , the degree of the polynomial part of g can be smaller than the degree of its
signature.

▷ �is leads to the problem that at the moment we generate critical pairs (u f , vg)
of labeled polynomials computed during the current iteration step, again assuming
u sig(f) ≻ v sig(g),

deg (τ(f , g)) < sig-deg(u f)
is possible. It is even waymore likely than having an equality of those degrees. From
this point onwards it is clear that there is for any current index labeled polynomial
h no dependency between deg(h) and sig-deg(h) besides deg(h) ≤ sig-deg(h).

From thiswe see thatwhereas it is still safe to compute by increasing signature in SigStd
and its variants, F5’s attempt to presort by the degree of the critical pairs can cause prob-
lems. �ink about the following quite likely situation (e.g. in Eco-11 such a situation
happens hundreds of times):

Let (u f , vg) and (u′ f ′ , v′g′) be two critical pairs in P, again assuming that u sig(f) ≻
v sig(g) and u′ sig(f ′) ≻ v′ sig(g′). Moreover, assume that deg (u f) < deg (u′ f ′). In F5
this means that once IncF5 has processed all critical pairs of degree < deg (u f), (u f , vg) is
added to P′, whereas (u′ f ′ , v′g′) stays in P and its further computation is postponed to a
later point. In this constellation it is still possible that u sig(f) ≻ u′ sig(f ′), but this would
mean that an element of higher signature is computed before an element of lower signature.
Doing computations by increasing signatures is of supreme importance in the signature–
based world, all proofs of correctness and even termination of the di�erent algorithms are
based on this fact!

So it is not possible to ensure correctness and / or termination of a signature–based
algorithm, given inhomogeneous input, using a degree dependent preselection of critical
pairs. F5 is the only signature–based algorithm using this. We have seen that in the case of
homogeneous input this preselection is useless and does not change anything w.r.t. to the
order in which F5 handles its critical pairs. �us one should always implement F5 without
a degree preselection due to the fact that this method

(1) does not change any computational aspect of F5 in the homogeneous case, and

(2) enables F5 to compute standard bases of inhomogeneous ideals.

Due to the equality between the polynomial degree and the degree of a signature for
homogeneous elements those algorithms are designed to handle standard basis compu-
tations in this setting very well, discarding lots of useless critical pairs, sorting them by
degree (which is a good selection as we have already seen in Section 2.2), and having no
real downsides by sig–safe reductions besides the general constraint of sig–safeness, but
this is indispensable for the algorithms’ correctness.

244 7 Generalizing signature–based algorithms

We have already seen, also in Section 2.2, that one of the best possible choices of critical
pairs from the pair set is using the sugar degree (see De�nition 2.2.1). �e nice fact is that
it coincides with the signature degree in signature–based algorithms.

�eorem7.1.1. �edegree of the signature of a labeled polynomial f , computed in a signature–
based standard basis algorithm, coincides to the sugar degree of the polynomial part of f , that
is

sig-deg(f) = s-deg (poly(f)) .
Proof. Let f , g be two labeled polynomials computed in a signature–based standard basis
algorithm interreducing intermediate standard bases. Moreover, let fi ∈ P be the input of
the next incremental step of the corresponding algorithm.

(1) For each such fi it holds that the initial labeled polynomial gs = (e i , fi) ful�lls that
sig-deg(gs) = deg(gs).

(2) For any term t ∈ P it holds that sig-deg(t f) = deg(t) + sig-deg(f), if the corre-
sponding element is not detected by any (NM) resp. (RW) related criterion.

(3) Let u and v be terms in P such that u lt(f) = v lt(g).
a) Assuming that index(f) = index(g) it follows that the signature degree of the

corresponding s–vector is given by

sig-deg(u f − vg) = max {sig-deg(u f), sig-deg(vg)} .
W.l.o.g. let index(f) > index(g). �en it holds that sig-deg(f) ≥ deg(f) and
sig-deg(g) = deg(g). Since deg(u f) = deg(vg) it holds that sig-deg(u f) ≥
sig-deg(vg). It follows that

sig-deg(u f − vg) = sig-deg(u f).
�ese are just the properties of the de�nition of the sugar degree given in De�nition 2.2.1.

�is means that any signature–based algorithm, which depends on computing its data
by increasing signatures, computes new elements for the standard basis w.r.t. the sugar
degree. �us by default a really good selection strategy is taken in these algorithms.

�is discovery seems to be incompatible with the experimental results in Section 5.6.
�ere we have seen that the algorithms have problems computing standard bases of in-
homogeneous ideals, e.g. Eco-11 cannot be computed, whereas Eco-11-h is not a prob-
lem at all. In Buchberger–like algorithms the problem is just the other way around! Ho-
mogenizing ideals and trying to compute a corresponding standard basis can be a much
harder problem than the computations in the inhomogeneous setting. So the question
arises where exactly the problems of signature–based standard basis algorithms lie w.r.t.
inhomogeneous input?

▷ �e selection strategy is e�cient as we have seen in�eorem 7.1.1.

7.1 Signature–based algorithms and inhomogeneous input 245

▷ Also the criteria detecting useless critical pairs work quite great in the inhomoge-
neous setting, discarding a lot more elements than the Gebauer–Möller implemen-
tation in most of the examples.

▷ So the only situation where problems can occur is the reduction process. In there we
can ignore the reducers of lower index, since they are handled without any di�erence
as in a Buchberger–like algorithm. So the reductions with current index labeled
polynomials seem to be le� as a potential source of trouble.

Let us investigate this case a bit more carefully: Due to the fact that we lose the connec-
tion

deg(f) = sig-deg(f)
for all labeled polynomials f computed during an iteration step when switching from ho-
mogeneous to inhomogeneous input, forcing the reduction to be sig–safe can have really
bad impact on the algorithms behaviour. �e problem is that in the given setting reduc-
tions are not only sig–unsafe because the signatures have the same degree, but di�er. Now
it is even possible that a multiplied reducer has a signature of higher degree than the ele-
ment to be reduced! �us a lot more reductions do not take place. �is again means that
a bunch of new critical pairs are generated and tested and computed. But this time the
signatures of these critical pairs need not have the same degree. Let us give an example:
Assume a labeled polynomial f to be reduced by another labeled polynomial g ∈ G, i.e.
there exists a term u ∈ P such that lt(f) = u lt(g). �e reduction itself is not allowed as
u sig(g) ≻ sig(f). So in the following a new critical pair (ug , f) with signature u sig(g)
is generated and later on computed. �e problem is the “later on”: Whereas (ug , f) has
the same signature degree as f in the homogeneous setting, assuming polynomials to be
inhomogeneous it is possible that sig-deg(ug) > sig-deg(f). �is means that the corre-
sponding data needed from the reduction step of f and ug cannot be used in the algorithm
at the time it really is needed. �is triggers other reductions that would be helpful to take
place at an earlier point of the algorithm to be delayed. All in all, correctness is still ensured,
but the overhead that is computed due to all these not allowed and postponed reduction
steps has a clear penalty on the performance of signature–based standard basis algorithms.

Using the same setting as in sections 5.6 and 6.4 we compare the corresponding imple-
mentations of AP and F5E, where we adjusted the selection strategy of critical pairs in F5E
as discussed above to ensure correcntess and termination of the computations for inhomo-
geneous input. We compare F5E to AP, as AP is the fastest algorithm of the ones presented
in Chapter 5 considering inhomogeneous input data.

�ere are two important observations:

(1) First of all, F5E allocates much less memory than AP. In most examples less critical
pairs are considered in F5E than in AP.

(2) On the other hand, AP can compute Eco-11, whereas F5E do not terminate on the
computer we use for the example sets in this thesis.

�e performance di�ers quite a lot, sometimes F5E is way more e�cient than AP, for
example for Cyclic-8. For the Eco-n examples the picture is just the other way around,
F5E is always slower than AP.

246 7 Generalizing signature–based algorithms

Test case Time (sec) Memory (MB) Zero reds Crit. pairs Red. steps #(G)
Cyclic-7 6.500 17.531 36 978 83,880 758

Cyclic-8 5, 418.410 489.005 244 5,770 3,403,874 3,402

Eco-8 0.390 3.526 0 404 24,887 187

Eco-9 14.970 32.079 0 918 24,7434 373

Eco-10 734.830 242.203 0 2,035 2,384,889 725

Eco-11 −.− −.− - - - -

F-633 0.000 0.035 0 54 290 60

F-744 9.540 25.092 0 818 179,100 87

F-855 101.520 149.352 0 2,704 835,718 148

Katsura-8 0.050 1.500 0 120 1,634 105

Katsura-9 0.490 6.000 0 247 5,371 202

Katsura-10 5.890 23.518 0 502 18,343 399

Katsura-11 70.100 92.098 0 1,013 63,194 784

Table 7.1: Computation for inhomogeneous input using F5E

Test case Time (sec) Memory (MB) Zero reds Crit. pairs Red. steps #(G)
Cyclic-7 5.950 637.573 36 914 93,742 658

Cyclic-8 14, 078.000 60, 444.643 244 20,086 49,444,223 2,611

Eco-8 0.080 12.026 0 398 10,161 187

Eco-9 1.630 90.595 0 954 83,911 373

Eco-10 67.410 666.817 0 2,337 869,101 725

Eco-11-h 4, 521.250 26, 206.020 502 14,994 7,787,226 1,968

Eco-11 7, 692.740 5, 345.710 0 228,450 9,623,810 1,455

F-633 0.000 0.535 0 54 319 56

F-744 42.700 133.606 0 899 249,228 87

F-855 182.390 1, 228.474 0 3,309 1,749,296 148

Katsura-8 0.050 8.000 0 120 1,626 105

Katsura-9 0.440 41.000 0 247 5,309 202

Katsura-10 5.110 212.546 0 502 17,868 399

Katsura-11 66.590 1, 133.735 0 1,013 60,965 784

Table 7.2: Computation for inhomogeneous input using AP

7.2 Computing the ideal quotient 247

So the only practical conclusion we can get out of this comparison is that there is not the
one signature–based standard basis algorithm for inhomogeneous computations. Again,
more research needs to be done to get more insight in the inner structures and impacts of
inhomogeneous data on the algorithms.

To �nd optimizations or solutions to this problem is a point of the author’s current
research. We hope to get some more insight in the behaviour of the algorithms in the
inhomogeneous case. Right now it is, to the knowledge of the author, an open problem.

Remark 7.1.2.

(1) Clearly, removing the preselection of critical pairs of minimal degree in F5 implies
that one needs to change SigRedF5, too, due to the creation of new critical pairs
corresponding to sig–unsafe reductions there. It is obvious how to implement this
change, thus we do not illustrate this with pseudo code.

(2) Let us also give some note on localmonomial orders onP : As localmonomial orders
are to be taken into account only in the inhomogeneous setting it is clear that before
we can even think about how to handle such a setting we need to understand and to
improve the inhomogeneous situation w.r.t. global orders �rst. �ere is hope that by
getting more knowledge of the sig–safe reduction steps in the global inhomogeneous
situation counterparts of Mora’s normal form algorithm (see Algorithm 3) can be
achieved, too.

(3) Note that we know by the above disussion that the resulting data of F5E’s computa-
tions for the homogeneous examples do not change at all. �e order in which the
critical pairs are chosen is exactly the same, independent of a pre–selection by de-
gree.

7.2 Computing the ideal quotient

As already mentioned in Section 5.5 signature–based algorithms can be easily modi�ed
to compute not only a standard basis for an ideal I = ⟨ f1 , . . . , fr⟩, but also the ideal quotients

⟨ f1 , . . . , fk⟩ ∶ fk+1 .
�is is a generalization of standard basis computations which was �rst noted for G2V in
[76], but can be applied to any signature–based algorithmpresented in this thesis. We show
how to achieve the ideal quotient from SigStd, applying the generalizations to AP, G2V,
and F5 is straightforward. �e statements and proofs of this sections are presented for the
�rst time ever in such a generality.

Convention. In the following we denote Ik = ⟨ f1 , . . . , fk⟩ for k ∈ {1, . . . , r − 1}.

248 7 Generalizing signature–based algorithms

�e main idea for constructing generators for ideal quotients as side products of incre-
mental standard basis computations can be found in the exact sequence given by

0 Ð→ R/ (Ik ∶ fk+1) ϕ
Ð→ R/Ik ψ

Ð→ R/⟨ f1 , . . . , fk+1⟩Ð→ 0.

�ere ϕ is just amultiplication by fk+1 , which is injective, and ψ is the canonical homomor-
phism between R/Ik and R/⟨ f1 , . . . , fk+1⟩. It clearly holds that ϕ (R/ (Ik ∶ fk+1)) = ker(ψ).

Any signature–based algorithm presented in this thesis with the dynamically updat-
ing (NM) criterion, i.e. an NonMin?–like implementation, where a new element slt(g) is
added to the set S of all leading terms of elements of Ik whenever poly(g) has been reduced
to zero in SigRed, can compute a basis for Ik ∶ fk+1 . In fact, we have the following.

Proposition 7.2.1. In the setting presented in Chapter 5 S is a basis for the ideal L(Ik ∶ fk+1)
at the end of each iteration step, i.e. whenever IncSigCrit returns to SigStd.

Proof. Let us assume that the current index in IncSigCrit is s, i.e. π(es) = fk+1 . In other
words, fk+1 = ps and Ik = ⟨p1 , . . . , ps−1⟩.
(1) �e initial elements of S are already in L(Ik), thus they are clearly in L(Ik ∶ ps). Any

element f computed during IncSigCrit such that SigRed reduces poly(f) to zero
ful�lls the following property:

label(f) = s

∑
i=1

q i e i .

Since poly(f) = π(label(f)) = 0 we have that

poly(f) = s

∑
i=1

q i pi = 0

⇒ qs ps =
s−1

∑
i=1

q i pi

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
∈Ik

.

�is means that qs ∈ Ik ∶ fk+1 , and moreover, lt(gs) ∈ L(Ik ∶ fk+1). �us S ⊂ L(Ik ∶
fk+1).

(2) Assume that there exists an element g ∈ Ik ∶ fk+1 , but lt(g) ∉ ⟨S⟩ when IncSigCrit
stops. �is would mean that lt(g) = slt(h) of some labeled polynomial h which has
not reduced to zero in SigRed w.r.t. G. �en four situations are possible:

a) Either there is no reducer of poly(h) in poly(G), neither sig–safe nor sig–
unsafe. �is means that we get a representation

⇒ qs ps =
s−1

∑
i=1

q i pi

´¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¶
∈Ik

+poly(h)´¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¶
∉Ik

.

But then it would follow that qs = g ∉ Ik ∶ fk+1 , which is a contradiction to our
assumption.

7.2 Computing the ideal quotient 249

b) It is possible that a sig–unsafe reduction has not taken place, which could have
lead to a zero reduction. �en in the next round of critical pair creation h and
the corresponding sig–unsafe reducer build a new critical pair. �is process of
creating new critical pairs (if sig–unsafe reductions take place) goes on until
we reach the zero reduction poly(h′) . �en g is not in Ik ∶ fk+1 by the same
argument as in Situation (2)a.

c) �e critical pair corresponding to the s–vector h, which would reduce to zero,
is detected by NonMin?. But then there exists an element s ∈ S such that
s ∣ slt(h).

d) �e critical pair corresponding to the s–vector h, which would reduce to zero,
is detected by Rewrite?. �en there either exists a syzygy l ∈ P s such that
slt(l) = lt(g), i.e. there exists some element t ∈ S with t ∣ slt(l) due to a previ-
ously computed zero reduction. Or there exists another s–vector not reducing
to zero, whose leading term of its signature divides lt(g). But then the corre-
sponding critical pair h has a standard representation w.r.t. an ideal including
p1 , . . . , ps−1 and at least poly(h), whereas poly(h) ∉ Ik . �us also g ∉ Ik ∶ fk+1 .

Moreover, we can generalize the labels of labeled polynomials we have restricted our-
selves to in practice (see Section 4.3): In theory we always assume a labeled polynomial
f = (l , p) such that π(l) = p. Here we can require that for any labeled polynomial f we
store the part of highest index of the corresponding label in l .

De�nition 7.2.2.

(1) Assume IncSigCrit with input values G i−1 = {p1 , . . . , ps−1}, fi = ps . Let l ∈ P s be a
complete label of a labeled polynomial f = (s, p) (whereas we think of l as the label
computed during IncSigCrit consideringAlgorithm 34 for sig–safe reductions); i.e.
π(l) = p. We de�ne the map

ϕ ∶ P s
Ð→ P s/⟨e1 , . . . , es−1⟩,

∑s
i=1 pi e i z→ ps es ,

where the pi ∈ P and the e i are the canonical generators of P
s . If u = ϕ(l), then we

call f = (u, p) a curr–index labeled polynomial. By de�nition, a curr–index labeled
polynomial g = (v , q)with index(g) < s has v = 0.

(2) For a curr–index labeled polynomial f = (u, p) we can de�ne the polynomial part
of its label u by pp(f) ∶= pp(u) where

pp ∶ P s
Ð→ P ,

u = ps es z→ ps ,

Example 7.2.3. Let us reconsider Example 4.3.4. �ere we compute a slim labeled po-
lynomial g4 = (ye3 ,−xz3 + yz3). Considering the whole label during the sig–safe re-
duction step, i.e. using Algorithm 34, we end up with the full labeled polynomial g4 =((y + z)e3 − z2e2 + (yz + z2)e1 ,−xz3 + yz3). In this setting ϕ ∶ P 3

→ P 3/⟨e1 , e2⟩. �us

250 7 Generalizing signature–based algorithms

we receive a curr–index labeled polynomial g4 = ((y + z)e3 ,−xz2 + yz3). Moreover,
pp(g4) = y + z.

In this sense we need to reconsider our initial de�nition of SigRed given in Algo-
rithm 34: Instead of only reducing the polynomial part, we also need to reduce the label of
the curr–index labeled polynomials. �is means, whenever we have an element f , and we

�nd a reducer g such that t = lt(f)
lt(g)

and sig(tg) ≺ sig(f), then we need to compute

poly(f) = poly(f) − t poly(g), and
label(f) = label(f) − t label(g).

Similar to the above approach computing the leading ideal of Ik ∶ fk+1 we would like to
have at the end of each iteration step that the elements of S generate Ik ∶ fk+1 . We illustrate
the needed changes in Algorithm 61:

Algorithm 60 SigStd including ideal quotients(SigStdQ)

Input: F = {p1 , . . . , pr} a �nite subset of P
Output: G a standard basis for ⟨F⟩ w.r.t. <, L a list of ideal quotients
1: L ← []
2: G1 ← {p1}
3: for (i = 2, . . . , r) do
4: pi ← Reduce(pi ,G i−1)
5: if (pi ≠ 0) then
6: (G i , B i) ← IncSigQ(pi ,G i−1)
7: L ← Concat(L, B i)
8: else

9: G i ← G i−1

10: G ← Gr

11: return (G , L)
It is important to store not only the leading terms of the elements from Gk , but the

whole polynomials in S (see Line 7). �e elements in Gk are clearly in Ik and thus also by
construction in Ik ∶ fk+1 .
Whenever a zero reduction of a labeled polynomial f = (l , p) happens, we have seen in
our previous discussions (see the comparison of F5 and G2V regarding the usage of the
non–minimal signature criterion) that it is advantageous to add siglt(f) to S. In our spe-
cial setting here, we need not only to add the term, but the whole polynomial part of the
signature, i.e. pp(f). �is has changed, w.r.t. Algorithm 36 in Line 23.
In the end, IncSigQ returns not only the standard basis B of Ik as IncSigCrit, but also S,
which stores generators for Ik ∶ fk+1 .

�is leads to a small change in SigStd, namely taking care of this second return value
of IncSigQ. In Algorithm 60 we present the generalized variant of SigStd to store the
ideal quotients, too. SigStdQ returns not only the standard basis G, but also a list of ideal
quotients Ik ∶ fk+1 for k = {1, . . . , r − 1}.

7.2 Computing the ideal quotient 251

Algorithm 61 IncSigCrit with curr–index labeled polynomials (IncSigQ)

Input: fi a polynomial, G i−1 = {p1 , . . . , ps−1} a standard basis for ⟨ f1 , . . . , fi−1⟩
Output: B a standard basis for ⟨ f1 , . . . , fi⟩ w.r.t. <
1: B ← ∅,G ← ∅, P ← ∅
2: S ← ∅
3: ps ← fi
4: t ← s
5: for (k = 1, . . . , s − 1) do
6: gk ← (0, pk)
7: S ← S ∪ {pk}
8: gs ← (es , ps)
9: G ← {g1 , . . . , gs}
10: for (k = 1, . . . , s − 1) do
11: u ← lc(gk) τ(gs ,gk)lm(gs)

12: v ← lc(gs) τ(gs ,gk)lm(gk)

13: if (!NonMin? (ugs , vgk , S) and !Rewrite? (ugs , vgk ,G , P)) then
14: P ← P ∪ {(ugs , vgk)}
15: while (P ≠ ∅) do
16: Choose (u f , vg) from P with max≺ {u sig(f), v sig(g)}minimal w.r.t. ≺.
17: if (!NonMin?(u f , vg , S) and !Rewrite?(u f , vg ,G , P)) then
18: P ← P/ {(u f , vg)}
19: l ← u label(f) − v label(g)
20: r ← (l , u poly(f) − v poly(g))
21: r ← SigRed(r,G)
22: if (poly(r) = 0) then
23: S ← S ∪ {pp(r)}
24: else if (poly(r) ≠ 0 and r not sig–redundant w.r.t. G) then
25: for (k = 1, . . . , t) do
26: u ← lc(gk) τ(r ,gk)lm(r)

27: v ← lc(r) τ(r ,gk)
lm(gk)

28: if (u siglm(r) ≠ v siglm(gk)) then
29: if (!NonMin? (ur, vgk , S) and !Rewrite? (ur, vgk ,G , P)) then
30: P ← P ∪ {(ur, vgk)}
31: t ← t + 1
32: gt ← r
33: G ← G ∪ {gt}
34: B ← poly(G)
35: return (B, S)
It is le� to give a statement of our approach:

Corollary 7.2.4. Let F = { f1 , . . . , fr}, a �nite subset in P , be the input of SigStdQ, I = ⟨F⟩
an ideal. �en the algorithm returns a standard basis for I w.r.t. the underlying order on P

252 7 Generalizing signature–based algorithms

and a list of generators of the quotient ideals Ik ∶ fk+1 for 1 ≤ k ≤ r − 1.

Proof. �e statement about the algorithmic behaviour of SigStdQ and its returning of a
standard basis for the input are clear by our previous discussions. �e statement about the
list of ideal quotients can be restricted to proving that IncSigQ stores the generators of
Ik ∶ fk+1 in S. But this is just clear by looking at the pseudo code of IncSigQ and restating
the proof of Proposition 7.2.1 without restricting to the leading ideal.

Remark 7.2.5.

(1) Note that exchanging sparse labeled polynomials by curr–index labeled polynomials
has a huge impact on the performance. Not only that the algorithm needs much
morememory, the number of computations increases due to the fact that we have to
adjust the labels whenever we reduce with an element of current index in SigRed.

(2) Evenmore, considering NonMin? and Rewrite? the criteria checks get even harder,
as we �rst need to get the leading terms of the labels, which consumes some compu-
tational time, too.

7.3 Generalizing signatures

In this section we give the idea of generalizing the signature. �is is mainly based on
some remark given in [126]. �ere complete syzygies are used to compute standard bases,
which has a bad impact on the performance of their algorithm, since it needs to take care of
a lot more data. �ey suggest to keep only some terms of the syzygies stored and use them
to detected useless critical pairs. We have already seen that signature–based algorithms are
just a very special implementation of the syzygy idea, using only the leading terms of the
corresponding module elements, the signatures. In this setting the idea of generalizing the
signatures means to not only take the leading term of a module element into account, but
also somemore terms. With this one can interreduce some signatures, which could lead to
more rules detecting more useless critical pairs. Other ideas consider more �exible ways
of reducing sig–safe, which could also be very helpful in the inhomogeneous setting as we
have seen in Section 7.1.

Let us start generalizing the de�nition of a signature given in De�nition 4.1.3.

De�nition 7.3.1. Let F = { f1 , . . . , fk} be a �nite subset inP , I = ⟨F⟩ be a �nitiely generated
ideal in P , and let e1 , . . . , ek be the canonical generators of P

k such that

π ∶ P k
Ð→ I

e i z→ fi for all 1 ≤ i ≤ k

is a surjective module homomorphism. Let ≺ be a well–order on P k , and let g ∈ I, h ∈ P k .

7.3 Generalizing signatures 253

(1) We de�ne the signature of length j of h recursively by

sig(h, 1) ∶= sig(h),
sig(h, j) ∶= sig(h, j − 1) + lt≺ (h − sig(h, j − 1)).

for 2 ≤ j ≤ #(supp(h)).
(2) �e (minimal) signature of length j of g is denoted

sig(g , j) ∶= sig (min
≺

labels(g), j).
(3) Moreover, let r = (l , p) ∈ P k ×P be a labeled polynomial. �e signature of length j

of r is given by
sig(r, j) ∶= sig(l , j).

Convention. In the following we mostly speak of the signature of an element without ex-
plicitly noting the length of the signature. �e reader may always think of the correspond-
ing signature of length 1 in these situations. Whenever a signature of some length greater
than 1 is supposed, we explicitly state the length.

Remark 7.3.2. Note that De�nition 4.1.9 of a standard representation of labeled polynomi-
als also makes sense if we are interested in signatures of level j > 1: By de�nition, sig(r)
consists of the leading term of label(r)w.r.t. ≺. All j− 1 summands added when construct-
ing sig(r, j) are smaller than sig(r). �us the condition on sig(r) is enough to de�ne a
standard representation of a labeled polynomial w.r.t. some given set G.

Let us give some facts about what needs to be updated in a signature–based standard
basis algorithm in order to use generalized signatures of a given length > 1. For this assume
that we are using signatures of length j > 1 in the following. New implementations must be
donewhenever a current index reduction of a labeled polynomial takes place. �is happens
at two points of the incremental step of the algorithm:

(1) Whenever an s–vector is generated out of a critical pair it is no longer su�cient to
search for the maximum of the leading terms of the generalized signatures, but one
needs to compare all j terms of the corresponding signatures and construct a new
signature of length j for the s–vector out of the 2 j terms in question.

(2) A very similar situation happens whenever a sig–safe reduction f − ug takes place:
�is time we have already checked that lt (sig(f , j)) ≻ u lt (sig(g , j)), but still we
need to compare all other j − 1 terms of sig(f , j) with the j terms of sig(g , j) and
recompute sig(f , j) possibly.

Remark 7.3.3.

(1) �e second situation from above is completely new for signature–based algorithms:
Sig–safe reductions are de�ned exactly the way such that one only needs to compute
the reduction step on the polynomial part. In this generalized setting computations
with the signatures need to be done, although the reduction is sig–safe! �is leads
to a huge computational overhead.

254 7 Generalizing signature–based algorithms

(2) Note that actions like criteria checking does not change at all, since they are based on
the leading terms of the generalized signatures only. From the computational point
of view a bit more overhead is generated due to the fact that one �rst needs to get the
leading term out of the generalized signature before checking them in the respective
implementation of (NM) and (RW).

(3) Be cautious, the memory consumption can increase quite a lot generalizing signa-
tures. �inking about thousands of critical pairs that need to be stored, most of them
are useless, but they are possibly detected to be so with the respective implementa-
tion of (RW) �rst and thus are stored for the time being.

Having seen the amount of overhead generalizing the signatures introduces, let us dis-
cuss what are the bene�ts we can get. �ere are two advantages over a usual signature–
based standard basis algorithm:

(1) Having j terms stored in the signatures, but using only the leading term of them in
(NM) and (RW) would be quite foolish. �e idea is to regularly check if one can
interreduce the set of signatures and get a new term, the leading term of the reduced
signature, for example as a new rule in F5. �is is something one cannot do with
usual signatures.

(2) �inking about the sig–safe reduction process, it is now possible to perform a reduc-
tion f − ug where lt (sig(f , j)) = u lt (sig(g , j)). In this situation only the leading
term cancels out, but there are (hopefully) enough terms of the signature sig(f , j)−
u sig(g , j) le� to construct a new signature of f −ug.�us a sig–unsafe reduction can
take place always besides the quite unusual situation where sig(f , j)−u sig(g , j) = 0.
�is could have a positive impact on computations in the inhomogeneous setting.

Although these bene�ts seem to be quite desirable it is clearly questionable how the
ratio of drawbacks and advantages when generalizing signatures. Up to now no working
algorithm including the ideas mentiond in this section is known, which is to the greatest
part due to the complexity of its implementation. �e author is working on such an imple-
mentation, but it is too early to present faithful experimental results. Still it is an area of the
signature–based world that seems to be promising giving some nice new results improving
the computation of standard bases.

7.4 Non–incremental signature–based standard basis

algorithms

One of the biggest drawbacks of all signature–based algorithms presented until now is
their dependency on incremental computations. If one wants to compute a standard basis
for an ideal I = ⟨ f1 , . . . , fr⟩ ⊂ P in the signature–based world we compute the standard

7.4 Non–incremental signature–based standard basis algorithms 255

basis G1 for ⟨ f1⟩, then G2 for ⟨ f1 , f2⟩, and so on until we reachGr , a standard basis for I. As
long as the number r of ideal generators is not too big, e.g. in complete intersections, this
is not a problem at all. Assuming r to be quite big (compared to the number of variables in
the polynomial ring the ideal is de�ned in) this tends to be a problem: When computing
a standard basis for ⟨ f1 , . . . , fk⟩ for 1 < k < r information stored in fk+1 , . . . , fr cannot be
used as it is done in a non–incremental standard basis algorithm.

Some approach in the direction of non–incremental signature–based algorithms is al-
ready done:

(1) Arri and Perry presented a generalized variant of F5 in [7], which can be used in
an incremental fashion as well as in a non–incremental one. We have presented the
incremental version of this algorithm denoted AP in Section 5.3.

(2) Recently Gao, Volny, andWang unveiled a generalization of the G2VAlgorithm (see
Section 5.5), called GVW ([77]).

�e author is preparing an implementation of a signature–based algorithm in Singu-
lar to be also working in a non–incremental way. �is is not only a non–trivial approach,
but also the theory of this area is not really elaborated until now. �us besides the aspects
of implementation a lot of research in this �eld of non–incremental signature–based com-
putations must be done.

In this section we straiten ourselves to a presentation of the general idea, the bene�ts
and drawbacks such an attempt can have, and how heuristics play an important role to
achieve a dynamically, auto–adjusting signature–based algorithm that can be used on a
wide class of inputs without introducing penalties in performance or memory usage.

�e �rst thing to do is to review why all the signature–based standard basis algorithms
presented so far are tied to an incremental framework. In the prelude of Chapter 5 we
determined the following restriction for all our considerations: �e monomial order on
the signatures is set to be ≺i. Let us review its de�nition:

mi e i ≺i m je j ∶⇐⇒ i < j or,

i = j and mi < m j

for monomials mi ,m j ∈ P . Due to the fact that we have at the same time de�ned a con-
nection between the �nitely generated, free module P r with canonical generators e i and
the ideal I = ⟨ f1 , . . . , fr⟩, given by

π ∶ P r
Ð→ I

e i z→ fi for all 1 ≤ i ≤ r

this causes an incrementally working algorithm:

(1) On the one hand, any s–vector of a critical pair (u f , vg)with index(f) > index(g)
has the signature u sig(f).

(2) On the other hand, critical pairs are handled by increasing signature.

256 7 Generalizing signature–based algorithms

�ese two properties of signature–based algorithms evoke the matter of fact that, entering
IncSig, for example, with two new initial elements gs = (e i , fi) and gt = (e j , f j) with
j > i no element which is generated by gt is taken into account before all possible critical
pairs generated by gs and lower index elements are processed. �us the algorithm would
�rst compute a standard basis for ⟨ f1 , . . . , fi⟩ before any impact of gt on the computation
takes place. Note that this does not only comprise critical pairs generated by gt , but gt in
general: No reduction in SigRed with gt can take place since they are all sig–unsafe. To
the contrary, those sig–unsafe reductions generate new critical pairs whose signature has
index j, again an element clogging the pair set P and whose computation is postponed to
the point when a standard basis for ⟨ f1 , . . . , fi⟩ is already computed.

�us it is useless to start with all ideal generators at once as they are used in the com-
putation only one thing at a time. Still more, it introduces lots of disadvantages:

▷ �e algorithm computes and stores critical pairs which are useless at that point of
the computations.

▷ Due to this lots of useless comparisons getting the element of smallest possible sig-
nature out of the pair set P have to be done.

▷ Even more, one must isolate gt such that it is not used as a reducer, since this would
end up with sig–unsafe reductions, generating even more, to be postponed critical
pairs.

So what can be done to enable the usage of the information stored in gt at the same
time as we compute with gs? Clearly, we cannot change the order in which critical pairs
are handled, those still need to be processed by increasing signatures. �us the only weak
point le� is the monomial order on the signatures. Instead of preferring the postion over
term order we could use ≺m or the Schreyer order ≺lm. �e only real requirement on the
chosen monomial order on the signatures can be de�ned by the following lemma:

Lemma 7.4.1. Let ≺ be the monomial order on the set of all signatures. If ≺ is a well–order
correctness of all signature–based algorithms presented in this thesis remains.

Proof. �is is clear since in all such proofs we only assumed that ≺i is a well–order and that
the critical pairs are processed by increasing signature. As long as these properties are still
valid for the chosen order ≺, no proof is corrupted.

In [7] Arri and Perry give their algorithm in a non–incremental fashion. As we have
already discussed in Section 5.3, AP is, when using ≺i as monomial order on the signatures,
nothing else but F5 with an eased variant of F5’s Rewritten Criterion. Sadly, the authors of
the paper do not provide an implementation of their algorithm, the only publicly avail-
able implementation of AP is done by the author of this thesis, which is restricted to the
incremental structure.

In [77] Gao, Volny, andWang present their algorithm GVW, a generalized implementa-
tion of G2V which can handle di�erent monomial orders on the set of signatures. Besides
the module monomial orders de�ned in this thesis they give two more:

7.4 Non–incremental signature–based standard basis algorithms 257

De�nition 7.4.2. Let mi e i ,m je j be two monomials in P r , ⟨ f1 , . . . , fr⟩ and π as de�ned
above.

(1)

mi e i ≺g1 m je j ∶⇐⇒ deg(mi fi) > deg(m j f j) or,
deg(mi fi) = deg(m j f j) and mi e i ≺m m je j .

(2)

mi e i ≺g2 m je j ∶⇐⇒ lm(mi fi) > lm(m j f j) or,
lm(mi fi) = lm(m j f j) and mi e i ≺i m je j .

�eir experimental results show that in a range of examples the choice of ≺g2 is way
better than choosing ≺i as default in the incremental setting. Besides way faster timings a
lot more useless critical pairs are detected in GVW using ≺g2 compared to those discarded
by G2V.

Remark 7.4.3.

(1) Note that ≺g2 is nothing else but the Schreyer order ≺lm de�ned in Example 3.3.4:
Checking mi e i ≺i m je j , whenever deg(mi fi) = deg(m j f j) holds, just reduces to
i < j.

(2) Two di�culties in their approach comparing the impact of the di�erent order on the
set of signatures might be pointed out here:

a) Firstly, using ≺g1 GVW is way slower than G2V. �e problem is that they give
only 9 examples, which are quite standard. �us there is no complete picture
of how di�erent monomial orders in�uence the computations.

b) Secondly, the source code of their implementation is not available to the public.
It is not clear from their description in [77] if both, GVWandG2V are based on
the sameC++–implementation theymention, i.e. di�ering only by dropping in
di�erent monomial orders ≺. If those algorithms have two completely di�erent
implementations a comparison cannot be made accurately at all.

It follows that a lot of research has to be done in this area of the signature–based world.
On the one hand, the bene�ts of well–chosen monomial orders on the signatures are quite
impressive. On the other hand, these tests are not prestigious at all. Lots of di�erent sys-
tems need to be tested, especially randomized ones and those coming from non–complete
intersections.

Questions like the following need to be answered in the near future:

▷ Does it make sense to dynamically adjust ≺ and < together as an generalization of
the ideas presented in Sections 2.7 and 2.8?

▷ How can one optimize the behaviour of signature–based standard basis algorithms
for inhomogeneous input by changing ≺?

258 7 Generalizing signature–based algorithms

▷ Using modern multicore processors in computers, one could start multiple compu-
tations for the same input with di�erent orders on the signatures and take the �rst
that �nishes.

▷ Can one give heuristics for prede�ning optimal monomial orders ≺ for wide classes
of systems?

▷ Do di�erent orders ≺ have an in�uence on the “quality” of the resulting standard
basis2 like <lp and <dp?

With this discussion the reader may get a feeling for the importance of research in this
area. Quite a lot of new results and improvements can be expected.

7.5 Parallelization of signature–based algorithms

With modern multicore and multiprocessor computers available these days the ques-
tion of parallelization of signature–based algorithms comes up quite naturally. �ere are
two di�erent ways of parallelizing:

(1) Speaking in terms of modular computations as presented in Section 2.9 paralleliza-
tion of signature–based algorithms can be achieved as for any other standard basis
algorithm: Computations in a polynomial ring over a ground �eld of characteristic 0
can bemodularized to several calculations over di�erent ground �elds of �nite char-
acteristic, each being a prime which is lucky w.r.t. the respective setting. All we need
to ensure, to make use of the ideas of Section 2.9, is the computation of the reduced
standard bases. �us we need to interreduce also a�er the last iteration step, which
can easily be done and is not interfering with the signature–based computations at
all. Getting a modular F5 is straightforward, even from the implementational point
of view, thus we leave out any further discussion on this and refer to Section 2.9 for
more details on problems and pitfalls of this approach.

Another idea of distributing computations on several parallel computations can be
found in the incremental structure of the signature–based algorithms:3

a) Once a standard basis for ⟨ f1 , . . . , fi⟩ is computed one could start several calls
of the next incremental step with di�erent initial input elements, say one com-
putes a standard basis for ⟨ f1 , . . . , fi , f j⟩, the other for ⟨ f1 . . . , fi , fk⟩, and so
on. In the end we choose the one which �nishes �rst and do this step recur-
sively. �is approach is still in the process of being implemented and should
be available soon.

2�is is meant in terms of further applications of the computed standard basis.
3Note that this idea can be applied to any incremental algorithm in general.

7.5 Parallelization of signature–based algorithms 259

b) An even more sophisticated approach would be to completely divide the com-
putations and merge them back together step by step. Let us illustrate this:
Assume we want to compute a standard basis for I = ⟨ f1 , . . . , fr⟩ ⊂ P .

i. �en one could compute the ceiling k = ⌈ r
2
⌉ and start the computation

of standard bases for ⟨ f1 , . . . , fk⟩ and ⟨ fk+1 , . . . , fr⟩. Depending on the
number of available processors resp. CPU cores this step can be done re-
cursively.

ii. So we end upwith a couple of standard basesG1 , . . . ,Gm wherem denotes
number of CPU cores available. Next we need tomerge them together, i.e.
we can, in parallel compute standard bases ofG1,2 = G1∪G2 , . . . ,Gm−1,m =
Gm−1 ∪Gm .

iii. Again we do this step recursively and end up with a standard basis G for
⟨ f1 , . . . , fr⟩.

Clearly, this idea can be easily combined with Approach (1)a. �e main prob-
lem of this attempt is also its fundament: the incremental structure. �e stan-
dard basesG i tend to have lots of elements, thus lots of incremental steps must
be done merging the bases together. �is has very bad e�ects considering tim-
ings of the overall algorithm as we have already discussed in more detail in
Section 7.4. An idea would be to use at the point all G is are computed a non–
incremental signature–based algorithm. Sadly, due to the fact of lacking a good
implementation we have not been able to test such situations until now.

c) Furthermore, note that all these ideas can also be combinedwith using di�erent
monomial orders on the set of signatures in each segmented computation.

At the latest from this point on, it becomes clear that parallelizing in this vein is not
at all trivial. �e main problem lies in the vast number of possibilities and combi-
nations. A good heuristic of when to use which approach can only be achieved by a
basis for test cases covering a wide range of di�erent examples. Moreover, the basic
algorithms must be implemented in a comparable way as otherwise the results lack
validity.

(2) Another way of parallelizing signature–based computations has not been covered
in this thesis until now. Instead of modularizing the computations using di�erent
processes on a computer, one could also parallelize code in a subtler way using dif-
ferent threads in a single process. So we are not talking about parallelizing a whole
standard basis computation, but we want to parallelize only parts of it. Possible parts
are:

a) Critical pair generation,

b) Criteria checks,

c) Reduction process.

Note that nearly all of this can be done in a Buchberger–like algorithm, too. Due to
the fact that Singular is not thread–safe right now, we are not able to implement
any of these ideas in the near future.

260 7 Generalizing signature–based algorithms

Let us �nish this section with some rather general notes on parallelization of standard
basis algorithms.

Remark 7.5.1.

(1) Parallelization ofmultiplication and division of polynomials is quite tricky andneeds
lots of implementational tricks. Maple has done some steps in this direction, but
it took them more than one year to implement it ([128, 129]). Moreover, di�erent
philosophies on how to achieve the best result for sparse and dense polynomials
are swirring around and no real winner of this competition has been found until
now. Regarding the a�ord and time needed to implement this in a computer algebra
system such a step should be deliberated.

(2) A more canonical approach on parallelizing the reduction process is to perform an
F4–like Gaussian Elimination. �ematrix operations can be parallelized easily, even
using the huge amount of shaders on modern graphic cards. Faugère and Lachartre
have obtained some nice results in [69].

(3) Note that all ideas given under (2) really need to be implemented in a thread–safe
environment. �e steps we want to parallelize are computed in a short amount of
time, but happen quite a lot and do (mostly) not depend on each other. Using di�er-
ent processes as in the situation of the other presented ideas is not possible since the
communication between the processes may take longer than the computational step
itself. �us a thread–safe memory management of Singular is the next step before
we can start and implement our ideas on parallelizing signature–based algorithms.

7.6 Computing syzygies with generalized

signature–based algorithms

With this section the wheel comes full circle in some sense. In Chapter 3 we started with
a discussion on syzygies and their computation, ending with SyzStd (see Section 3.3), an
algorithm which uses information from syzygies to compute a standard basis for an ideal.
On the one hand, using information stored in the syzygies is quite good for detecting use-
less critical pairs in the algorithm. On the other hand, the general problem of this attempt
lies in the fact that storing, computing, and comparing all the data stored in the syzygies
slows down the standard basis computation, which is the main task.

In Chapter 4 we started improving the above mentioned idea by Möller, Mora, and
Traverso storing only those parts of the correspondingmodule elements which are relevant
for the detection of useless critical pairs, the leading terms. �ose are denoted signatures,
the basic concept all signature–based standard basis algorithms have in common.

In Section 7.3 we have seen that one can generalize the signatures to consist ofmore than
the leading terms of the corresponding module elements. Now we take this generalization

7.6 Computing syzygies with generalized signature–based algorithms 261

to amaximum, storing the whole syzygy resp. label of labeled polynomial in the algorithm.
In contrast to Section 3.3 our intention this time is not to use those generalized signatures
in a special way for the computation of a standard basis. We still use our signature–based
standard basis algorithms with their respective implementations of (NM) and (RW).What
we try to compute is a standard basis for the corresponding �rst module of syzygies.

So we have used ideas from syzygies and optimized their usage for standard basis com-
putations in what we call signature–based algorithms. Now we use these optimized algo-
rithms to improve the computation of syzygies.

In [10]Ars andHashemi have already presented an algorithm to compute syzygies using
a signature–based algorithm. Rather imprecise they called their publication Computing
Syzygies by Faugère’s F5 Algorithm, which is not completely correct: Instead of using F5 as
presented in Section 6.1 they simplify F5 by not performing any checks with the Rewritten
Criterion. Here we illustrate how to compute syzygies with a way improved version of this
simpli�ed F5 using not only principal syzygies for detecting useless elements.

Remark 7.6.1. Note that the results we present here can be applied to any signature–based
algorithm presented in this thesis, even to F5E, the most aggressive and fastest of all such
algorithms. �is is a huge improvement compared to the work of Ars and Hashemi and is
not published anywhere else before.

As in [10] we use the ideas of [155] to compute a basis for the �rst module of syzygies.
�us we �rst need to present an algorithm based on F5, which computes syzygies, too. �is
has to be in the vein of Algorithm 29 from Section 3.2, a variant of Std which also stores
syzygies discovered during the standard basis computation.

Convention. In this section we again assume F = { f1 , . . . , fr}, a �nite subset inP , as input
for our algorithm. We want to compute Syz(I) for I = ⟨ f1 , . . . , fr⟩. < always denotes a
well–order on P , whereas ≺means the order ≺i on P r .

What is the main idea of computing Syz(I) using F5? On the one hand, F5 stores all
leading terms of the principal syzygies in S for its checks of the F5 Criterion. �us we just
need to read this information o�. On the other hand, we get the non–principal syzygies
by reducing s–vectors to zero during F5’s incremental standard basis computations. We
present and explain the pseudo code of the algorithms in the following, again highlighting
changes w.r.t. the corresponding code of the basic F5 Algorithm.

In our previous considerations we have been interested in carrying as few as possible
data in our algorithms. We have found out that the leading term of the label of a polyno-
mial is enough to detect useless critical pairs in the signature–based world. For this we
introduced the notion of slim labeled polynomials in De�nition 4.3.1. We agreed on the
fact that we always assume labeled polynomials to be slim in the pseudo codes given in
chapters 5 and 6. We need to invert this attempt: Whenever we reduce an element to zero
in F5 we need to know the complete label, not only the corresponding signature! �us
we use the idea of generalizing the signatures already mentioned in Section 7.3 and always
store the complete label of a labeled polynomial during the algorithm’s working.

De�nition 7.6.2. Let r = (l , p) be a labeled polynomial. r is called complete i� l ∈ labels(p).

Looking at the code of Algorithm 62 we see that a new data structure is stored, namely
the set of elements in P r , called T . In Line 14 F5Syz returns not only the standard basis B

262 7 Generalizing signature–based algorithms

for I, but also T , which is a standard basis for Syz(I). As already mentioned above we can
distinguish in T principal and non–principal syzygies:

(1) �ose which are added to T in Line 8 are the non–principal ones coming from the
incremental computations of F5, which are now done in a variant of IncF5 called
IncF5Syz and described in Algorithm 63.

(2) In the end we can read o� the principal syzygies of Syz(I) by just computing all
possible combinations of f je i − fi e j , j < i (Line 13).

Note thatwe are no longer allowed to reduce the initial fi s before entering IncF5Syz .�is is
due to the fact that whereas it is clear that those reduction stepswould be sig–safe, this time
they have an impact on the labels of the corresponding elements. Note that these reductions
take place in SigRedF5Syz later on, so there is no problem concerning the correctness of
the standard basis computation of the algorithm.

Algorithm 62�e F5Syz Algorithm(F5Syz)

Input: F = { f1 , . . . , fr} a �nite subset of P
Output: B a standard basis for ⟨F⟩ w.r.t. <,T a standard basis for Syz(F)
1: G1 ← {(e1 , f1)}
2: S = empty list
3: R = empty list
4: T = ∅
5: for (i = 2, . . . , r) do
6: if (fi ≠ 0) then
7: G i , S , R, T

′
← IncF5Syz(fi ,G i−1 , S , R)

8: T ← T ∪ T ′

9: else

10: G i ← G i−1

11: for (i = 2, . . . , r) do
12: for (j = 1, . . . , i − 1) do
13: T ← T ∪ { f je i − fi e j}
14: B ← poly(Gr)
15: return (B, T)

What is le� is to see how the non–principal syzygies are computed in IncF5Syz. Clearly,
using complete labeled polynomials we get the non–principal part of Syz(I) as a side ef-
fect, by just taking the label of the polynomial that is reduced to zero in SigRedF5Syz (see
Line 33 of Algorithm 63). However, we obtain this data only since we need to performmore
computations: we need to keep the label correct at every single reduction step! �is leads
to one fundamental change compared to F5: We need to adjust the label even when reduc-
ing with lower index elements! �us we cannot swap those reductions out of SigRedF5Syz
as we have done this for SigRedF5 (see Line 19). Moreover, generating the s–vector out of
a not detected to be useless critical pair we also need to really compute the label and not
only take the maximum of the two signatures as done in IncF5 (see Line 17).

�e main di�erences to the usual F5 implementation lie in the following facts:

7.6 Computing syzygies with generalized signature–based algorithms 263

(1) IncF5Syz does not use the Rewritten Criterion at all, but it uses some of its data by
adding corresponding criteria to S when a labeled polynomial reduces to zero (see
Line 34).

(2) Due to this NonMinF5? is used again in Line 15 to check the critical pairs before
generating s–vectors out of them; the list of criteria could have been updated because
of an intermediate zero reduction.

Exactly this idea of actively using detected zero reductions makes our approach a huge
optimization of the attempt Ars and Hashemi give in [10].

�is means that the true syzygy computation takes place in Algorithm 64: In contrast
to SigRedF5 all reducers of G are taken into account here (see Line 1 of SigRedF5Syz).
Whenever a sig–safe reduction is allowed, we cannot prereduce the reducer u poly(g)with
elements of lower index as done in SigRed, but we need to carry out all reductions step by
step (Line 9). At the same time we reduce the polynomials, we need to adjust the corre-
sponding labels, too.

(1) In Line 10 we update the value of the current label computing label(f)− u label(g).
�is must be done for any sig–safe reduction step.

(2) If a sig–unsafe reduction is detected, then a new critical pair corresponding to this
not processed reduction is added to the pair set P′. At this point we need to have
the labeled polynomial (label(f), p) as second generator, as label(f) is the current
label �tting to the polynomial data p at that exact moment of computations.

In �eorem 7.6.4 we show that making these changes in the code of F5 the resulting
algorithm F5Syz computes besides a standard basis for the input ideal also a standard basis
for the corresponding �rst module of syzygies.

Remark 7.6.3.

(1) Clearly, the idea of actively using zero reductions goes back to G2V and the results
of Section 5.1, especially Corollary 5.1.4. We have already integrated this idea in F5E.

(2) Note that performing a sig–safe reduction step one can reduce the polynomial part
and adjust the corresponding label quite easily in parallel on a multicore computer.
�ose computations only share the multiplier u, all other data is completely inde-
pendent of each other during these steps.

�eorem 7.6.4. Let F = { f1 , . . . , fr} be the input of F5Syz, I = ⟨ f1 , . . . , fr⟩. If the algorithm
terminates, then it returns

(1) a standard basis B for I w.r.t. <, and

(2) a standard basis T for Syz(F) w.r.t. ≺.

Proof. Part (1) is clear since we do not change the criteria checks and polynomial reduc-
tions compared to F5.

So we need to show (2): It is clear that T ⊂ Syz(F). Assume there exists some s ∈
Syz(F)/T . �en s must come from a, in F5Syz not processed, zero reduction of a critical

264 7 Generalizing signature–based algorithms

pair (u f , vg). �is means that (u f , vg) has been detected by the F5 Criterion. Assume
that the actual computation is the ith call of IncF5Syz, i.e. the current index of labeled
polynomials is i. �us either a principal syzygy (corresponding to elements in the lists
S[1], . . . , S[i − 1] set in previous iteration steps of F5Syz) or a non–principal syzygy (cor-
responding to elements in S[i − 1] added to the list in the current iteration step whenever
a zero reduction appeared) s′ exists whose leading term divides the one of s.

�us L(T) = L (Syz(F)), T is a standard basis for Syz(F)w.r.t. ≺.

Let us close this section with a remark on the problems the Rewritten Criterion could
cause when computing Syz(F).

Remark 7.6.5. We have seen in Lemma 6.1.8 that whenever a labeled polynomial u f is
detected by the Rewritten Criterion, then there exists a representation

u poly(f) = t poly(h)+ ∑
g j∈G ,g j≠h

δ j poly(g j)

such that

(1) h ∈ G or poly(h) = 0,

(2) for all g j with t j ≠ 0 t j siglm(g j) ≺ u siglm(f), and

(3) lm(u) siglm(f) = lm(t) siglm(h).

What happens if poly(h) ≠ 0? In this situation our proof of�eorem 7.6.4 does not work
any more, we know that (u f , vg) is useless for the computation of the standard basis for
I, but possibly the syzygy is needed for Syz(F). Since h has not reduced to zero, we do not
know if the corresponding syzygy is necessary for the set T being a basis for Syz(F).

�us, using only those rules coming from zero reductions by adding the corresponding
signature leading terms to S ensures the correctness of F5Syz.

7.6 Computing syzygies with generalized signature–based algorithms 265

Algorithm 63 Incremental F5 step computing syzygies(IncF5Syz)

Input: fi a polynomial, G i−1 = {g1 , . . . , gs−1} a set of labeled polynomials such that
poly(G i−1) is a standard basis for ⟨ f1 , . . . , fi−1⟩, S a list of lists of terms in P , R a list of
(i − 1) lists of terms in P

Output: G a set of labeled polynomials such that poly(G) is a standard basis for
⟨ f1 , . . . , fi⟩, S a list of i lists of terms in P , R a list of i lists of terms in P , T a set
of elements in P r

1: B ← ∅,G ← ∅, P ← ∅, P′ ← ∅, R[i]← empty list, S[i]← empty list, T ← ∅
2: t ← s
3: gs ← (e i , fi)
4: S[i]← addF5Crit (lt(gs), S[i])
5: G ← {g1 , . . . , gs}
6: for (k = 1, . . . , s − 1) do
7: u ← lc(gk)

τ(gs ,gk)
lm(gs)

8: v ← lc(gs)
τ(gs ,gk)
lm(gk)

9: if (!NonMinF5? (ugs , S) and !NonMinF5? (vgk , S)) then
10: P ← P ∪ {(ugs , vgk)}
11: while (P ≠ ∅) do
12: P′ ← Select(P) (critical pairs of minimal degree)
13: while (P′ ≠ ∅) do
14: Choose (u f , vg) from P′ with max≺ {u sig(f), v sig(g)}minimal w.r.t. ≺.
15: if (!NonMinF5?(u, f , R) and !NonMinF5?(v , g , R)) then
16: P′ ← P′/ {(u f , vg)}
17: l ← u label(f) − v label(g)
18: r ← (l , u poly(f) − v poly(g))
19: (r, P′) ← SigRedF5Syz(r,G , S , R, s, P′)
20: if (poly(r) ≠ 0 and r not sig–redundant w.r.t. G) then
21: S[i]← addF5Crit(lt(r), S[i])
22: for (k = 1, . . . , t) do
23: if (lm(gk) ∤ lm(r)) then

24: u ← lc(gk)
τ(r ,gk)
lm(r)

25: v ← lc(r) τ(r ,gk)
lm(gk)

26: if (lm(u) siglm(r) ≠ lm(v) siglm(gk)) then
27: if (!NonMinF5? (ur, S) and !NonMinF5? (vgk , S)) then
28: P ← P ∪ {(ur, vgk)}
29: t ← t + 1
30: gt ← r
31: G ← G ∪ {gt}
32: else

33: T ← T ∪ {label(r)}
34: S[i − 1]← addF5Crit(siglt(r), S[i − 1])
35: return (G , S , R, T)

266 7 Generalizing signature–based algorithms

Algorithm 64 F5Syz’s semi–complete sig–safe reduction algorithm (SigRedF5Syz)

Input: f a labeled polynomial, G = {g1 , . . . , gt} a �nite set of labeled polynomials, S a
list of lists of terms in P , R a list of lists of terms in P , s the index of the �rst labeled
polynomial of current index, P′ a set of critical pairs

Output: h a labeled polynomial sig–safe reduced w.r.t. G, P′ a set of critical pairs
1: D ← G
2: l ← siglm(f)
3: p ← poly(f)
4: while (p ≠ 0 and Dp ← {g ∈ D ∣ lm (poly(g)) ∣ lm(p)} ≠ ∅) do
5: Choose any g ∈ Dp.

6: u ←
lt(p)

lt(poly(g))

7: if (!NonMinF5?(ug , S) and !RewriteF5?(u, g , R)) then
8: if (lm(u) siglm(g) < l) then
9: p ← p − u poly(g)
10: label(f) ← label(f) − u label(g)
11: else if (lm(u) siglm(g) > l) then
12: P′ ← P′ ∪ {(ug , (label(f), p))}
13: h ← (label(f), p)
14: return (h, P′)

A Examples

In the following we give a complete list of all examples used in this thesis. �e examples
are sorted by their names in increasing order. �e code is given in the Singular language
and is the exact data used for the computations done.

Note that “-h” at the ending of an example’s name indicates that the corresponding
ideal is homogeneous.

268 A Examples

Cyclic-7

Polynomial ring in 7 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6)

i[1] = x(0) + x(1) + x(2) + x(3) + x(4) + x(5) + x(6)
i[2] = x(0) ⋅ x(1) + x(1) ⋅ x(2) + x(2) ⋅ x(3) + x(3) ⋅ x(4) + x(4) ⋅ x(5)+

x(0) ⋅ x(6) + x(5) ⋅ x(6)
i[3] = x(0) ⋅ x(1) ⋅ x(2) + x(1) ⋅ x(2) ⋅ x(3) + x(2) ⋅ x(3) ⋅ x(4)+

x(3) ⋅ x(4) ⋅ x(5) + x(0) ⋅ x(1) ⋅ x(6) + x(0) ⋅ x(5) ⋅ x(6)+
x(4) ⋅ x(5) ⋅ x(6)

i[4] = x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) + x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) + x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5)+
x(0) ⋅ x(1) ⋅ x(2) ⋅ x(6) + x(0) ⋅ x(1) ⋅ x(5) ⋅ x(6) + x(0) ⋅ x(4) ⋅ x(5) ⋅ x(6)+
x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6)

i[5] = x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) + x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5)+
x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(6) + x(0) ⋅ x(1) ⋅ x(2) ⋅ x(5) ⋅ x(6)+
x(0) ⋅ x(1) ⋅ x(4) ⋅ x(5) ⋅ x(6) + x(0) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6)+
x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6)

i[6] = x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5) + x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(6)+
x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(5) ⋅ x(6) + x(0) ⋅ x(1) ⋅ x(2) ⋅ x(4) ⋅ x(5) ⋅ x(6)+
x(0) ⋅ x(1) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6) + x(0) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6)+
x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6)

i[7] = x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6) − 1

269

Cyclic-8

Polynomial ring in 8 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)

i[1] = x(0) + x(1) + x(2) + x(3) + x(4) + x(5) + x(6) + x(7)
i[2] = x(0) ⋅ x(1) + x(1) ⋅ x(2) + x(2) ⋅ x(3) + x(3) ⋅ x(4) + x(4) ⋅ x(5)+

x(5) ⋅ x(6) + x(0) ⋅ x(7) + x(6) ⋅ x(7)
i[3] = x(0) ⋅ x(1) ⋅ x(2) + x(1) ⋅ x(2) ⋅ x(3) + x(2) ⋅ x(3) ⋅ x(4)+

x(3) ⋅ x(4) ⋅ x(5) + x(4) ⋅ x(5) ⋅ x(6) + x(0) ⋅ x(1) ⋅ x(7)+
x(0) ⋅ x(6) ⋅ x(7) + x(5) ⋅ x(6) ⋅ x(7)

i[4] = x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) + x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) + x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5)+
x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6) + x(0) ⋅ x(1) ⋅ x(2) ⋅ x(7) + x(0) ⋅ x(1) ⋅ x(6) ⋅ x(7)+
x(0) ⋅ x(5) ⋅ x(6) ⋅ x(7) + x(4) ⋅ x(5) ⋅ x(6) ⋅ x(7)

i[5] = x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) + x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5)+
x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6) + x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(7)+
x(0) ⋅ x(1) ⋅ x(2) ⋅ x(6) ⋅ x(7) + x(0) ⋅ x(1) ⋅ x(5) ⋅ x(6) ⋅ x(7)+
x(0) ⋅ x(4) ⋅ x(5) ⋅ x(6) ⋅ x(7) + x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6) ⋅ x(7)

i[6] = x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5) + x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6)+
x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(7) + x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(6) ⋅ x(7)+
x(0) ⋅ x(1) ⋅ x(2) ⋅ x(5) ⋅ x(6) ⋅ x(7) + x(0) ⋅ x(1) ⋅ x(4) ⋅ x(5) ⋅ x(6) ⋅ x(7)+
x(0) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6) ⋅ x(7)+
x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6) ⋅ x(7)

i[7] = x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6) + x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(7)+
x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(6) ⋅ x(7) + x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(5) ⋅ x(6) ⋅ x(7)+
x(0) ⋅ x(1) ⋅ x(2) ⋅ x(4) ⋅ x(5) ⋅ x(6) ⋅ x(7) + x(0) ⋅ x(1) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6) ⋅ x(7)+
x(0) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6) ⋅ x(7)+
x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6) ⋅ x(7)

i[8] = x(0) ⋅ x(1) ⋅ x(2) ⋅ x(3) ⋅ x(4) ⋅ x(5) ⋅ x(6) ⋅ x(7) − 1

270 A Examples

Eco-8

Polynomial ring in 8 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7)

i[1] = x(0) ⋅ x(1) ⋅ x(7) + x(1) ⋅ x(2) ⋅ x(7) + x(2) ⋅ x(3) ⋅ x(7)+
x(3) ⋅ x(4) ⋅ x(7) + x(4) ⋅ x(5) ⋅ x(7) + x(5) ⋅ x(6) ⋅ x(7)+
x(0) ⋅ x(7) − 1

i[2] = x(0) ⋅ x(2) ⋅ x(7) + x(1) ⋅ x(3) ⋅ x(7) + x(2) ⋅ x(4) ⋅ x(7)+
x(3) ⋅ x(5) ⋅ x(7) + x(4) ⋅ x(6) ⋅ x(7) + x(1) ⋅ x(7) − 2

i[3] = x(0) ⋅ x(3) ⋅ x(7) + x(1) ⋅ x(4) ⋅ x(7) + x(2) ⋅ x(5) ⋅ x(7)+
x(3) ⋅ x(6) ⋅ x(7) + x(2) ⋅ x(7) − 3

i[4] = x(0) ⋅ x(4) ⋅ x(7) + x(1) ⋅ x(5) ⋅ x(7) + x(2) ⋅ x(6) ⋅ x(7)+
x(3) ⋅ x(7) − 4

i[5] = x(0) ⋅ x(5) ⋅ x(7) + x(1) ⋅ x(6) ⋅ x(7) + x(4) ⋅ x(7) − 5
i[6] = x(0) ⋅ x(6) ⋅ x(7) + x(5) ⋅ x(7) − 6
i[7] = x(6) ⋅ x(7) − 7
i[8] = x(0) + x(1) + x(2) + x(3) + x(4) + x(5) + x(6) + 1

271

Eco-8-h

Polynomial ring in 9 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), h

i[1] = x(0) ⋅ x(1) ⋅ x(7) + x(1) ⋅ x(2) ⋅ x(7) + x(2) ⋅ x(3) ⋅ x(7)+
x(3) ⋅ x(4) ⋅ x(7) + x(4) ⋅ x(5) ⋅ x(7) + x(5) ⋅ x(6) ⋅ x(7)+
x(0) ⋅ x(7) ⋅ h − hˆ3

i[2] = x(0) ⋅ x(2) ⋅ x(7) + x(1) ⋅ x(3) ⋅ x(7) + x(2) ⋅ x(4) ⋅ x(7)+
x(3) ⋅ x(5) ⋅ x(7) + x(4) ⋅ x(6) ⋅ x(7) + x(1) ⋅ x(7) ⋅ h − 2 ⋅ hˆ3

i[3] = x(0) ⋅ x(3) ⋅ x(7) + x(1) ⋅ x(4) ⋅ x(7) + x(2) ⋅ x(5) ⋅ x(7)+
x(3) ⋅ x(6) ⋅ x(7) + x(2) ⋅ x(7) ⋅ h − 3 ⋅ hˆ3

i[4] = x(0) ⋅ x(4) ⋅ x(7) + x(1) ⋅ x(5) ⋅ x(7) + x(2) ⋅ x(6) ⋅ x(7)+
x(3) ⋅ x(7) ⋅ h − 4 ⋅ hˆ3

i[5] = x(0) ⋅ x(5) ⋅ x(7) + x(1) ⋅ x(6) ⋅ x(7) + x(4) ⋅ x(7) ⋅ h − 5 ⋅ hˆ3
i[6] = x(0) ⋅ x(6) ⋅ x(7) + x(5) ⋅ x(7) ⋅ h − 6 ⋅ hˆ3
i[7] = x(6) ⋅ x(7) − 7 ⋅ hˆ2
i[8] = x(0) + x(1) + x(2) + x(3) + x(4) + x(5) + x(6) + h

272 A Examples

Eco-9

Polynomial ring in 9 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8)

i[1] = x(0) ⋅ x(1) ⋅ x(8) + x(1) ⋅ x(2) ⋅ x(8) + x(2) ⋅ x(3) ⋅ x(8)+
x(3) ⋅ x(4) ⋅ x(8) + x(4) ⋅ x(5) ⋅ x(8) + x(5) ⋅ x(6) ⋅ x(8)+
x(6) ⋅ x(7) ⋅ x(8) + x(0) ⋅ x(8) − 1

i[2] = x(0) ⋅ x(2) ⋅ x(8) + x(1) ⋅ x(3) ⋅ x(8) + x(2) ⋅ x(4) ⋅ x(8)+
x(3) ⋅ x(5) ⋅ x(8) + x(4) ⋅ x(6) ⋅ x(8) + x(5) ⋅ x(7) ⋅ x(8)+
x(1) ⋅ x(8) − 2

i[3] = x(0) ⋅ x(3) ⋅ x(8) + x(1) ⋅ x(4) ⋅ x(8) + x(2) ⋅ x(5) ⋅ x(8)+
x(3) ⋅ x(6) ⋅ x(8) + x(4) ⋅ x(7) ⋅ x(8) + x(2) ⋅ x(8) − 3

i[4] = x(0) ⋅ x(4) ⋅ x(8) + x(1) ⋅ x(5) ⋅ x(8) + x(2) ⋅ x(6) ⋅ x(8)+
x(3) ⋅ x(7) ⋅ x(8) + x(3) ⋅ x(8) − 4

i[5] = x(0) ⋅ x(5) ⋅ x(8) + x(1) ⋅ x(6) ⋅ x(8) + x(2) ⋅ x(7) ⋅ x(8)+
x(4) ⋅ x(8) − 5

i[6] = x(0) ⋅ x(6) ⋅ x(8) + x(1) ⋅ x(7) ⋅ x(8) + x(5) ⋅ x(8) − 6
i[7] = x(0) ⋅ x(7) ⋅ x(8) + x(6) ⋅ x(8) − 7
i[8] = x(7) ⋅ x(8) − 8
i[9] = x(0) + x(1) + x(2) + x(3) + x(4) + x(5) + x(6) + x(7) + 1

273

Eco-9-h

Polynomial ring in 10 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8),
h

i[1] = x(0) ⋅ x(1) ⋅ x(8) + x(1) ⋅ x(2) ⋅ x(8) + x(2) ⋅ x(3) ⋅ x(8)+
x(3) ⋅ x(4) ⋅ x(8) + x(4) ⋅ x(5) ⋅ x(8) + x(5) ⋅ x(6) ⋅ x(8)+
x(6) ⋅ x(7) ⋅ x(8) + x(0) ⋅ x(8) ⋅ h − hˆ3

i[2] = x(0) ⋅ x(2) ⋅ x(8) + x(1) ⋅ x(3) ⋅ x(8) + x(2) ⋅ x(4) ⋅ x(8)+
x(3) ⋅ x(5) ⋅ x(8) + x(4) ⋅ x(6) ⋅ x(8) + x(5) ⋅ x(7) ⋅ x(8)+
x(1) ⋅ x(8) ⋅ h − 2 ⋅ hˆ3

i[3] = x(0) ⋅ x(3) ⋅ x(8) + x(1) ⋅ x(4) ⋅ x(8) + x(2) ⋅ x(5) ⋅ x(8)+
x(3) ⋅ x(6) ⋅ x(8) + x(4) ⋅ x(7) ⋅ x(8) + x(2) ⋅ x(8) ⋅ h − 3 ⋅ hˆ3

i[4] = x(0) ⋅ x(4) ⋅ x(8) + x(1) ⋅ x(5) ⋅ x(8) + x(2) ⋅ x(6) ⋅ x(8)+
x(3) ⋅ x(7) ⋅ x(8) + x(3) ⋅ x(8) ⋅ h − 4 ⋅ hˆ3

i[5] = x(0) ⋅ x(5) ⋅ x(8) + x(1) ⋅ x(6) ⋅ x(8) + x(2) ⋅ x(7) ⋅ x(8)+
x(4) ⋅ x(8) ⋅ h − 5 ⋅ hˆ3

i[6] = x(0) ⋅ x(6) ⋅ x(8) + x(1) ⋅ x(7) ⋅ x(8) + x(5) ⋅ x(8) ⋅ h − 6 ⋅ hˆ3
i[7] = x(0) ⋅ x(7) ⋅ x(8) + x(6) ⋅ x(8) ⋅ h − 7 ⋅ hˆ3
i[8] = x(7) ⋅ x(8) − 8 ⋅ hˆ2
i[9] = x(0) + x(1) + x(2) + x(3) + x(4) + x(5) + x(6) + x(7) + h

274 A Examples

Eco-10

Polynomial ring in 10 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8),
x(9)

i[1] = x(0) ⋅ x(1) ⋅ x(9) + x(1) ⋅ x(2) ⋅ x(9) + x(2) ⋅ x(3) ⋅ x(9)+
x(3) ⋅ x(4) ⋅ x(9) + x(4) ⋅ x(5) ⋅ x(9) + x(5) ⋅ x(6) ⋅ x(9)+
x(6) ⋅ x(7) ⋅ x(9) + x(7) ⋅ x(8) ⋅ x(9) + x(0) ⋅ x(9) − 1

i[2] = x(0) ⋅ x(2) ⋅ x(9) + x(1) ⋅ x(3) ⋅ x(9) + x(2) ⋅ x(4) ⋅ x(9)+
x(3) ⋅ x(5) ⋅ x(9) + x(4) ⋅ x(6) ⋅ x(9) + x(5) ⋅ x(7) ⋅ x(9)+
x(6) ⋅ x(8) ⋅ x(9) + x(1) ⋅ x(9) − 2

i[3] = x(0) ⋅ x(3) ⋅ x(9) + x(1) ⋅ x(4) ⋅ x(9) + x(2) ⋅ x(5) ⋅ x(9)+
x(3) ⋅ x(6) ⋅ x(9) + x(4) ⋅ x(7) ⋅ x(9) + x(5) ⋅ x(8) ⋅ x(9)+
x(2) ⋅ x(9) − 3

i[4] = x(0) ⋅ x(4) ⋅ x(9) + x(1) ⋅ x(5) ⋅ x(9) + x(2) ⋅ x(6) ⋅ x(9)+
x(3) ⋅ x(7) ⋅ x(9) + x(4) ⋅ x(8) ⋅ x(9) + x(3) ⋅ x(9) − 4

i[5] = x(0) ⋅ x(5) ⋅ x(9) + x(1) ⋅ x(6) ⋅ x(9) + x(2) ⋅ x(7) ⋅ x(9)+
x(3) ⋅ x(8) ⋅ x(9) + x(4) ⋅ x(9) − 5

i[6] = x(0) ⋅ x(6) ⋅ x(9) + x(1) ⋅ x(7) ⋅ x(9) + x(2) ⋅ x(8) ⋅ x(9)+
x(5) ⋅ x(9) − 6

i[7] = x(0) ⋅ x(7) ⋅ x(9) + x(1) ⋅ x(8) ⋅ x(9) + x(6) ⋅ x(9) − 7
i[8] = x(0) ⋅ x(8) ⋅ x(9) + x(7) ⋅ x(9) − 8
i[9] = x(8) ⋅ x(9) − 9
i[10] = x(0) + x(1) + x(2) + x(3) + x(4) + x(5) + x(6) + x(7) + x(8) + 1

275

Eco-10-h

Polynomial ring in 11 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8),
x(9), h

i[1] = x(0) ⋅ x(1) ⋅ x(9) + x(1) ⋅ x(2) ⋅ x(9) + x(2) ⋅ x(3) ⋅ x(9)+
x(3) ⋅ x(4) ⋅ x(9) + x(4) ⋅ x(5) ⋅ x(9) + x(5) ⋅ x(6) ⋅ x(9)+
x(6) ⋅ x(7) ⋅ x(9) + x(7) ⋅ x(8) ⋅ x(9) + x(0) ⋅ x(9) ⋅ h − hˆ3

i[2] = x(0) ⋅ x(2) ⋅ x(9) + x(1) ⋅ x(3) ⋅ x(9) + x(2) ⋅ x(4) ⋅ x(9)+
x(3) ⋅ x(5) ⋅ x(9) + x(4) ⋅ x(6) ⋅ x(9) + x(5) ⋅ x(7) ⋅ x(9)+
x(6) ⋅ x(8) ⋅ x(9) + x(1) ⋅ x(9) ⋅ h − 2 ⋅ hˆ3

i[3] = x(0) ⋅ x(3) ⋅ x(9) + x(1) ⋅ x(4) ⋅ x(9) + x(2) ⋅ x(5) ⋅ x(9)+
x(3) ⋅ x(6) ⋅ x(9) + x(4) ⋅ x(7) ⋅ x(9) + x(5) ⋅ x(8) ⋅ x(9)+
x(2) ⋅ x(9) ⋅ h − 3 ⋅ hˆ3

i[4] = x(0) ⋅ x(4) ⋅ x(9) + x(1) ⋅ x(5) ⋅ x(9) + x(2) ⋅ x(6) ⋅ x(9)+
x(3) ⋅ x(7) ⋅ x(9) + x(4) ⋅ x(8) ⋅ x(9) + x(3) ⋅ x(9) ⋅ h − 4 ⋅ hˆ3

i[5] = x(0) ⋅ x(5) ⋅ x(9) + x(1) ⋅ x(6) ⋅ x(9) + x(2) ⋅ x(7) ⋅ x(9)+
x(3) ⋅ x(8) ⋅ x(9) + x(4) ⋅ x(9) ⋅ h − 5 ⋅ hˆ3

i[6] = x(0) ⋅ x(6) ⋅ x(9) + x(1) ⋅ x(7) ⋅ x(9) + x(2) ⋅ x(8) ⋅ x(9)+
x(5) ⋅ x(9) ⋅ h − 6 ⋅ hˆ3

i[7] = x(0) ⋅ x(7) ⋅ x(9) + x(1) ⋅ x(8) ⋅ x(9) + x(6) ⋅ x(9) ⋅ h − 7 ⋅ hˆ3
i[8] = x(0) ⋅ x(8) ⋅ x(9) + x(7) ⋅ x(9) ⋅ h − 8 ⋅ hˆ3
i[9] = x(8) ⋅ x(9) − 9 ⋅ hˆ2
i[10] = x(0) + x(1) + x(2) + x(3) + x(4) + x(5) + x(6) + x(7) + x(8) + h

276 A Examples

Eco-11

Polynomial ring in 11 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8),
x(9), x(10)

i[1] = x(0) ⋅ x(1) ⋅ x(10) + x(1) ⋅ x(2) ⋅ x(10) + x(2) ⋅ x(3) ⋅ x(10)+
x(3) ⋅ x(4) ⋅ x(10) + x(4) ⋅ x(5) ⋅ x(10) + x(5) ⋅ x(6) ⋅ x(10)+
x(6) ⋅ x(7) ⋅ x(10) + x(7) ⋅ x(8) ⋅ x(10) + x(8) ⋅ x(9) ⋅ x(10)+
x(0) ⋅ x(10) − 1

i[2] = x(0) ⋅ x(2) ⋅ x(10) + x(1) ⋅ x(3) ⋅ x(10) + x(2) ⋅ x(4) ⋅ x(10)+
x(3) ⋅ x(5) ⋅ x(10) + x(4) ⋅ x(6) ⋅ x(10) + x(5) ⋅ x(7) ⋅ x(10)+
x(6) ⋅ x(8) ⋅ x(10) + x(7) ⋅ x(9) ⋅ x(10) + x(1) ⋅ x(10) − 2

i[3] = x(0) ⋅ x(3) ⋅ x(10) + x(1) ⋅ x(4) ⋅ x(10) + x(2) ⋅ x(5) ⋅ x(10)+
x(3) ⋅ x(6) ⋅ x(10) + x(4) ⋅ x(7) ⋅ x(10) + x(5) ⋅ x(8) ⋅ x(10)+
x(6) ⋅ x(9) ⋅ x(10) + x(2) ⋅ x(10) − 3

i[4] = x(0) ⋅ x(4) ⋅ x(10) + x(1) ⋅ x(5) ⋅ x(10) + x(2) ⋅ x(6) ⋅ x(10)+
x(3) ⋅ x(7) ⋅ x(10) + x(4) ⋅ x(8) ⋅ x(10) + x(5) ⋅ x(9) ⋅ x(10)+
x(3) ⋅ x(10) − 4

i[5] = x(0) ⋅ x(5) ⋅ x(10) + x(1) ⋅ x(6) ⋅ x(10) + x(2) ⋅ x(7) ⋅ x(10)+
x(3) ⋅ x(8) ⋅ x(10) + x(4) ⋅ x(9) ⋅ x(10) + x(4) ⋅ x(10) − 5

i[6] = x(0) ⋅ x(6) ⋅ x(10) + x(1) ⋅ x(7) ⋅ x(10) + x(2) ⋅ x(8) ⋅ x(10)+
x(3) ⋅ x(9) ⋅ x(10) + x(5) ⋅ x(10) − 6

i[7] = x(0) ⋅ x(7) ⋅ x(10) + x(1) ⋅ x(8) ⋅ x(10) + x(2) ⋅ x(9) ⋅ x(10)+
x(6) ⋅ x(10) − 7

i[8] = x(0) ⋅ x(8) ⋅ x(10) + x(1) ⋅ x(9) ⋅ x(10) + x(7) ⋅ x(10) − 8
i[9] = x(0) ⋅ x(9) ⋅ x(10) + x(8) ⋅ x(10) − 9
i[10] = x(9) ⋅ x(10) − 10
i[11] = x(0) + x(1) + x(2) + x(3) + x(4) + x(5) + x(6) + x(7) + x(8)+

x(9) + 1

277

Eco-11-h

Polynomial ring in 12 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8),
x(9), x(10), h

i[1] = x(0) ⋅ x(1) ⋅ x(10) + x(1) ⋅ x(2) ⋅ x(10) + x(2) ⋅ x(3) ⋅ x(10)+
x(3) ⋅ x(4) ⋅ x(10) + x(4) ⋅ x(5) ⋅ x(10) + x(5) ⋅ x(6) ⋅ x(10)+
x(6) ⋅ x(7) ⋅ x(10) + x(7) ⋅ x(8) ⋅ x(10) + x(8) ⋅ x(9) ⋅ x(10)+
x(0) ⋅ x(10) ⋅ h − hˆ3

i[2] = x(0) ⋅ x(2) ⋅ x(10) + x(1) ⋅ x(3) ⋅ x(10) + x(2) ⋅ x(4) ⋅ x(10)+
x(3) ⋅ x(5) ⋅ x(10) + x(4) ⋅ x(6) ⋅ x(10) + x(5) ⋅ x(7) ⋅ x(10)+
x(6) ⋅ x(8) ⋅ x(10) + x(7) ⋅ x(9) ⋅ x(10) + x(1) ⋅ x(10) ⋅ h − 2 ⋅ hˆ3

i[3] = x(0) ⋅ x(3) ⋅ x(10) + x(1) ⋅ x(4) ⋅ x(10) + x(2) ⋅ x(5) ⋅ x(10)+
x(3) ⋅ x(6) ⋅ x(10) + x(4) ⋅ x(7) ⋅ x(10) + x(5) ⋅ x(8) ⋅ x(10)+
x(6) ⋅ x(9) ⋅ x(10) + x(2) ⋅ x(10) ⋅ h − 3 ⋅ hˆ3

i[4] = x(0) ⋅ x(4) ⋅ x(10) + x(1) ⋅ x(5) ⋅ x(10) + x(2) ⋅ x(6) ⋅ x(10)+
x(3) ⋅ x(7) ⋅ x(10) + x(4) ⋅ x(8) ⋅ x(10) + x(5) ⋅ x(9) ⋅ x(10)+
x(3) ⋅ x(10) ⋅ h − 4 ⋅ hˆ3

i[5] = x(0) ⋅ x(5) ⋅ x(10) + x(1) ⋅ x(6) ⋅ x(10) + x(2) ⋅ x(7) ⋅ x(10)+
x(3) ⋅ x(8) ⋅ x(10) + x(4) ⋅ x(9) ⋅ x(10) + x(4) ⋅ x(10) ⋅ h − 5 ⋅ hˆ3

i[6] = x(0) ⋅ x(6) ⋅ x(10) + x(1) ⋅ x(7) ⋅ x(10) + x(2) ⋅ x(8) ⋅ x(10)+
x(3) ⋅ x(9) ⋅ x(10) + x(5) ⋅ x(10) ⋅ h − 6 ⋅ hˆ3

i[7] = x(0) ⋅ x(7) ⋅ x(10) + x(1) ⋅ x(8) ⋅ x(10) + x(2) ⋅ x(9) ⋅ x(10)+
x(6) ⋅ x(10) ⋅ h − 7 ⋅ hˆ3

i[8] = x(0) ⋅ x(8) ⋅ x(10) + x(1) ⋅ x(9) ⋅ x(10) + x(7) ⋅ x(10) ⋅ h − 8 ⋅ hˆ3
i[9] = x(0) ⋅ x(9) ⋅ x(10) + x(8) ⋅ x(10) ⋅ h − 9 ⋅ hˆ3
i[10] = x(9) ⋅ x(10) − 10 ⋅ hˆ2
i[11] = x(0) + x(1) + x(2) + x(3) + x(4) + x(5) + x(6) + x(7) + x(8)+

x(9) + h

278 A Examples

F-633

Polynomial ring in 10 variables: U6, U5, U4, U3, U2, u6, u5, u4, u3, u2

i[1] = 2 ⋅ u6 + 2 ⋅ u5 + 2 ⋅ u4 + 2 ⋅ u3 + 2 ⋅ u2 + 1

i[2] = 2 ⋅ U6 + 2 ⋅ U5 + 2 ⋅ U4 + 2 ⋅ U3 + 2 ⋅ U2 + 1

i[3] = 4 ⋅ U5 ⋅ u6 + 4 ⋅ U4 ⋅ u6 + 4 ⋅ U3 ⋅ u6 + 4 ⋅ U2 ⋅ u6 − 4 ⋅ U6 ⋅ u5 + 4 ⋅ U4 ⋅ u5+

4 ⋅ U3 ⋅ u5 + 4 ⋅ U2 ⋅ u5 − 4 ⋅ U6 ⋅ u4 − 4 ⋅ U5 ⋅ u4 + 4 ⋅ U3 ⋅ u4 + 4 ⋅ U2 ⋅ u4−

4 ⋅ U6 ⋅ u3 − 4 ⋅ U5 ⋅ u3 − 4 ⋅ U4 ⋅ u3 + 4 ⋅ U2 ⋅ u3 − 4 ⋅ U6 ⋅ u2 − 4 ⋅ U5 ⋅ u2−

4 ⋅ U4 ⋅ u2 − 4 ⋅ U3 ⋅ u2 + 2 ⋅ u6 + 2 ⋅ u5 + 2 ⋅ u4 + 2 ⋅ u3 + 2 ⋅ u2 + 1

i[4] = −4 ⋅ U5 ⋅ u6 − 4 ⋅ U4 ⋅ u6 − 4 ⋅ U3 ⋅ u6 − 4 ⋅ U2 ⋅ u6 + 4 ⋅ U6 ⋅ u5−

4 ⋅ U4 ⋅ u5 − 4 ⋅ U3 ⋅ u5 − 4 ⋅ U2 ⋅ u5 + 4 ⋅ U6 ⋅ u4 + 4 ⋅ U5 ⋅ u4 − 4 ⋅ U3 ⋅ u4−

4 ⋅ U2 ⋅ u4 + 4 ⋅ U6 ⋅ u3 + 4 ⋅ U5 ⋅ u3 + 4 ⋅ U4 ⋅ u3 − 4 ⋅ U2 ⋅ u3 + 4 ⋅ U6 ⋅ u2+

4 ⋅ U5 ⋅ u2 + 4 ⋅ U4 ⋅ u2 + 4 ⋅ U3 ⋅ u2 + 2 ⋅ U6 + 2 ⋅ U5 + 2 ⋅ U4 + 2 ⋅ U3 + 2 ⋅ U2 + 1

i[5] = U2 ⋅ u2 − 1

i[6] = U3 ⋅ u3 − 1

i[7] = U4 ⋅ u4 − 1

i[8] = U5 ⋅ u5 − 1

i[9] = U6 ⋅ u6 − 1

279

F-633-h

Polynomial ring in 11 variables: U6, U5, U4, U3, U2, u6, u5, u4, u3, u2, h

i[1] = 2 ⋅ u6 + 2 ⋅ u5 + 2 ⋅ u4 + 2 ⋅ u3 + 2 ⋅ u2 + h

i[2] = 2 ⋅ U6 + 2 ⋅ U5 + 2 ⋅ U4 + 2 ⋅ U3 + 2 ⋅ U2 + h

i[3] = 4 ⋅ U5 ⋅ u6 + 4 ⋅ U4 ⋅ u6 + 4 ⋅ U3 ⋅ u6 + 4 ⋅ U2 ⋅ u6 − 4 ⋅ U6 ⋅ u5 + 4 ⋅ U4 ⋅ u5+

4 ⋅ U3 ⋅ u5 + 4 ⋅ U2 ⋅ u5 − 4 ⋅ U6 ⋅ u4 − 4 ⋅ U5 ⋅ u4 + 4 ⋅ U3 ⋅ u4 + 4 ⋅ U2 ⋅ u4−

4 ⋅ U6 ⋅ u3 − 4 ⋅ U5 ⋅ u3 − 4 ⋅ U4 ⋅ u3 + 4 ⋅ U2 ⋅ u3 − 4 ⋅ U6 ⋅ u2 − 4 ⋅ U5 ⋅ u2−

4 ⋅ U4 ⋅ u2 − 4 ⋅ U3 ⋅ u2 + 2 ⋅ u6 ⋅ h + 2 ⋅ u5 ⋅ h + 2 ⋅ u4 ⋅ h + 2 ⋅ u3 ⋅ h+

2 ⋅ u2 ⋅ h + hˆ2

i[4] = −4 ⋅ U5 ⋅ u6 − 4 ⋅ U4 ⋅ u6 − 4 ⋅ U3 ⋅ u6 − 4 ⋅ U2 ⋅ u6 + 4 ⋅ U6 ⋅ u5−

4 ⋅ U4 ⋅ u5 − 4 ⋅ U3 ⋅ u5 − 4 ⋅ U2 ⋅ u5 + 4 ⋅ U6 ⋅ u4 + 4 ⋅ U5 ⋅ u4 − 4 ⋅ U3 ⋅ u4−

4 ⋅ U2 ⋅ u4 + 4 ⋅ U6 ⋅ u3 + 4 ⋅ U5 ⋅ u3 + 4 ⋅ U4 ⋅ u3 − 4 ⋅ U2 ⋅ u3 + 4 ⋅ U6 ⋅ u2+

4 ⋅ U5 ⋅ u2 + 4 ⋅ U4 ⋅ u2 + 4 ⋅ U3 ⋅ u2 + 2 ⋅ U6 ⋅ h + 2 ⋅ U5 ⋅ h + 2 ⋅ U4 ⋅ h+

2 ⋅ U3 ⋅ h + 2 ⋅ U2 ⋅ h + hˆ2

i[5] = U2 ⋅ u2 − hˆ2

i[6] = U3 ⋅ u3 − hˆ2

i[7] = U4 ⋅ u4 − hˆ2

i[8] = U5 ⋅ u5 − hˆ2

i[9] = U6 ⋅ u6 − hˆ2

280 A Examples

F-744

Polynomial ring in 12 variables: U7, U6, U5, U4, U3, U2, u7, u6, u5, u4, u3, u2

i[1] = 2 ⋅ u7 + 2 ⋅ u6 + 2 ⋅ u5 + 2 ⋅ u4 + 2 ⋅ u3 + 2 ⋅ u2 + 1

i[2] = 2 ⋅ U7 + 2 ⋅ U6 + 2 ⋅ U5 + 2 ⋅ U4 + 2 ⋅ U3 + 2 ⋅ U2 + 1

i[3] = 8 ⋅ U6 ⋅ u7 + 8 ⋅ U5 ⋅ u7 + 8 ⋅ U4 ⋅ u7 + 8 ⋅ U3 ⋅ u7 + 8 ⋅ U2 ⋅ u7 + 8 ⋅ U6 ⋅ u6+

8 ⋅ U5 ⋅ u6 + 8 ⋅ U4 ⋅ u6 + 8 ⋅ U3 ⋅ u6 + 8 ⋅ U2 ⋅ u6 + 8 ⋅ U5 ⋅ u5 + 8 ⋅ U4 ⋅ u5+

8 ⋅ U3 ⋅ u5 + 8 ⋅ U2 ⋅ u5 + 8 ⋅ U4 ⋅ u4 + 8 ⋅ U3 ⋅ u4 + 8 ⋅ U2 ⋅ u4 + 8 ⋅ U3 ⋅ u3+

8 ⋅ U2 ⋅ u3 + 8 ⋅ U2 ⋅ u2 − 17

i[4] = 8 ⋅ U7 ⋅ u6 + 8 ⋅ U6 ⋅ u6 + 8 ⋅ U7 ⋅ u5 + 8 ⋅ U6 ⋅ u5 + 8 ⋅ U5 ⋅ u5 + 8 ⋅ U7 ⋅ u4+

8 ⋅ U6 ⋅ u4 + 8 ⋅ U5 ⋅ u4 + 8 ⋅ U4 ⋅ u4 + 8 ⋅ U7 ⋅ u3 + 8 ⋅ U6 ⋅ u3 + 8 ⋅ U5 ⋅ u3+

8 ⋅ U4 ⋅ u3 + 8 ⋅ U3 ⋅ u3 + 8 ⋅ U7 ⋅ u2 + 8 ⋅ U6 ⋅ u2 + 8 ⋅ U5 ⋅ u2 + 8 ⋅ U4 ⋅ u2+

8 ⋅ U3 ⋅ u2 + 8 ⋅ U2 ⋅ u2 − 17

i[5] = 16 ⋅ U5 ⋅ U3 ⋅ u4 + 16 ⋅ U5 ⋅ U2 ⋅ u4 + 16 ⋅ U5 ⋅ U2 ⋅ u3 + 16 ⋅ U4 ⋅ U2 ⋅ u3+

8 ⋅ U5 ⋅ u4 + 8 ⋅ U5 ⋅ u3 + 8 ⋅ U4 ⋅ u3 + 8 ⋅ U5 ⋅ u2 + 8 ⋅ U4 ⋅ u2 + 8 ⋅ U3 ⋅ u2+

18 ⋅ U5 + 18 ⋅ U4 + 18 ⋅ U3 + 18 ⋅ U2 + 11

i[6] = 16 ⋅ U4 ⋅ u5 ⋅ u3 + 16 ⋅ U4 ⋅ u5 ⋅ u2 + 16 ⋅ U3 ⋅ u5 ⋅ u2 + 16 ⋅ U3 ⋅ u4 ⋅ u2+

8 ⋅ U4 ⋅ u5 + 8 ⋅ U3 ⋅ u5 + 8 ⋅ U2 ⋅ u5 + 8 ⋅ U3 ⋅ u4 + 8 ⋅ U2 ⋅ u4 + 8 ⋅ U2 ⋅ u3+

18 ⋅ u5 + 18 ⋅ u4 + 18 ⋅ u3 + 18 ⋅ u2 + 11

i[7] = U2 ⋅ u2 − 1

i[8] = U3 ⋅ u3 − 1

i[9] = U4 ⋅ u4 − 1

i[10] = U5 ⋅ u5 − 1

i[11] = U6 ⋅ u6 − 1

i[12] = U7 ⋅ u7 − 1

281

F-744-h

Polynomial ring in 13 variables: U7, U6, U5, U4, U3, U2, u7, u6, u5, u4, u3, u2, h

i[1] = 2 ⋅ u7 + 2 ⋅ u6 + 2 ⋅ u5 + 2 ⋅ u4 + 2 ⋅ u3 + 2 ⋅ u2 + h

i[2] = 2 ⋅ U7 + 2 ⋅ U6 + 2 ⋅ U5 + 2 ⋅ U4 + 2 ⋅ U3 + 2 ⋅ U2 + h

i[3] = 8 ⋅ U6 ⋅ u7 + 8 ⋅ U5 ⋅ u7 + 8 ⋅ U4 ⋅ u7 + 8 ⋅ U3 ⋅ u7 + 8 ⋅ U2 ⋅ u7 + 8 ⋅ U6 ⋅ u6+

8 ⋅ U5 ⋅ u6 + 8 ⋅ U4 ⋅ u6 + 8 ⋅ U3 ⋅ u6 + 8 ⋅ U2 ⋅ u6 + 8 ⋅ U5 ⋅ u5 + 8 ⋅ U4 ⋅ u5+

8 ⋅ U3 ⋅ u5 + 8 ⋅ U2 ⋅ u5 + 8 ⋅ U4 ⋅ u4 + 8 ⋅ U3 ⋅ u4 + 8 ⋅ U2 ⋅ u4 + 8 ⋅ U3 ⋅ u3+

8 ⋅ U2 ⋅ u3 + 8 ⋅ U2 ⋅ u2 − 17 ⋅ hˆ2

i[4] = 8 ⋅ U7 ⋅ u6 + 8 ⋅ U6 ⋅ u6 + 8 ⋅ U7 ⋅ u5 + 8 ⋅ U6 ⋅ u5 + 8 ⋅ U5 ⋅ u5 + 8 ⋅ U7 ⋅ u4+

8 ⋅ U6 ⋅ u4 + 8 ⋅ U5 ⋅ u4 + 8 ⋅ U4 ⋅ u4 + 8 ⋅ U7 ⋅ u3 + 8 ⋅ U6 ⋅ u3 + 8 ⋅ U5 ⋅ u3+

8 ⋅ U4 ⋅ u3 + 8 ⋅ U3 ⋅ u3 + 8 ⋅ U7 ⋅ u2 + 8 ⋅ U6 ⋅ u2 + 8 ⋅ U5 ⋅ u2 + 8 ⋅ U4 ⋅ u2+

8 ⋅ U3 ⋅ u2 + 8 ⋅ U2 ⋅ u2 − 17 ⋅ hˆ2

i[5] = 16 ⋅ U5 ⋅ U3 ⋅ u4 + 16 ⋅ U5 ⋅ U2 ⋅ u4 + 16 ⋅ U5 ⋅ U2 ⋅ u3 + 16 ⋅ U4 ⋅ U2 ⋅ u3+

8 ⋅ U5 ⋅ u4 ⋅ h + 8 ⋅ U5 ⋅ u3 ⋅ h + 8 ⋅ U4 ⋅ u3 ⋅ h + 8 ⋅ U5 ⋅ u2 ⋅ h + 8 ⋅ U4 ⋅ u2 ⋅ h+

8 ⋅ U3 ⋅ u2 ⋅ h + 18 ⋅ U5 ⋅ hˆ2 + 18 ⋅ U4 ⋅ hˆ2 + 18 ⋅ U3 ⋅ hˆ2 + 18 ⋅ U2 ⋅ hˆ2+

11 ⋅ hˆ3

i[6] = 16 ⋅ U4 ⋅ u5 ⋅ u3 + 16 ⋅ U4 ⋅ u5 ⋅ u2 + 16 ⋅ U3 ⋅ u5 ⋅ u2 + 16 ⋅ U3 ⋅ u4 ⋅ u2+

8 ⋅ U4 ⋅ u5 ⋅ h + 8 ⋅ U3 ⋅ u5 ⋅ h + 8 ⋅ U2 ⋅ u5 ⋅ h + 8 ⋅ U3 ⋅ u4 ⋅ h + 8 ⋅ U2 ⋅ u4 ⋅ h+

8 ⋅ U2 ⋅ u3 ⋅ h + 18 ⋅ u5 ⋅ hˆ2 + 18 ⋅ u4 ⋅ hˆ2 + 18 ⋅ u3 ⋅ hˆ2 + 18 ⋅ u2 ⋅ hˆ2+

11 ⋅ hˆ3

i[7] = U2 ⋅ u2 − hˆ2

i[8] = U3 ⋅ u3 − hˆ2

i[9] = U4 ⋅ u4 − hˆ2

i[10] = U5 ⋅ u5 − hˆ2

i[11] = U6 ⋅ u6 − hˆ2

i[12] = U7 ⋅ u7 − hˆ2

282 A Examples

F-855

Polynomial ring in 14 variables: U8, U7, U6, U5, U4, U3, U2, u8, u7, u6, u5, u4, u3, u2

i[1] = 2 ⋅ u8 + 2 ⋅ u7 + 2 ⋅ u6 + 2 ⋅ u5 + 2 ⋅ u4 + 2 ⋅ u3 + 2 ⋅ u2 + 1

i[2] = 2 ⋅ U8 + 2 ⋅ U7 + 2 ⋅ U6 + 2 ⋅ U5 + 2 ⋅ U4 + 2 ⋅ U3 + 2 ⋅ U2 + 1

i[3] = U2 ⋅ u2 − 1

i[4] = U3 ⋅ u3 − 1

i[5] = U4 ⋅ u4 − 1

i[6] = U5 ⋅ u5 − 1

i[7] = U6 ⋅ u6 − 1

i[8] = U7 ⋅ u7 − 1

i[9] = U8 ⋅ u8 − 1

i[10] = −4 ⋅ U7 ⋅ u8 − 4 ⋅ U6 ⋅ u8 − 4 ⋅ U5 ⋅ u8 − 4 ⋅ U4 ⋅ u8 − 4 ⋅ U3 ⋅ u8−

4 ⋅ U2 ⋅ u8 + 4 ⋅ U8 ⋅ u7 − 4 ⋅ U6 ⋅ u7 − 4 ⋅ U5 ⋅ u7 − 4 ⋅ U4 ⋅ u7 − 4 ⋅ U3 ⋅ u7−

4 ⋅ U2 ⋅ u7 + 4 ⋅ U8 ⋅ u6 + 4 ⋅ U7 ⋅ u6 − 4 ⋅ U5 ⋅ u6 − 4 ⋅ U4 ⋅ u6 − 4 ⋅ U3 ⋅ u6−

4 ⋅ U2 ⋅ u6 + 4 ⋅ U8 ⋅ u5 + 4 ⋅ U7 ⋅ u5 + 4 ⋅ U6 ⋅ u5 − 4 ⋅ U4 ⋅ u5 − 4 ⋅ U3 ⋅ u5−

4 ⋅ U2 ⋅ u5 + 4 ⋅ U8 ⋅ u4 + 4 ⋅ U7 ⋅ u4 + 4 ⋅ U6 ⋅ u4 + 4 ⋅ U5 ⋅ u4 − 4 ⋅ U3 ⋅ u4−

4 ⋅ U2 ⋅ u4 + 4 ⋅ U8 ⋅ u3 + 4 ⋅ U7 ⋅ u3 + 4 ⋅ U6 ⋅ u3 + 4 ⋅ U5 ⋅ u3 + 4 ⋅ U4 ⋅ u3−

4 ⋅ U2 ⋅ u3 + 4 ⋅ U8 ⋅ u2 + 4 ⋅ U7 ⋅ u2 + 4 ⋅ U6 ⋅ u2 + 4 ⋅ U5 ⋅ u2 + 4 ⋅ U4 ⋅ u2+

4 ⋅ U3 ⋅ u2 + 2 ⋅ U8 + 2 ⋅ U7 + 2 ⋅ U6 + 2 ⋅ U5 + 2 ⋅ U4 + 2 ⋅ U3 + 2 ⋅ U2 + 1

i[11] = 4 ⋅ U7 ⋅ u8 + 4 ⋅ U6 ⋅ u8 + 4 ⋅ U5 ⋅ u8 + 4 ⋅ U4 ⋅ u8 + 4 ⋅ U3 ⋅ u8 + 4 ⋅ U2 ⋅ u8−

4 ⋅ U8 ⋅ u7 + 4 ⋅ U6 ⋅ u7 + 4 ⋅ U5 ⋅ u7 + 4 ⋅ U4 ⋅ u7 + 4 ⋅ U3 ⋅ u7 + 4 ⋅ U2 ⋅ u7−

4 ⋅ U8 ⋅ u6 − 4 ⋅ U7 ⋅ u6 + 4 ⋅ U5 ⋅ u6 + 4 ⋅ U4 ⋅ u6 + 4 ⋅ U3 ⋅ u6 + 4 ⋅ U2 ⋅ u6−

4 ⋅ U8 ⋅ u5 − 4 ⋅ U7 ⋅ u5 − 4 ⋅ U6 ⋅ u5 + 4 ⋅ U4 ⋅ u5 + 4 ⋅ U3 ⋅ u5 + 4 ⋅ U2 ⋅ u5−

4 ⋅ U8 ⋅ u4 − 4 ⋅ U7 ⋅ u4 − 4 ⋅ U6 ⋅ u4 − 4 ⋅ U5 ⋅ u4 + 4 ⋅ U3 ⋅ u4 + 4 ⋅ U2 ⋅ u4−

4 ⋅ U8 ⋅ u3 − 4 ⋅ U7 ⋅ u3 − 4 ⋅ U6 ⋅ u3 − 4 ⋅ U5 ⋅ u3 − 4 ⋅ U4 ⋅ u3 + 4 ⋅ U2 ⋅ u3−

4 ⋅ U8 ⋅ u2 − 4 ⋅ U7 ⋅ u2 − 4 ⋅ U6 ⋅ u2 − 4 ⋅ U5 ⋅ u2 − 4 ⋅ U4 ⋅ u2 − 4 ⋅ U3 ⋅ u2+

2 ⋅ u8 + 2 ⋅ u7 + 2 ⋅ u6 + 2 ⋅ u5 + 2 ⋅ u4 + 2 ⋅ u3 + 2 ⋅ u2 + 1

i[12] = 16 ⋅ U6 ⋅ U4 ⋅ u5 + 16 ⋅ U6 ⋅ U3 ⋅ u5 + 16 ⋅ U6 ⋅ U2 ⋅ u5 + 16 ⋅ U6 ⋅ U3 ⋅ u4+

16 ⋅ U5 ⋅ U3 ⋅ u4 + 16 ⋅ U6 ⋅ U2 ⋅ u4 + 16 ⋅ U5 ⋅ U2 ⋅ u4 + 16 ⋅ U6 ⋅ U2 ⋅ u3+

16 ⋅ U5 ⋅ U2 ⋅ u3 + 16 ⋅ U4 ⋅ U2 ⋅ u3 + 8 ⋅ U6 ⋅ u5 + 8 ⋅ U6 ⋅ u4 + 8 ⋅ U5 ⋅ u4+

8 ⋅ U6 ⋅ u3 + 8 ⋅ U5 ⋅ u3 + 8 ⋅ U4 ⋅ u3 + 8 ⋅ U6 ⋅ u2 + 8 ⋅ U5 ⋅ u2 + 8 ⋅ U4 ⋅ u2+

8 ⋅ U3 ⋅ u2 + 26 ⋅ U6 + 26 ⋅ U5 + 26 ⋅ U4 + 26 ⋅ U3 + 26 ⋅ U2 + 15

i[13] = 16 ⋅ U5 ⋅ u6 ⋅ u4 + 16 ⋅ U5 ⋅ u6 ⋅ u3 + 16 ⋅ U4 ⋅ u6 ⋅ u3 + 16 ⋅ U4 ⋅ u5 ⋅ u3+

16 ⋅ U5 ⋅ u6 ⋅ u2 + 16 ⋅ U4 ⋅ u6 ⋅ u2 + 16 ⋅ U3 ⋅ u6 ⋅ u2 + 16 ⋅ U4 ⋅ u5 ⋅ u2+

16 ⋅ U3 ⋅ u5 ⋅ u2 + 16 ⋅ U3 ⋅ u4 ⋅ u2 + 8 ⋅ U5 ⋅ u6 + 8 ⋅ U4 ⋅ u6 + 8 ⋅ U3 ⋅ u6+

8 ⋅ U2 ⋅ u6 + 8 ⋅ U4 ⋅ u5 + 8 ⋅ U3 ⋅ u5 + 8 ⋅ U2 ⋅ u5 + 8 ⋅ U3 ⋅ u4 + 8 ⋅ U2 ⋅ u4+

8 ⋅ U2 ⋅ u3 + 26 ⋅ u6 + 26 ⋅ u5 + 26 ⋅ u4 + 26 ⋅ u3 + 26 ⋅ u2 + 15

283

i[14] = −2 ⋅ U7 ⋅ U5 ⋅ u8 ⋅ u6 − 2 ⋅ U7 ⋅ U4 ⋅ u8 ⋅ u6 − 2 ⋅ U7 ⋅ U3 ⋅ u8 ⋅ u6−

2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u6 − 2 ⋅ U7 ⋅ U4 ⋅ u8 ⋅ u5 − 2 ⋅ U6 ⋅ U4 ⋅ u8 ⋅ u5−

2 ⋅ U7 ⋅ U3 ⋅ u8 ⋅ u5 − 2 ⋅ U6 ⋅ U3 ⋅ u8 ⋅ u5 − 2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u5−

2 ⋅ U6 ⋅ U2 ⋅ u8 ⋅ u5 + 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u5 − 2 ⋅ U6 ⋅ U4 ⋅ u7 ⋅ u5−

2 ⋅ U6 ⋅ U3 ⋅ u7 ⋅ u5 − 2 ⋅ U6 ⋅ U2 ⋅ u7 ⋅ u5 − 2 ⋅ U7 ⋅ U3 ⋅ u8 ⋅ u4−

2 ⋅ U6 ⋅ U3 ⋅ u8 ⋅ u4 − 2 ⋅ U5 ⋅ U3 ⋅ u8 ⋅ u4 − 2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u4−

2 ⋅ U6 ⋅ U2 ⋅ u8 ⋅ u4 − 2 ⋅ U5 ⋅ U2 ⋅ u8 ⋅ u4 + 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u4+

2 ⋅ U8 ⋅ U5 ⋅ u7 ⋅ u4 − 2 ⋅ U6 ⋅ U3 ⋅ u7 ⋅ u4 − 2 ⋅ U5 ⋅ U3 ⋅ u7 ⋅ u4−

2 ⋅ U6 ⋅ U2 ⋅ u7 ⋅ u4 − 2 ⋅ U5 ⋅ U2 ⋅ u7 ⋅ u4 + 2 ⋅ U8 ⋅ U5 ⋅ u6 ⋅ u4+

2 ⋅ U7 ⋅ U5 ⋅ u6 ⋅ u4 − 2 ⋅ U5 ⋅ U3 ⋅ u6 ⋅ u4 − 2 ⋅ U5 ⋅ U2 ⋅ u6 ⋅ u4−

2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u3 − 2 ⋅ U6 ⋅ U2 ⋅ u8 ⋅ u3 − 2 ⋅ U5 ⋅ U2 ⋅ u8 ⋅ u3−

2 ⋅ U4 ⋅ U2 ⋅ u8 ⋅ u3 + 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u3 + 2 ⋅ U8 ⋅ U5 ⋅ u7 ⋅ u3+

2 ⋅ U8 ⋅ U4 ⋅ u7 ⋅ u3 − 2 ⋅ U6 ⋅ U2 ⋅ u7 ⋅ u3 − 2 ⋅ U5 ⋅ U2 ⋅ u7 ⋅ u3−

2 ⋅ U4 ⋅ U2 ⋅ u7 ⋅ u3 + 2 ⋅ U8 ⋅ U5 ⋅ u6 ⋅ u3 + 2 ⋅ U7 ⋅ U5 ⋅ u6 ⋅ u3+

2 ⋅ U8 ⋅ U4 ⋅ u6 ⋅ u3 + 2 ⋅ U7 ⋅ U4 ⋅ u6 ⋅ u3 − 2 ⋅ U5 ⋅ U2 ⋅ u6 ⋅ u3−

2 ⋅ U4 ⋅ U2 ⋅ u6 ⋅ u3 + 2 ⋅ U8 ⋅ U4 ⋅ u5 ⋅ u3 + 2 ⋅ U7 ⋅ U4 ⋅ u5 ⋅ u3+

2 ⋅ U6 ⋅ U4 ⋅ u5 ⋅ u3 − 2 ⋅ U4 ⋅ U2 ⋅ u5 ⋅ u3 + 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u2+

2 ⋅ U8 ⋅ U5 ⋅ u7 ⋅ u2 + 2 ⋅ U8 ⋅ U4 ⋅ u7 ⋅ u2 + 2 ⋅ U8 ⋅ U3 ⋅ u7 ⋅ u2+

2 ⋅ U8 ⋅ U5 ⋅ u6 ⋅ u2 + 2 ⋅ U7 ⋅ U5 ⋅ u6 ⋅ u2 + 2 ⋅ U8 ⋅ U4 ⋅ u6 ⋅ u2+

2 ⋅ U7 ⋅ U4 ⋅ u6 ⋅ u2 + 2 ⋅ U8 ⋅ U3 ⋅ u6 ⋅ u2 + 2 ⋅ U7 ⋅ U3 ⋅ u6 ⋅ u2+

2 ⋅ U8 ⋅ U4 ⋅ u5 ⋅ u2 + 2 ⋅ U7 ⋅ U4 ⋅ u5 ⋅ u2 + 2 ⋅ U6 ⋅ U4 ⋅ u5 ⋅ u2+

2 ⋅ U8 ⋅ U3 ⋅ u5 ⋅ u2 + 2 ⋅ U7 ⋅ U3 ⋅ u5 ⋅ u2 + 2 ⋅ U6 ⋅ U3 ⋅ u5 ⋅ u2+

2 ⋅ U8 ⋅ U3 ⋅ u4 ⋅ u2 + 2 ⋅ U7 ⋅ U3 ⋅ u4 ⋅ u2 + 2 ⋅ U6 ⋅ U3 ⋅ u4 ⋅ u2+

2 ⋅ U5 ⋅ U3 ⋅ u4 ⋅ u2 + U8 ⋅ U6 ⋅ u7 + U8 ⋅ U5 ⋅ u7 + U8 ⋅ U4 ⋅ u7+

U8 ⋅ U3 ⋅ u7 + U8 ⋅ U2 ⋅ u7 + U8 ⋅ U5 ⋅ u6 + U7 ⋅ U5 ⋅ u6 + U8 ⋅ U4 ⋅ u6+

U7 ⋅ U4 ⋅ u6 + U8 ⋅ U3 ⋅ u6 + U7 ⋅ U3 ⋅ u6 + U8 ⋅ U2 ⋅ u6 + U7 ⋅ U2 ⋅ u6−

U7 ⋅ u8 ⋅ u6 + U8 ⋅ U4 ⋅ u5 + U7 ⋅ U4 ⋅ u5 + U6 ⋅ U4 ⋅ u5 + U8 ⋅ U3 ⋅ u5+

U7 ⋅ U3 ⋅ u5 + U6 ⋅ U3 ⋅ u5 + U8 ⋅ U2 ⋅ u5 + U7 ⋅ U2 ⋅ u5 + U6 ⋅ U2 ⋅ u5−

U7 ⋅ u8 ⋅ u5 − U6 ⋅ u8 ⋅ u5 − U6 ⋅ u7 ⋅ u5 + U8 ⋅ U3 ⋅ u4 + U7 ⋅ U3 ⋅ u4+

U6 ⋅ U3 ⋅ u4 + U5 ⋅ U3 ⋅ u4 + U8 ⋅ U2 ⋅ u4 + U7 ⋅ U2 ⋅ u4 + U6 ⋅ U2 ⋅ u4+

U5 ⋅ U2 ⋅ u4 − U7 ⋅ u8 ⋅ u4 − U6 ⋅ u8 ⋅ u4 − U5 ⋅ u8 ⋅ u4 − U6 ⋅ u7 ⋅ u4−

U5 ⋅ u7 ⋅ u4 − U5 ⋅ u6 ⋅ u4 + U8 ⋅ U2 ⋅ u3 + U7 ⋅ U2 ⋅ u3 + U6 ⋅ U2 ⋅ u3+

U5 ⋅ U2 ⋅ u3 + U4 ⋅ U2 ⋅ u3 − U7 ⋅ u8 ⋅ u3 − U6 ⋅ u8 ⋅ u3 − U5 ⋅ u8 ⋅ u3−

U4 ⋅ u8 ⋅ u3 − U6 ⋅ u7 ⋅ u3 − U5 ⋅ u7 ⋅ u3 − U4 ⋅ u7 ⋅ u3 − U5 ⋅ u6 ⋅ u3−

U4 ⋅ u6 ⋅ u3 − U4 ⋅ u5 ⋅ u3 − U7 ⋅ u8 ⋅ u2 − U6 ⋅ u8 ⋅ u2 − U5 ⋅ u8 ⋅ u2−

U4 ⋅ u8 ⋅ u2 − U3 ⋅ u8 ⋅ u2 − U6 ⋅ u7 ⋅ u2 − U5 ⋅ u7 ⋅ u2 − U4 ⋅ u7 ⋅ u2−

U3 ⋅ u7 ⋅ u2 − U5 ⋅ u6 ⋅ u2 − U4 ⋅ u6 ⋅ u2 − U3 ⋅ u6 ⋅ u2 − U4 ⋅ u5 ⋅ u2−

U3 ⋅ u5 ⋅ u2 − U3 ⋅ u4 ⋅ u2

284 A Examples

i[15] = 2 ⋅ U7 ⋅ U5 ⋅ u8 ⋅ u6 + 2 ⋅ U7 ⋅ U4 ⋅ u8 ⋅ u6 + 2 ⋅ U7 ⋅ U3 ⋅ u8 ⋅ u6+

2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u6 + 2 ⋅ U7 ⋅ U4 ⋅ u8 ⋅ u5 + 2 ⋅ U6 ⋅ U4 ⋅ u8 ⋅ u5+

2 ⋅ U7 ⋅ U3 ⋅ u8 ⋅ u5 + 2 ⋅ U6 ⋅ U3 ⋅ u8 ⋅ u5 + 2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u5+

2 ⋅ U6 ⋅ U2 ⋅ u8 ⋅ u5 − 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u5 + 2 ⋅ U6 ⋅ U4 ⋅ u7 ⋅ u5+

2 ⋅ U6 ⋅ U3 ⋅ u7 ⋅ u5 + 2 ⋅ U6 ⋅ U2 ⋅ u7 ⋅ u5 + 2 ⋅ U7 ⋅ U3 ⋅ u8 ⋅ u4+

2 ⋅ U6 ⋅ U3 ⋅ u8 ⋅ u4 + 2 ⋅ U5 ⋅ U3 ⋅ u8 ⋅ u4 + 2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u4+

2 ⋅ U6 ⋅ U2 ⋅ u8 ⋅ u4 + 2 ⋅ U5 ⋅ U2 ⋅ u8 ⋅ u4 − 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u4−

2 ⋅ U8 ⋅ U5 ⋅ u7 ⋅ u4 + 2 ⋅ U6 ⋅ U3 ⋅ u7 ⋅ u4 + 2 ⋅ U5 ⋅ U3 ⋅ u7 ⋅ u4+

2 ⋅ U6 ⋅ U2 ⋅ u7 ⋅ u4 + 2 ⋅ U5 ⋅ U2 ⋅ u7 ⋅ u4 − 2 ⋅ U8 ⋅ U5 ⋅ u6 ⋅ u4−

2 ⋅ U7 ⋅ U5 ⋅ u6 ⋅ u4 + 2 ⋅ U5 ⋅ U3 ⋅ u6 ⋅ u4 + 2 ⋅ U5 ⋅ U2 ⋅ u6 ⋅ u4+

2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u3 + 2 ⋅ U6 ⋅ U2 ⋅ u8 ⋅ u3 + 2 ⋅ U5 ⋅ U2 ⋅ u8 ⋅ u3+

2 ⋅ U4 ⋅ U2 ⋅ u8 ⋅ u3 − 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u3 − 2 ⋅ U8 ⋅ U5 ⋅ u7 ⋅ u3−

2 ⋅ U8 ⋅ U4 ⋅ u7 ⋅ u3 + 2 ⋅ U6 ⋅ U2 ⋅ u7 ⋅ u3 + 2 ⋅ U5 ⋅ U2 ⋅ u7 ⋅ u3+

2 ⋅ U4 ⋅ U2 ⋅ u7 ⋅ u3 − 2 ⋅ U8 ⋅ U5 ⋅ u6 ⋅ u3 − 2 ⋅ U7 ⋅ U5 ⋅ u6 ⋅ u3−

2 ⋅ U8 ⋅ U4 ⋅ u6 ⋅ u3 − 2 ⋅ U7 ⋅ U4 ⋅ u6 ⋅ u3 + 2 ⋅ U5 ⋅ U2 ⋅ u6 ⋅ u3+

2 ⋅ U4 ⋅ U2 ⋅ u6 ⋅ u3 − 2 ⋅ U8 ⋅ U4 ⋅ u5 ⋅ u3 − 2 ⋅ U7 ⋅ U4 ⋅ u5 ⋅ u3−

2 ⋅ U6 ⋅ U4 ⋅ u5 ⋅ u3 + 2 ⋅ U4 ⋅ U2 ⋅ u5 ⋅ u3 − 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u2−

2 ⋅ U8 ⋅ U5 ⋅ u7 ⋅ u2 − 2 ⋅ U8 ⋅ U4 ⋅ u7 ⋅ u2 − 2 ⋅ U8 ⋅ U3 ⋅ u7 ⋅ u2−

2 ⋅ U8 ⋅ U5 ⋅ u6 ⋅ u2 − 2 ⋅ U7 ⋅ U5 ⋅ u6 ⋅ u2 − 2 ⋅ U8 ⋅ U4 ⋅ u6 ⋅ u2−

2 ⋅ U7 ⋅ U4 ⋅ u6 ⋅ u2 − 2 ⋅ U8 ⋅ U3 ⋅ u6 ⋅ u2 − 2 ⋅ U7 ⋅ U3 ⋅ u6 ⋅ u2−

2 ⋅ U8 ⋅ U4 ⋅ u5 ⋅ u2 − 2 ⋅ U7 ⋅ U4 ⋅ u5 ⋅ u2 − 2 ⋅ U6 ⋅ U4 ⋅ u5 ⋅ u2−

2 ⋅ U8 ⋅ U3 ⋅ u5 ⋅ u2 − 2 ⋅ U7 ⋅ U3 ⋅ u5 ⋅ u2 − 2 ⋅ U6 ⋅ U3 ⋅ u5 ⋅ u2−

2 ⋅ U8 ⋅ U3 ⋅ u4 ⋅ u2 − 2 ⋅ U7 ⋅ U3 ⋅ u4 ⋅ u2 − 2 ⋅ U6 ⋅ U3 ⋅ u4 ⋅ u2−

2 ⋅ U5 ⋅ U3 ⋅ u4 ⋅ u2 − U8 ⋅ U6 ⋅ u7 − U8 ⋅ U5 ⋅ u7 − U8 ⋅ U4 ⋅ u7−

U8 ⋅ U3 ⋅ u7 − U8 ⋅ U2 ⋅ u7 − U8 ⋅ U5 ⋅ u6 − U7 ⋅ U5 ⋅ u6 − U8 ⋅ U4 ⋅ u6−

U7 ⋅ U4 ⋅ u6 − U8 ⋅ U3 ⋅ u6 − U7 ⋅ U3 ⋅ u6 − U8 ⋅ U2 ⋅ u6 − U7 ⋅ U2 ⋅ u6+

U7 ⋅ u8 ⋅ u6 − U8 ⋅ U4 ⋅ u5 − U7 ⋅ U4 ⋅ u5 − U6 ⋅ U4 ⋅ u5 − U8 ⋅ U3 ⋅ u5−

U7 ⋅ U3 ⋅ u5 − U6 ⋅ U3 ⋅ u5 − U8 ⋅ U2 ⋅ u5 − U7 ⋅ U2 ⋅ u5 − U6 ⋅ U2 ⋅ u5+

U7 ⋅ u8 ⋅ u5 + U6 ⋅ u8 ⋅ u5 + U6 ⋅ u7 ⋅ u5 − U8 ⋅ U3 ⋅ u4 − U7 ⋅ U3 ⋅ u4−

U6 ⋅ U3 ⋅ u4 − U5 ⋅ U3 ⋅ u4 − U8 ⋅ U2 ⋅ u4 − U7 ⋅ U2 ⋅ u4 − U6 ⋅ U2 ⋅ u4−

U5 ⋅ U2 ⋅ u4 + U7 ⋅ u8 ⋅ u4 + U6 ⋅ u8 ⋅ u4 + U5 ⋅ u8 ⋅ u4 + U6 ⋅ u7 ⋅ u4+

U5 ⋅ u7 ⋅ u4 + U5 ⋅ u6 ⋅ u4 − U8 ⋅ U2 ⋅ u3 − U7 ⋅ U2 ⋅ u3 − U6 ⋅ U2 ⋅ u3−

U5 ⋅ U2 ⋅ u3 − U4 ⋅ U2 ⋅ u3 + U7 ⋅ u8 ⋅ u3 + U6 ⋅ u8 ⋅ u3 + U5 ⋅ u8 ⋅ u3+

U4 ⋅ u8 ⋅ u3 + U6 ⋅ u7 ⋅ u3 + U5 ⋅ u7 ⋅ u3 + U4 ⋅ u7 ⋅ u3 + U5 ⋅ u6 ⋅ u3+

U4 ⋅ u6 ⋅ u3 + U4 ⋅ u5 ⋅ u3 + U7 ⋅ u8 ⋅ u2 + U6 ⋅ u8 ⋅ u2 + U5 ⋅ u8 ⋅ u2+

U4 ⋅ u8 ⋅ u2 + U3 ⋅ u8 ⋅ u2 + U6 ⋅ u7 ⋅ u2 + U5 ⋅ u7 ⋅ u2 + U4 ⋅ u7 ⋅ u2+

U3 ⋅ u7 ⋅ u2 + U5 ⋅ u6 ⋅ u2 + U4 ⋅ u6 ⋅ u2 + U3 ⋅ u6 ⋅ u2 + U4 ⋅ u5 ⋅ u2+

U3 ⋅ u5 ⋅ u2 + U3 ⋅ u4 ⋅ u2

285

F-855-h

Polynomial ring in 15 variables: U8, U7, U6, U5, U4, U3, U2, u8, u7, u6, u5, u4, u3, u2, h

i[1] = 2 ⋅ u8 + 2 ⋅ u7 + 2 ⋅ u6 + 2 ⋅ u5 + 2 ⋅ u4 + 2 ⋅ u3 + 2 ⋅ u2 + h

i[2] = 2 ⋅ U8 + 2 ⋅ U7 + 2 ⋅ U6 + 2 ⋅ U5 + 2 ⋅ U4 + 2 ⋅ U3 + 2 ⋅ U2 + h

i[3] = U2 ⋅ u2 − hˆ2

i[4] = U3 ⋅ u3 − hˆ2

i[5] = U4 ⋅ u4 − hˆ2

i[6] = U5 ⋅ u5 − hˆ2

i[7] = U6 ⋅ u6 − hˆ2

i[8] = U7 ⋅ u7 − hˆ2

i[9] = U8 ⋅ u8 − hˆ2

i[10] = −4 ⋅ U7 ⋅ u8 − 4 ⋅ U6 ⋅ u8 − 4 ⋅ U5 ⋅ u8 − 4 ⋅ U4 ⋅ u8 − 4 ⋅ U3 ⋅ u8−

4 ⋅ U2 ⋅ u8 + 4 ⋅ U8 ⋅ u7 − 4 ⋅ U6 ⋅ u7 − 4 ⋅ U5 ⋅ u7 − 4 ⋅ U4 ⋅ u7 − 4 ⋅ U3 ⋅ u7−

4 ⋅ U2 ⋅ u7 + 4 ⋅ U8 ⋅ u6 + 4 ⋅ U7 ⋅ u6 − 4 ⋅ U5 ⋅ u6 − 4 ⋅ U4 ⋅ u6 − 4 ⋅ U3 ⋅ u6−

4 ⋅ U2 ⋅ u6 + 4 ⋅ U8 ⋅ u5 + 4 ⋅ U7 ⋅ u5 + 4 ⋅ U6 ⋅ u5 − 4 ⋅ U4 ⋅ u5 − 4 ⋅ U3 ⋅ u5−

4 ⋅ U2 ⋅ u5 + 4 ⋅ U8 ⋅ u4 + 4 ⋅ U7 ⋅ u4 + 4 ⋅ U6 ⋅ u4 + 4 ⋅ U5 ⋅ u4 − 4 ⋅ U3 ⋅ u4−

4 ⋅ U2 ⋅ u4 + 4 ⋅ U8 ⋅ u3 + 4 ⋅ U7 ⋅ u3 + 4 ⋅ U6 ⋅ u3 + 4 ⋅ U5 ⋅ u3 + 4 ⋅ U4 ⋅ u3−

4 ⋅ U2 ⋅ u3 + 4 ⋅ U8 ⋅ u2 + 4 ⋅ U7 ⋅ u2 + 4 ⋅ U6 ⋅ u2 + 4 ⋅ U5 ⋅ u2 + 4 ⋅ U4 ⋅ u2+

4 ⋅ U3 ⋅ u2 + 2 ⋅ U8 ⋅ h + 2 ⋅ U7 ⋅ h + 2 ⋅ U6 ⋅ h + 2 ⋅ U5 ⋅ h + 2 ⋅ U4 ⋅ h+

2 ⋅ U3 ⋅ h + 2 ⋅ U2 ⋅ h + hˆ2

i[11] = 4 ⋅ U7 ⋅ u8 + 4 ⋅ U6 ⋅ u8 + 4 ⋅ U5 ⋅ u8 + 4 ⋅ U4 ⋅ u8 + 4 ⋅ U3 ⋅ u8 + 4 ⋅ U2 ⋅ u8−

4 ⋅ U8 ⋅ u7 + 4 ⋅ U6 ⋅ u7 + 4 ⋅ U5 ⋅ u7 + 4 ⋅ U4 ⋅ u7 + 4 ⋅ U3 ⋅ u7 + 4 ⋅ U2 ⋅ u7−

4 ⋅ U8 ⋅ u6 − 4 ⋅ U7 ⋅ u6 + 4 ⋅ U5 ⋅ u6 + 4 ⋅ U4 ⋅ u6 + 4 ⋅ U3 ⋅ u6 + 4 ⋅ U2 ⋅ u6−

4 ⋅ U8 ⋅ u5 − 4 ⋅ U7 ⋅ u5 − 4 ⋅ U6 ⋅ u5 + 4 ⋅ U4 ⋅ u5 + 4 ⋅ U3 ⋅ u5 + 4 ⋅ U2 ⋅ u5−

4 ⋅ U8 ⋅ u4 − 4 ⋅ U7 ⋅ u4 − 4 ⋅ U6 ⋅ u4 − 4 ⋅ U5 ⋅ u4 + 4 ⋅ U3 ⋅ u4 + 4 ⋅ U2 ⋅ u4−

4 ⋅ U8 ⋅ u3 − 4 ⋅ U7 ⋅ u3 − 4 ⋅ U6 ⋅ u3 − 4 ⋅ U5 ⋅ u3 − 4 ⋅ U4 ⋅ u3 + 4 ⋅ U2 ⋅ u3−

4 ⋅ U8 ⋅ u2 − 4 ⋅ U7 ⋅ u2 − 4 ⋅ U6 ⋅ u2 − 4 ⋅ U5 ⋅ u2 − 4 ⋅ U4 ⋅ u2 − 4 ⋅ U3 ⋅ u2+

2 ⋅ u8 ⋅ h + 2 ⋅ u7 ⋅ h + 2 ⋅ u6 ⋅ h + 2 ⋅ u5 ⋅ h + 2 ⋅ u4 ⋅ h + 2 ⋅ u3 ⋅ h+

2 ⋅ u2 ⋅ h + hˆ2

i[12] = 16 ⋅ U6 ⋅ U4 ⋅ u5 + 16 ⋅ U6 ⋅ U3 ⋅ u5 + 16 ⋅ U6 ⋅ U2 ⋅ u5 + 16 ⋅ U6 ⋅ U3 ⋅ u4+

16 ⋅ U5 ⋅ U3 ⋅ u4 + 16 ⋅ U6 ⋅ U2 ⋅ u4 + 16 ⋅ U5 ⋅ U2 ⋅ u4 + 16 ⋅ U6 ⋅ U2 ⋅ u3+

16 ⋅ U5 ⋅ U2 ⋅ u3 + 16 ⋅ U4 ⋅ U2 ⋅ u3 + 8 ⋅ U6 ⋅ u5 ⋅ h + 8 ⋅ U6 ⋅ u4 ⋅ h+

8 ⋅ U5 ⋅ u4 ⋅ h + 8 ⋅ U6 ⋅ u3 ⋅ h + 8 ⋅ U5 ⋅ u3 ⋅ h + 8 ⋅ U4 ⋅ u3 ⋅ h + 8 ⋅ U6 ⋅ u2 ⋅ h+

8 ⋅ U5 ⋅ u2 ⋅ h + 8 ⋅ U4 ⋅ u2 ⋅ h + 8 ⋅ U3 ⋅ u2 ⋅ h + 26 ⋅ U6 ⋅ hˆ2 + 26 ⋅ U5 ⋅ hˆ2+

26 ⋅ U4 ⋅ hˆ2 + 26 ⋅ U3 ⋅ hˆ2 + 26 ⋅ U2 ⋅ hˆ2 + 15 ⋅ hˆ3

i[13] = 16 ⋅ U5 ⋅ u6 ⋅ u4 + 16 ⋅ U5 ⋅ u6 ⋅ u3 + 16 ⋅ U4 ⋅ u6 ⋅ u3 + 16 ⋅ U4 ⋅ u5 ⋅ u3+

16 ⋅ U5 ⋅ u6 ⋅ u2 + 16 ⋅ U4 ⋅ u6 ⋅ u2 + 16 ⋅ U3 ⋅ u6 ⋅ u2 + 16 ⋅ U4 ⋅ u5 ⋅ u2+

16 ⋅ U3 ⋅ u5 ⋅ u2 + 16 ⋅ U3 ⋅ u4 ⋅ u2 + 8 ⋅ U5 ⋅ u6 ⋅ h + 8 ⋅ U4 ⋅ u6 ⋅ h+

8 ⋅ U3 ⋅ u6 ⋅ h + 8 ⋅ U2 ⋅ u6 ⋅ h + 8 ⋅ U4 ⋅ u5 ⋅ h + 8 ⋅ U3 ⋅ u5 ⋅ h + 8 ⋅ U2 ⋅ u5 ⋅ h+

8 ⋅ U3 ⋅ u4 ⋅ h + 8 ⋅ U2 ⋅ u4 ⋅ h + 8 ⋅ U2 ⋅ u3 ⋅ h + 26 ⋅ u6 ⋅ hˆ2 + 26 ⋅ u5 ⋅ hˆ2+

26 ⋅ u4 ⋅ hˆ2 + 26 ⋅ u3 ⋅ hˆ2 + 26 ⋅ u2 ⋅ hˆ2 + 15 ⋅ hˆ3

286 A Examples

i[14] = −2 ⋅ U7 ⋅ U5 ⋅ u8 ⋅ u6 − 2 ⋅ U7 ⋅ U4 ⋅ u8 ⋅ u6 − 2 ⋅ U7 ⋅ U3 ⋅ u8 ⋅ u6−

2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u6 − 2 ⋅ U7 ⋅ U4 ⋅ u8 ⋅ u5 − 2 ⋅ U6 ⋅ U4 ⋅ u8 ⋅ u5−

2 ⋅ U7 ⋅ U3 ⋅ u8 ⋅ u5 − 2 ⋅ U6 ⋅ U3 ⋅ u8 ⋅ u5 − 2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u5−

2 ⋅ U6 ⋅ U2 ⋅ u8 ⋅ u5 + 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u5 − 2 ⋅ U6 ⋅ U4 ⋅ u7 ⋅ u5−

2 ⋅ U6 ⋅ U3 ⋅ u7 ⋅ u5 − 2 ⋅ U6 ⋅ U2 ⋅ u7 ⋅ u5 − 2 ⋅ U7 ⋅ U3 ⋅ u8 ⋅ u4−

2 ⋅ U6 ⋅ U3 ⋅ u8 ⋅ u4 − 2 ⋅ U5 ⋅ U3 ⋅ u8 ⋅ u4 − 2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u4−

2 ⋅ U6 ⋅ U2 ⋅ u8 ⋅ u4 − 2 ⋅ U5 ⋅ U2 ⋅ u8 ⋅ u4 + 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u4+

2 ⋅ U8 ⋅ U5 ⋅ u7 ⋅ u4 − 2 ⋅ U6 ⋅ U3 ⋅ u7 ⋅ u4 − 2 ⋅ U5 ⋅ U3 ⋅ u7 ⋅ u4−

2 ⋅ U6 ⋅ U2 ⋅ u7 ⋅ u4 − 2 ⋅ U5 ⋅ U2 ⋅ u7 ⋅ u4 + 2 ⋅ U8 ⋅ U5 ⋅ u6 ⋅ u4+

2 ⋅ U7 ⋅ U5 ⋅ u6 ⋅ u4 − 2 ⋅ U5 ⋅ U3 ⋅ u6 ⋅ u4 − 2 ⋅ U5 ⋅ U2 ⋅ u6 ⋅ u4−

2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u3 − 2 ⋅ U6 ⋅ U2 ⋅ u8 ⋅ u3 − 2 ⋅ U5 ⋅ U2 ⋅ u8 ⋅ u3−

2 ⋅ U4 ⋅ U2 ⋅ u8 ⋅ u3 + 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u3 + 2 ⋅ U8 ⋅ U5 ⋅ u7 ⋅ u3+

2 ⋅ U8 ⋅ U4 ⋅ u7 ⋅ u3 − 2 ⋅ U6 ⋅ U2 ⋅ u7 ⋅ u3 − 2 ⋅ U5 ⋅ U2 ⋅ u7 ⋅ u3−

2 ⋅ U4 ⋅ U2 ⋅ u7 ⋅ u3 + 2 ⋅ U8 ⋅ U5 ⋅ u6 ⋅ u3 + 2 ⋅ U7 ⋅ U5 ⋅ u6 ⋅ u3+

2 ⋅ U8 ⋅ U4 ⋅ u6 ⋅ u3 + 2 ⋅ U7 ⋅ U4 ⋅ u6 ⋅ u3 − 2 ⋅ U5 ⋅ U2 ⋅ u6 ⋅ u3−

2 ⋅ U4 ⋅ U2 ⋅ u6 ⋅ u3 + 2 ⋅ U8 ⋅ U4 ⋅ u5 ⋅ u3 + 2 ⋅ U7 ⋅ U4 ⋅ u5 ⋅ u3+

2 ⋅ U6 ⋅ U4 ⋅ u5 ⋅ u3 − 2 ⋅ U4 ⋅ U2 ⋅ u5 ⋅ u3 + 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u2+

2 ⋅ U8 ⋅ U5 ⋅ u7 ⋅ u2 + 2 ⋅ U8 ⋅ U4 ⋅ u7 ⋅ u2 + 2 ⋅ U8 ⋅ U3 ⋅ u7 ⋅ u2+

2 ⋅ U8 ⋅ U5 ⋅ u6 ⋅ u2 + 2 ⋅ U7 ⋅ U5 ⋅ u6 ⋅ u2 + 2 ⋅ U8 ⋅ U4 ⋅ u6 ⋅ u2+

2 ⋅ U7 ⋅ U4 ⋅ u6 ⋅ u2 + 2 ⋅ U8 ⋅ U3 ⋅ u6 ⋅ u2 + 2 ⋅ U7 ⋅ U3 ⋅ u6 ⋅ u2+

2 ⋅ U8 ⋅ U4 ⋅ u5 ⋅ u2 + 2 ⋅ U7 ⋅ U4 ⋅ u5 ⋅ u2 + 2 ⋅ U6 ⋅ U4 ⋅ u5 ⋅ u2+

2 ⋅ U8 ⋅ U3 ⋅ u5 ⋅ u2 + 2 ⋅ U7 ⋅ U3 ⋅ u5 ⋅ u2 + 2 ⋅ U6 ⋅ U3 ⋅ u5 ⋅ u2+

2 ⋅ U8 ⋅ U3 ⋅ u4 ⋅ u2 + 2 ⋅ U7 ⋅ U3 ⋅ u4 ⋅ u2 + 2 ⋅ U6 ⋅ U3 ⋅ u4 ⋅ u2+

2 ⋅ U5 ⋅ U3 ⋅ u4 ⋅ u2 + U8 ⋅ U6 ⋅ u7 ⋅ h + U8 ⋅ U5 ⋅ u7 ⋅ h + U8 ⋅ U4 ⋅ u7 ⋅ h+

U8 ⋅ U3 ⋅ u7 ⋅ h + U8 ⋅ U2 ⋅ u7 ⋅ h + U8 ⋅ U5 ⋅ u6 ⋅ h + U7 ⋅ U5 ⋅ u6 ⋅ h+

U8 ⋅ U4 ⋅ u6 ⋅ h + U7 ⋅ U4 ⋅ u6 ⋅ h + U8 ⋅ U3 ⋅ u6 ⋅ h + U7 ⋅ U3 ⋅ u6 ⋅ h+

U8 ⋅ U2 ⋅ u6 ⋅ h + U7 ⋅ U2 ⋅ u6 ⋅ h − U7 ⋅ u8 ⋅ u6 ⋅ h + U8 ⋅ U4 ⋅ u5 ⋅ h+

U7 ⋅ U4 ⋅ u5 ⋅ h + U6 ⋅ U4 ⋅ u5 ⋅ h + U8 ⋅ U3 ⋅ u5 ⋅ h + U7 ⋅ U3 ⋅ u5 ⋅ h+

U6 ⋅ U3 ⋅ u5 ⋅ h + U8 ⋅ U2 ⋅ u5 ⋅ h + U7 ⋅ U2 ⋅ u5 ⋅ h + U6 ⋅ U2 ⋅ u5 ⋅ h−

U7 ⋅ u8 ⋅ u5 ⋅ h − U6 ⋅ u8 ⋅ u5 ⋅ h − U6 ⋅ u7 ⋅ u5 ⋅ h + U8 ⋅ U3 ⋅ u4 ⋅ h+

U7 ⋅ U3 ⋅ u4 ⋅ h + U6 ⋅ U3 ⋅ u4 ⋅ h + U5 ⋅ U3 ⋅ u4 ⋅ h + U8 ⋅ U2 ⋅ u4 ⋅ h+

U7 ⋅ U2 ⋅ u4 ⋅ h + U6 ⋅ U2 ⋅ u4 ⋅ h + U5 ⋅ U2 ⋅ u4 ⋅ h − U7 ⋅ u8 ⋅ u4 ⋅ h−

U6 ⋅ u8 ⋅ u4 ⋅ h − U5 ⋅ u8 ⋅ u4 ⋅ h − U6 ⋅ u7 ⋅ u4 ⋅ h − U5 ⋅ u7 ⋅ u4 ⋅ h−

U5 ⋅ u6 ⋅ u4 ⋅ h + U8 ⋅ U2 ⋅ u3 ⋅ h + U7 ⋅ U2 ⋅ u3 ⋅ h + U6 ⋅ U2 ⋅ u3 ⋅ h+

U5 ⋅ U2 ⋅ u3 ⋅ h + U4 ⋅ U2 ⋅ u3 ⋅ h − U7 ⋅ u8 ⋅ u3 ⋅ h − U6 ⋅ u8 ⋅ u3 ⋅ h−

U5 ⋅ u8 ⋅ u3 ⋅ h − U4 ⋅ u8 ⋅ u3 ⋅ h − U6 ⋅ u7 ⋅ u3 ⋅ h − U5 ⋅ u7 ⋅ u3 ⋅ h−

U4 ⋅ u7 ⋅ u3 ⋅ h − U5 ⋅ u6 ⋅ u3 ⋅ h − U4 ⋅ u6 ⋅ u3 ⋅ h − U4 ⋅ u5 ⋅ u3 ⋅ h−

U7 ⋅ u8 ⋅ u2 ⋅ h − U6 ⋅ u8 ⋅ u2 ⋅ h − U5 ⋅ u8 ⋅ u2 ⋅ h − U4 ⋅ u8 ⋅ u2 ⋅ h−

U3 ⋅ u8 ⋅ u2 ⋅ h − U6 ⋅ u7 ⋅ u2 ⋅ h − U5 ⋅ u7 ⋅ u2 ⋅ h − U4 ⋅ u7 ⋅ u2 ⋅ h−

U3 ⋅ u7 ⋅ u2 ⋅ h − U5 ⋅ u6 ⋅ u2 ⋅ h − U4 ⋅ u6 ⋅ u2 ⋅ h − U3 ⋅ u6 ⋅ u2 ⋅ h−

U4 ⋅ u5 ⋅ u2 ⋅ h − U3 ⋅ u5 ⋅ u2 ⋅ h − U3 ⋅ u4 ⋅ u2 ⋅ h

287

i[15] = 2 ⋅ U7 ⋅ U5 ⋅ u8 ⋅ u6 + 2 ⋅ U7 ⋅ U4 ⋅ u8 ⋅ u6 + 2 ⋅ U7 ⋅ U3 ⋅ u8 ⋅ u6+

2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u6 + 2 ⋅ U7 ⋅ U4 ⋅ u8 ⋅ u5 + 2 ⋅ U6 ⋅ U4 ⋅ u8 ⋅ u5+

2 ⋅ U7 ⋅ U3 ⋅ u8 ⋅ u5 + 2 ⋅ U6 ⋅ U3 ⋅ u8 ⋅ u5 + 2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u5+

2 ⋅ U6 ⋅ U2 ⋅ u8 ⋅ u5 − 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u5 + 2 ⋅ U6 ⋅ U4 ⋅ u7 ⋅ u5+

2 ⋅ U6 ⋅ U3 ⋅ u7 ⋅ u5 + 2 ⋅ U6 ⋅ U2 ⋅ u7 ⋅ u5 + 2 ⋅ U7 ⋅ U3 ⋅ u8 ⋅ u4+

2 ⋅ U6 ⋅ U3 ⋅ u8 ⋅ u4 + 2 ⋅ U5 ⋅ U3 ⋅ u8 ⋅ u4 + 2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u4+

2 ⋅ U6 ⋅ U2 ⋅ u8 ⋅ u4 + 2 ⋅ U5 ⋅ U2 ⋅ u8 ⋅ u4 − 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u4−

2 ⋅ U8 ⋅ U5 ⋅ u7 ⋅ u4 + 2 ⋅ U6 ⋅ U3 ⋅ u7 ⋅ u4 + 2 ⋅ U5 ⋅ U3 ⋅ u7 ⋅ u4+

2 ⋅ U6 ⋅ U2 ⋅ u7 ⋅ u4 + 2 ⋅ U5 ⋅ U2 ⋅ u7 ⋅ u4 − 2 ⋅ U8 ⋅ U5 ⋅ u6 ⋅ u4−

2 ⋅ U7 ⋅ U5 ⋅ u6 ⋅ u4 + 2 ⋅ U5 ⋅ U3 ⋅ u6 ⋅ u4 + 2 ⋅ U5 ⋅ U2 ⋅ u6 ⋅ u4+

2 ⋅ U7 ⋅ U2 ⋅ u8 ⋅ u3 + 2 ⋅ U6 ⋅ U2 ⋅ u8 ⋅ u3 + 2 ⋅ U5 ⋅ U2 ⋅ u8 ⋅ u3+

2 ⋅ U4 ⋅ U2 ⋅ u8 ⋅ u3 − 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u3 − 2 ⋅ U8 ⋅ U5 ⋅ u7 ⋅ u3−

2 ⋅ U8 ⋅ U4 ⋅ u7 ⋅ u3 + 2 ⋅ U6 ⋅ U2 ⋅ u7 ⋅ u3 + 2 ⋅ U5 ⋅ U2 ⋅ u7 ⋅ u3+

2 ⋅ U4 ⋅ U2 ⋅ u7 ⋅ u3 − 2 ⋅ U8 ⋅ U5 ⋅ u6 ⋅ u3 − 2 ⋅ U7 ⋅ U5 ⋅ u6 ⋅ u3−

2 ⋅ U8 ⋅ U4 ⋅ u6 ⋅ u3 − 2 ⋅ U7 ⋅ U4 ⋅ u6 ⋅ u3 + 2 ⋅ U5 ⋅ U2 ⋅ u6 ⋅ u3+

2 ⋅ U4 ⋅ U2 ⋅ u6 ⋅ u3 − 2 ⋅ U8 ⋅ U4 ⋅ u5 ⋅ u3 − 2 ⋅ U7 ⋅ U4 ⋅ u5 ⋅ u3−

2 ⋅ U6 ⋅ U4 ⋅ u5 ⋅ u3 + 2 ⋅ U4 ⋅ U2 ⋅ u5 ⋅ u3 − 2 ⋅ U8 ⋅ U6 ⋅ u7 ⋅ u2−

2 ⋅ U8 ⋅ U5 ⋅ u7 ⋅ u2 − 2 ⋅ U8 ⋅ U4 ⋅ u7 ⋅ u2 − 2 ⋅ U8 ⋅ U3 ⋅ u7 ⋅ u2−

2 ⋅ U8 ⋅ U5 ⋅ u6 ⋅ u2 − 2 ⋅ U7 ⋅ U5 ⋅ u6 ⋅ u2 − 2 ⋅ U8 ⋅ U4 ⋅ u6 ⋅ u2−

2 ⋅ U7 ⋅ U4 ⋅ u6 ⋅ u2 − 2 ⋅ U8 ⋅ U3 ⋅ u6 ⋅ u2 − 2 ⋅ U7 ⋅ U3 ⋅ u6 ⋅ u2−

2 ⋅ U8 ⋅ U4 ⋅ u5 ⋅ u2 − 2 ⋅ U7 ⋅ U4 ⋅ u5 ⋅ u2 − 2 ⋅ U6 ⋅ U4 ⋅ u5 ⋅ u2−

2 ⋅ U8 ⋅ U3 ⋅ u5 ⋅ u2 − 2 ⋅ U7 ⋅ U3 ⋅ u5 ⋅ u2 − 2 ⋅ U6 ⋅ U3 ⋅ u5 ⋅ u2−

2 ⋅ U8 ⋅ U3 ⋅ u4 ⋅ u2 − 2 ⋅ U7 ⋅ U3 ⋅ u4 ⋅ u2 − 2 ⋅ U6 ⋅ U3 ⋅ u4 ⋅ u2−

2 ⋅ U5 ⋅ U3 ⋅ u4 ⋅ u2 − U8 ⋅ U6 ⋅ u7 ⋅ h − U8 ⋅ U5 ⋅ u7 ⋅ h − U8 ⋅ U4 ⋅ u7 ⋅ h−

U8 ⋅ U3 ⋅ u7 ⋅ h − U8 ⋅ U2 ⋅ u7 ⋅ h − U8 ⋅ U5 ⋅ u6 ⋅ h − U7 ⋅ U5 ⋅ u6 ⋅ h−

U8 ⋅ U4 ⋅ u6 ⋅ h − U7 ⋅ U4 ⋅ u6 ⋅ h − U8 ⋅ U3 ⋅ u6 ⋅ h − U7 ⋅ U3 ⋅ u6 ⋅ h−

U8 ⋅ U2 ⋅ u6 ⋅ h − U7 ⋅ U2 ⋅ u6 ⋅ h + U7 ⋅ u8 ⋅ u6 ⋅ h − U8 ⋅ U4 ⋅ u5 ⋅ h−

U7 ⋅ U4 ⋅ u5 ⋅ h − U6 ⋅ U4 ⋅ u5 ⋅ h − U8 ⋅ U3 ⋅ u5 ⋅ h − U7 ⋅ U3 ⋅ u5 ⋅ h−

U6 ⋅ U3 ⋅ u5 ⋅ h − U8 ⋅ U2 ⋅ u5 ⋅ h − U7 ⋅ U2 ⋅ u5 ⋅ h − U6 ⋅ U2 ⋅ u5 ⋅ h+

U7 ⋅ u8 ⋅ u5 ⋅ h + U6 ⋅ u8 ⋅ u5 ⋅ h + U6 ⋅ u7 ⋅ u5 ⋅ h − U8 ⋅ U3 ⋅ u4 ⋅ h−

U7 ⋅ U3 ⋅ u4 ⋅ h − U6 ⋅ U3 ⋅ u4 ⋅ h − U5 ⋅ U3 ⋅ u4 ⋅ h − U8 ⋅ U2 ⋅ u4 ⋅ h−

U7 ⋅ U2 ⋅ u4 ⋅ h − U6 ⋅ U2 ⋅ u4 ⋅ h − U5 ⋅ U2 ⋅ u4 ⋅ h + U7 ⋅ u8 ⋅ u4 ⋅ h+

U6 ⋅ u8 ⋅ u4 ⋅ h + U5 ⋅ u8 ⋅ u4 ⋅ h + U6 ⋅ u7 ⋅ u4 ⋅ h + U5 ⋅ u7 ⋅ u4 ⋅ h+

U5 ⋅ u6 ⋅ u4 ⋅ h − U8 ⋅ U2 ⋅ u3 ⋅ h − U7 ⋅ U2 ⋅ u3 ⋅ h − U6 ⋅ U2 ⋅ u3 ⋅ h−

U5 ⋅ U2 ⋅ u3 ⋅ h − U4 ⋅ U2 ⋅ u3 ⋅ h + U7 ⋅ u8 ⋅ u3 ⋅ h + U6 ⋅ u8 ⋅ u3 ⋅ h+

U5 ⋅ u8 ⋅ u3 ⋅ h + U4 ⋅ u8 ⋅ u3 ⋅ h + U6 ⋅ u7 ⋅ u3 ⋅ h + U5 ⋅ u7 ⋅ u3 ⋅ h+

U4 ⋅ u7 ⋅ u3 ⋅ h + U5 ⋅ u6 ⋅ u3 ⋅ h + U4 ⋅ u6 ⋅ u3 ⋅ h + U4 ⋅ u5 ⋅ u3 ⋅ h+

U7 ⋅ u8 ⋅ u2 ⋅ h + U6 ⋅ u8 ⋅ u2 ⋅ h + U5 ⋅ u8 ⋅ u2 ⋅ h + U4 ⋅ u8 ⋅ u2 ⋅ h+

U3 ⋅ u8 ⋅ u2 ⋅ h + U6 ⋅ u7 ⋅ u2 ⋅ h + U5 ⋅ u7 ⋅ u2 ⋅ h + U4 ⋅ u7 ⋅ u2 ⋅ h+

U3 ⋅ u7 ⋅ u2 ⋅ h + U5 ⋅ u6 ⋅ u2 ⋅ h + U4 ⋅ u6 ⋅ u2 ⋅ h + U3 ⋅ u6 ⋅ u2 ⋅ h+

U4 ⋅ u5 ⋅ u2 ⋅ h + U3 ⋅ u5 ⋅ u2 ⋅ h + U3 ⋅ u4 ⋅ u2 ⋅ h

288 A Examples

Gonnet-83-h

Polynomial ring in 18 variables: a(0), a(2), a(3), a(4), a(5), b(0), b(1), b(2), b(3),
b(4), b(5), c(0), c(1), c(2), c(3), c(4), c(5), h

i[1] = a(5) ⋅ b(5)
i[2] = a(5) ⋅ b(4) + a(4) ⋅ b(5)
i[3] = a(4) ⋅ b(4)
i[4] = a(5) ⋅ b(3) + a(3) ⋅ b(5)
i[5] = a(5) ⋅ b(3) + a(3) ⋅ b(5) + 2 ⋅ a(5) ⋅ b(5)
i[6] = a(3) ⋅ b(3) + a(5) ⋅ b(3) + a(3) ⋅ b(5) + a(5) ⋅ b(5)
i[7] = 2 ⋅ a(3) ⋅ b(3) + a(5) ⋅ b(3) + a(3) ⋅ b(5)
i[8] = a(4) ⋅ b(2) + a(2) ⋅ b(4)
i[9] = a(2) ⋅ b(2)
i[10] = a(5) ⋅ b(1) + a(4) ⋅ b(3) + a(3) ⋅ b(4) + b(5) ⋅ h
i[11] = a(4) ⋅ b(1) + b(4) ⋅ h
i[12] = a(2) ⋅ b(1) + b(2) ⋅ h
i[13] = a(0) ⋅ b(1) + a(4) ⋅ b(1) + a(3) ⋅ b(2) + a(2) ⋅ b(3) + b(0) ⋅ h+

2 ⋅ b(1) ⋅ h + b(4) ⋅ h + c(1) ⋅ h
i[14] = a(5) ⋅ b(0) + a(5) ⋅ b(1) + a(4) ⋅ b(3) + a(3) ⋅ b(4) + 2 ⋅ a(5) ⋅ b(4)+

a(0) ⋅ b(5) + 2 ⋅ a(4) ⋅ b(5) + b(5) ⋅ h + c(5) ⋅ h
i[15] = a(4) ⋅ b(0) + a(4) ⋅ b(1) + a(5) ⋅ b(2) + a(0) ⋅ b(4) + 2 ⋅ a(4) ⋅ b(4)+

a(2) ⋅ b(5) + b(4) ⋅ h + c(4) ⋅ h
i[16] = a(3) ⋅ b(0) + 2 ⋅ a(3) ⋅ b(1) + a(5) ⋅ b(1) + a(0) ⋅ b(3)+

a(4) ⋅ b(3) + a(3) ⋅ b(4) + 2 ⋅ b(3) ⋅ h + b(5) ⋅ h + c(3) ⋅ h
i[17] = a(3) ⋅ b(0) + a(5) ⋅ b(0) + a(3) ⋅ b(1) + a(5) ⋅ b(1) + a(0) ⋅ b(3)+

a(4) ⋅ b(3) + a(3) ⋅ b(4) + a(5) ⋅ b(4) + a(0) ⋅ b(5) + a(4) ⋅ b(5)+
b(3) ⋅ h + b(5) ⋅ h + c(3) ⋅ h + c(5) ⋅ h − hˆ2

i[18] = a(2) ⋅ b(0) + a(2) ⋅ b(1) + a(0) ⋅ b(2) + a(4) ⋅ b(2) + a(2) ⋅ b(4)+
b(2) ⋅ h + c(2) ⋅ h

i[19] = a(0) ⋅ b(0) + a(4) ⋅ b(0) + a(0) ⋅ b(1) + a(4) ⋅ b(1) + a(3) ⋅ b(2)+
a(5) ⋅ b(2) + a(2) ⋅ b(3) + a(0) ⋅ b(4) + a(4) ⋅ b(4) + a(2) ⋅ b(5)+
b(0) ⋅ h + b(1) ⋅ h + b(4) ⋅ h + c(0) ⋅ h + c(1) ⋅ h + c(4) ⋅ h

289

Katsura-8

Polynomial ring in 9 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8)

i[1] = x(0) + 2 ⋅ x(1) + 2 ⋅ x(2) + 2 ⋅ x(3) + 2 ⋅ x(4) + 2 ⋅ x(5) + 2 ⋅ x(6)+
2 ⋅ x(7) − 1

i[2] = x(0)ˆ2 + 2 ⋅ x(1)ˆ2 + 2 ⋅ x(2)ˆ2 + 2 ⋅ x(3)ˆ2 + 2 ⋅ x(4)ˆ2+
2 ⋅ x(5)ˆ2 + 2 ⋅ x(6)ˆ2 + 2 ⋅ x(7)ˆ2 − x(0)

i[3] = 2 ⋅ x(0) ⋅ x(1) + 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(3) ⋅ x(4)+
2 ⋅ x(4) ⋅ x(5) + 2 ⋅ x(5) ⋅ x(6) + 2 ⋅ x(6) ⋅ x(7) − x(1)

i[4] = x(1)ˆ2 + 2 ⋅ x(0) ⋅ x(2) + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(2) ⋅ x(4)+
2 ⋅ x(3) ⋅ x(5) + 2 ⋅ x(4) ⋅ x(6) + 2 ⋅ x(5) ⋅ x(7) − x(2)

i[5] = 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(0) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5)+
2 ⋅ x(3) ⋅ x(6) + 2 ⋅ x(4) ⋅ x(7) − x(3)

i[6] = x(2)ˆ2 + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(0) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5)+
2 ⋅ x(2) ⋅ x(6) + 2 ⋅ x(3) ⋅ x(7) − x(4)

i[7] = 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(0) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6)+
2 ⋅ x(2) ⋅ x(7) − x(5)

i[8] = x(3)ˆ2 + 2 ⋅ x(2) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5) + 2 ⋅ x(0) ⋅ x(6)+
2 ⋅ x(1) ⋅ x(7) − x(6)

290 A Examples

Katsura-8-h

Polynomial ring in 10 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8),
h

i[1] = x(0) + 2 ⋅ x(1) + 2 ⋅ x(2) + 2 ⋅ x(3) + 2 ⋅ x(4) + 2 ⋅ x(5) + 2 ⋅ x(6)+
2 ⋅ x(7) − h

i[2] = x(0)ˆ2 + 2 ⋅ x(1)ˆ2 + 2 ⋅ x(2)ˆ2 + 2 ⋅ x(3)ˆ2 + 2 ⋅ x(4)ˆ2+
2 ⋅ x(5)ˆ2 + 2 ⋅ x(6)ˆ2 + 2 ⋅ x(7)ˆ2 − x(0) ⋅ h

i[3] = 2 ⋅ x(0) ⋅ x(1) + 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(3) ⋅ x(4)+
2 ⋅ x(4) ⋅ x(5) + 2 ⋅ x(5) ⋅ x(6) + 2 ⋅ x(6) ⋅ x(7) − x(1) ⋅ h

i[4] = x(1)ˆ2 + 2 ⋅ x(0) ⋅ x(2) + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(2) ⋅ x(4)+
2 ⋅ x(3) ⋅ x(5) + 2 ⋅ x(4) ⋅ x(6) + 2 ⋅ x(5) ⋅ x(7) − x(2) ⋅ h

i[5] = 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(0) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5)+
2 ⋅ x(3) ⋅ x(6) + 2 ⋅ x(4) ⋅ x(7) − x(3) ⋅ h

i[6] = x(2)ˆ2 + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(0) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5)+
2 ⋅ x(2) ⋅ x(6) + 2 ⋅ x(3) ⋅ x(7) − x(4) ⋅ h

i[7] = 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(0) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6)+
2 ⋅ x(2) ⋅ x(7) − x(5) ⋅ h

i[8] = x(3)ˆ2 + 2 ⋅ x(2) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5) + 2 ⋅ x(0) ⋅ x(6)+
2 ⋅ x(1) ⋅ x(7) − x(6) ⋅ h

291

Katsura-9

Polynomial ring in 10 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8),
x(9)

i[1] = x(0) + 2 ⋅ x(1) + 2 ⋅ x(2) + 2 ⋅ x(3) + 2 ⋅ x(4) + 2 ⋅ x(5) + 2 ⋅ x(6)+
2 ⋅ x(7) + 2 ⋅ x(8) − 1

i[2] = x(0)ˆ2 + 2 ⋅ x(1)ˆ2 + 2 ⋅ x(2)ˆ2 + 2 ⋅ x(3)ˆ2 + 2 ⋅ x(4)ˆ2+
2 ⋅ x(5)ˆ2 + 2 ⋅ x(6)ˆ2 + 2 ⋅ x(7)ˆ2 + 2 ⋅ x(8)ˆ2 − x(0)

i[3] = 2 ⋅ x(0) ⋅ x(1) + 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(3) ⋅ x(4)+
2 ⋅ x(4) ⋅ x(5) + 2 ⋅ x(5) ⋅ x(6) + 2 ⋅ x(6) ⋅ x(7) + 2 ⋅ x(7) ⋅ x(8)−
x(1)

i[4] = x(1)ˆ2 + 2 ⋅ x(0) ⋅ x(2) + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(2) ⋅ x(4)+
2 ⋅ x(3) ⋅ x(5) + 2 ⋅ x(4) ⋅ x(6) + 2 ⋅ x(5) ⋅ x(7) + 2 ⋅ x(6) ⋅ x(8)−
x(2)

i[5] = 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(0) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5)+
2 ⋅ x(3) ⋅ x(6) + 2 ⋅ x(4) ⋅ x(7) + 2 ⋅ x(5) ⋅ x(8) − x(3)

i[6] = x(2)ˆ2 + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(0) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5)+
2 ⋅ x(2) ⋅ x(6) + 2 ⋅ x(3) ⋅ x(7) + 2 ⋅ x(4) ⋅ x(8) − x(4)

i[7] = 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(0) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6)+
2 ⋅ x(2) ⋅ x(7) + 2 ⋅ x(3) ⋅ x(8) − x(5)

i[8] = x(3)ˆ2 + 2 ⋅ x(2) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5) + 2 ⋅ x(0) ⋅ x(6)+
2 ⋅ x(1) ⋅ x(7) + 2 ⋅ x(2) ⋅ x(8) − x(6)

i[9] = 2 ⋅ x(3) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6) + 2 ⋅ x(0) ⋅ x(7)+
2 ⋅ x(1) ⋅ x(8) − x(7)

292 A Examples

Katsura-9-h

Polynomial ring in 11 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8),
x(9), h

i[1] = x(0) + 2 ⋅ x(1) + 2 ⋅ x(2) + 2 ⋅ x(3) + 2 ⋅ x(4) + 2 ⋅ x(5) + 2 ⋅ x(6)+
2 ⋅ x(7) + 2 ⋅ x(8) − h

i[2] = x(0)ˆ2 + 2 ⋅ x(1)ˆ2 + 2 ⋅ x(2)ˆ2 + 2 ⋅ x(3)ˆ2 + 2 ⋅ x(4)ˆ2+
2 ⋅ x(5)ˆ2 + 2 ⋅ x(6)ˆ2 + 2 ⋅ x(7)ˆ2 + 2 ⋅ x(8)ˆ2 − x(0) ⋅ h

i[3] = 2 ⋅ x(0) ⋅ x(1) + 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(3) ⋅ x(4)+
2 ⋅ x(4) ⋅ x(5) + 2 ⋅ x(5) ⋅ x(6) + 2 ⋅ x(6) ⋅ x(7) + 2 ⋅ x(7) ⋅ x(8)−
x(1) ⋅ h

i[4] = x(1)ˆ2 + 2 ⋅ x(0) ⋅ x(2) + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(2) ⋅ x(4)+
2 ⋅ x(3) ⋅ x(5) + 2 ⋅ x(4) ⋅ x(6) + 2 ⋅ x(5) ⋅ x(7) + 2 ⋅ x(6) ⋅ x(8)−
x(2) ⋅ h

i[5] = 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(0) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5)+
2 ⋅ x(3) ⋅ x(6) + 2 ⋅ x(4) ⋅ x(7) + 2 ⋅ x(5) ⋅ x(8) − x(3) ⋅ h

i[6] = x(2)ˆ2 + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(0) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5)+
2 ⋅ x(2) ⋅ x(6) + 2 ⋅ x(3) ⋅ x(7) + 2 ⋅ x(4) ⋅ x(8) − x(4) ⋅ h

i[7] = 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(0) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6)+
2 ⋅ x(2) ⋅ x(7) + 2 ⋅ x(3) ⋅ x(8) − x(5) ⋅ h

i[8] = x(3)ˆ2 + 2 ⋅ x(2) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5) + 2 ⋅ x(0) ⋅ x(6)+
2 ⋅ x(1) ⋅ x(7) + 2 ⋅ x(2) ⋅ x(8) − x(6) ⋅ h

i[9] = 2 ⋅ x(3) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6) + 2 ⋅ x(0) ⋅ x(7)+
2 ⋅ x(1) ⋅ x(8) − x(7) ⋅ h

293

Katsura-10

Polynomial ring in 11 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8),
x(9), x(10)

i[1] = x(0) + 2 ⋅ x(1) + 2 ⋅ x(2) + 2 ⋅ x(3) + 2 ⋅ x(4) + 2 ⋅ x(5) + 2 ⋅ x(6)+
2 ⋅ x(7) + 2 ⋅ x(8) + 2 ⋅ x(9) − 1

i[2] = x(0)ˆ2 + 2 ⋅ x(1)ˆ2 + 2 ⋅ x(2)ˆ2 + 2 ⋅ x(3)ˆ2 + 2 ⋅ x(4)ˆ2+
2 ⋅ x(5)ˆ2 + 2 ⋅ x(6)ˆ2 + 2 ⋅ x(7)ˆ2 + 2 ⋅ x(8)ˆ2 + 2 ⋅ x(9)ˆ2 − x(0)

i[3] = 2 ⋅ x(0) ⋅ x(1) + 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(3) ⋅ x(4)+
2 ⋅ x(4) ⋅ x(5) + 2 ⋅ x(5) ⋅ x(6) + 2 ⋅ x(6) ⋅ x(7) + 2 ⋅ x(7) ⋅ x(8)+
2 ⋅ x(8) ⋅ x(9) − x(1)

i[4] = x(1)ˆ2 + 2 ⋅ x(0) ⋅ x(2) + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(2) ⋅ x(4)+
2 ⋅ x(3) ⋅ x(5) + 2 ⋅ x(4) ⋅ x(6) + 2 ⋅ x(5) ⋅ x(7) + 2 ⋅ x(6) ⋅ x(8)+
2 ⋅ x(7) ⋅ x(9) − x(2)

i[5] = 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(0) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5)+
2 ⋅ x(3) ⋅ x(6) + 2 ⋅ x(4) ⋅ x(7) + 2 ⋅ x(5) ⋅ x(8) + 2 ⋅ x(6) ⋅ x(9)−
x(3)

i[6] = x(2)ˆ2 + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(0) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5)+
2 ⋅ x(2) ⋅ x(6) + 2 ⋅ x(3) ⋅ x(7) + 2 ⋅ x(4) ⋅ x(8) + 2 ⋅ x(5) ⋅ x(9)−
x(4)

i[7] = 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(0) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6)+
2 ⋅ x(2) ⋅ x(7) + 2 ⋅ x(3) ⋅ x(8) + 2 ⋅ x(4) ⋅ x(9) − x(5)

i[8] = x(3)ˆ2 + 2 ⋅ x(2) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5) + 2 ⋅ x(0) ⋅ x(6)+
2 ⋅ x(1) ⋅ x(7) + 2 ⋅ x(2) ⋅ x(8) + 2 ⋅ x(3) ⋅ x(9) − x(6)

i[9] = 2 ⋅ x(3) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6) + 2 ⋅ x(0) ⋅ x(7)+
2 ⋅ x(1) ⋅ x(8) + 2 ⋅ x(2) ⋅ x(9) − x(7)

i[10] = x(4)ˆ2 + 2 ⋅ x(3) ⋅ x(5) + 2 ⋅ x(2) ⋅ x(6) + 2 ⋅ x(1) ⋅ x(7)+
2 ⋅ x(0) ⋅ x(8) + 2 ⋅ x(1) ⋅ x(9) − x(8)

294 A Examples

Katsura-10-h

Polynomial ring in 12 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8),
x(9), x(10), h

i[1] = x(0) + 2 ⋅ x(1) + 2 ⋅ x(2) + 2 ⋅ x(3) + 2 ⋅ x(4) + 2 ⋅ x(5) + 2 ⋅ x(6)+
2 ⋅ x(7) + 2 ⋅ x(8) + 2 ⋅ x(9) − h

i[2] = x(0)ˆ2 + 2 ⋅ x(1)ˆ2 + 2 ⋅ x(2)ˆ2 + 2 ⋅ x(3)ˆ2 + 2 ⋅ x(4)ˆ2+
2 ⋅ x(5)ˆ2 + 2 ⋅ x(6)ˆ2 + 2 ⋅ x(7)ˆ2 + 2 ⋅ x(8)ˆ2 + 2 ⋅ x(9)ˆ2−
x(0) ⋅ h

i[3] = 2 ⋅ x(0) ⋅ x(1) + 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(3) ⋅ x(4)+
2 ⋅ x(4) ⋅ x(5) + 2 ⋅ x(5) ⋅ x(6) + 2 ⋅ x(6) ⋅ x(7) + 2 ⋅ x(7) ⋅ x(8)+
2 ⋅ x(8) ⋅ x(9) − x(1) ⋅ h

i[4] = x(1)ˆ2 + 2 ⋅ x(0) ⋅ x(2) + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(2) ⋅ x(4)+
2 ⋅ x(3) ⋅ x(5) + 2 ⋅ x(4) ⋅ x(6) + 2 ⋅ x(5) ⋅ x(7) + 2 ⋅ x(6) ⋅ x(8)+
2 ⋅ x(7) ⋅ x(9) − x(2) ⋅ h

i[5] = 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(0) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5)+
2 ⋅ x(3) ⋅ x(6) + 2 ⋅ x(4) ⋅ x(7) + 2 ⋅ x(5) ⋅ x(8) + 2 ⋅ x(6) ⋅ x(9)−
x(3) ⋅ h

i[6] = x(2)ˆ2 + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(0) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5)+
2 ⋅ x(2) ⋅ x(6) + 2 ⋅ x(3) ⋅ x(7) + 2 ⋅ x(4) ⋅ x(8) + 2 ⋅ x(5) ⋅ x(9)−
x(4) ⋅ h

i[7] = 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(0) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6)+
2 ⋅ x(2) ⋅ x(7) + 2 ⋅ x(3) ⋅ x(8) + 2 ⋅ x(4) ⋅ x(9) − x(5) ⋅ h

i[8] = x(3)ˆ2 + 2 ⋅ x(2) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5) + 2 ⋅ x(0) ⋅ x(6)+
2 ⋅ x(1) ⋅ x(7) + 2 ⋅ x(2) ⋅ x(8) + 2 ⋅ x(3) ⋅ x(9) − x(6) ⋅ h

i[9] = 2 ⋅ x(3) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6) + 2 ⋅ x(0) ⋅ x(7)+
2 ⋅ x(1) ⋅ x(8) + 2 ⋅ x(2) ⋅ x(9) − x(7) ⋅ h

i[10] = x(4)ˆ2 + 2 ⋅ x(3) ⋅ x(5) + 2 ⋅ x(2) ⋅ x(6) + 2 ⋅ x(1) ⋅ x(7)+
2 ⋅ x(0) ⋅ x(8) + 2 ⋅ x(1) ⋅ x(9) − x(8) ⋅ h

295

Katsura-11

Polynomial ring in 12 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8),
x(9), x(10), x(11)

i[1] = x(0) + 2 ⋅ x(1) + 2 ⋅ x(2) + 2 ⋅ x(3) + 2 ⋅ x(4) + 2 ⋅ x(5) + 2 ⋅ x(6)+
2 ⋅ x(7) + 2 ⋅ x(8) + 2 ⋅ x(9) + 2 ⋅ x(10) − 1

i[2] = x(0)ˆ2 + 2 ⋅ x(1)ˆ2 + 2 ⋅ x(2)ˆ2 + 2 ⋅ x(3)ˆ2 + 2 ⋅ x(4)ˆ2+
2 ⋅ x(5)ˆ2 + 2 ⋅ x(6)ˆ2 + 2 ⋅ x(7)ˆ2 + 2 ⋅ x(8)ˆ2 + 2 ⋅ x(9)ˆ2+
2 ⋅ x(10)ˆ2 − x(0)

i[3] = 2 ⋅ x(0) ⋅ x(1) + 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(3) ⋅ x(4)+
2 ⋅ x(4) ⋅ x(5) + 2 ⋅ x(5) ⋅ x(6) + 2 ⋅ x(6) ⋅ x(7) + 2 ⋅ x(7) ⋅ x(8)+
2 ⋅ x(8) ⋅ x(9) + 2 ⋅ x(9) ⋅ x(10) − x(1)

i[4] = x(1)ˆ2 + 2 ⋅ x(0) ⋅ x(2) + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(2) ⋅ x(4)+
2 ⋅ x(3) ⋅ x(5) + 2 ⋅ x(4) ⋅ x(6) + 2 ⋅ x(5) ⋅ x(7) + 2 ⋅ x(6) ⋅ x(8)+
2 ⋅ x(7) ⋅ x(9) + 2 ⋅ x(8) ⋅ x(10) − x(2)

i[5] = 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(0) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5)+
2 ⋅ x(3) ⋅ x(6) + 2 ⋅ x(4) ⋅ x(7) + 2 ⋅ x(5) ⋅ x(8) + 2 ⋅ x(6) ⋅ x(9)+
2 ⋅ x(7) ⋅ x(10) − x(3)

i[6] = x(2)ˆ2 + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(0) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5)+
2 ⋅ x(2) ⋅ x(6) + 2 ⋅ x(3) ⋅ x(7) + 2 ⋅ x(4) ⋅ x(8) + 2 ⋅ x(5) ⋅ x(9)+
2 ⋅ x(6) ⋅ x(10) − x(4)

i[7] = 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(0) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6)+
2 ⋅ x(2) ⋅ x(7) + 2 ⋅ x(3) ⋅ x(8) + 2 ⋅ x(4) ⋅ x(9) + 2 ⋅ x(5) ⋅ x(10)−
x(5)

i[8] = x(3)ˆ2 + 2 ⋅ x(2) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5) + 2 ⋅ x(0) ⋅ x(6)+
2 ⋅ x(1) ⋅ x(7) + 2 ⋅ x(2) ⋅ x(8) + 2 ⋅ x(3) ⋅ x(9) + 2 ⋅ x(4) ⋅ x(10)−
x(6)

i[9] = 2 ⋅ x(3) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6) + 2 ⋅ x(0) ⋅ x(7)+
2 ⋅ x(1) ⋅ x(8) + 2 ⋅ x(2) ⋅ x(9) + 2 ⋅ x(3) ⋅ x(10) − x(7)

i[10] = x(4)ˆ2 + 2 ⋅ x(3) ⋅ x(5) + 2 ⋅ x(2) ⋅ x(6) + 2 ⋅ x(1) ⋅ x(7)+
2 ⋅ x(0) ⋅ x(8) + 2 ⋅ x(1) ⋅ x(9) + 2 ⋅ x(2) ⋅ x(10) − x(8)

i[11] = 2 ⋅ x(4) ⋅ x(5) + 2 ⋅ x(3) ⋅ x(6) + 2 ⋅ x(2) ⋅ x(7) + 2 ⋅ x(1) ⋅ x(8)+
2 ⋅ x(0) ⋅ x(9) + 2 ⋅ x(1) ⋅ x(10) − x(9)

296 A Examples

Katsura-11-h

Polynomial ring in 13 variables: x(0), x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8),
x(9), x(10), x(11), h

i[1] = x(0) + 2 ⋅ x(1) + 2 ⋅ x(2) + 2 ⋅ x(3) + 2 ⋅ x(4) + 2 ⋅ x(5) + 2 ⋅ x(6)+
2 ⋅ x(7) + 2 ⋅ x(8) + 2 ⋅ x(9) + 2 ⋅ x(10) − h

i[2] = x(0)ˆ2 + 2 ⋅ x(1)ˆ2 + 2 ⋅ x(2)ˆ2 + 2 ⋅ x(3)ˆ2 + 2 ⋅ x(4)ˆ2+
2 ⋅ x(5)ˆ2 + 2 ⋅ x(6)ˆ2 + 2 ⋅ x(7)ˆ2 + 2 ⋅ x(8)ˆ2 + 2 ⋅ x(9)ˆ2+
2 ⋅ x(10)ˆ2 − x(0) ⋅ h

i[3] = 2 ⋅ x(0) ⋅ x(1) + 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(3) ⋅ x(4)+
2 ⋅ x(4) ⋅ x(5) + 2 ⋅ x(5) ⋅ x(6) + 2 ⋅ x(6) ⋅ x(7) + 2 ⋅ x(7) ⋅ x(8)+
2 ⋅ x(8) ⋅ x(9) + 2 ⋅ x(9) ⋅ x(10) − x(1) ⋅ h

i[4] = x(1)ˆ2 + 2 ⋅ x(0) ⋅ x(2) + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(2) ⋅ x(4)+
2 ⋅ x(3) ⋅ x(5) + 2 ⋅ x(4) ⋅ x(6) + 2 ⋅ x(5) ⋅ x(7) + 2 ⋅ x(6) ⋅ x(8)+
2 ⋅ x(7) ⋅ x(9) + 2 ⋅ x(8) ⋅ x(10) − x(2) ⋅ h

i[5] = 2 ⋅ x(1) ⋅ x(2) + 2 ⋅ x(0) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5)+
2 ⋅ x(3) ⋅ x(6) + 2 ⋅ x(4) ⋅ x(7) + 2 ⋅ x(5) ⋅ x(8) + 2 ⋅ x(6) ⋅ x(9)+
2 ⋅ x(7) ⋅ x(10) − x(3) ⋅ h

i[6] = x(2)ˆ2 + 2 ⋅ x(1) ⋅ x(3) + 2 ⋅ x(0) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5)+
2 ⋅ x(2) ⋅ x(6) + 2 ⋅ x(3) ⋅ x(7) + 2 ⋅ x(4) ⋅ x(8) + 2 ⋅ x(5) ⋅ x(9)+
2 ⋅ x(6) ⋅ x(10) − x(4) ⋅ h

i[7] = 2 ⋅ x(2) ⋅ x(3) + 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(0) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6)+
2 ⋅ x(2) ⋅ x(7) + 2 ⋅ x(3) ⋅ x(8) + 2 ⋅ x(4) ⋅ x(9) + 2 ⋅ x(5) ⋅ x(10)−
x(5) ⋅ h

i[8] = x(3)ˆ2 + 2 ⋅ x(2) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5) + 2 ⋅ x(0) ⋅ x(6)+
2 ⋅ x(1) ⋅ x(7) + 2 ⋅ x(2) ⋅ x(8) + 2 ⋅ x(3) ⋅ x(9) + 2 ⋅ x(4) ⋅ x(10)−
x(6) ⋅ h

i[9] = 2 ⋅ x(3) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6) + 2 ⋅ x(0) ⋅ x(7)+
2 ⋅ x(1) ⋅ x(8) + 2 ⋅ x(2) ⋅ x(9) + 2 ⋅ x(3) ⋅ x(10) − x(7) ⋅ h

i[10] = x(4)ˆ2 + 2 ⋅ x(3) ⋅ x(5) + 2 ⋅ x(2) ⋅ x(6) + 2 ⋅ x(1) ⋅ x(7)+
2 ⋅ x(0) ⋅ x(8) + 2 ⋅ x(1) ⋅ x(9) + 2 ⋅ x(2) ⋅ x(10) − x(8) ⋅ h

i[11] = 2 ⋅ x(4) ⋅ x(5) + 2 ⋅ x(3) ⋅ x(6) + 2 ⋅ x(2) ⋅ x(7) + 2 ⋅ x(1) ⋅ x(8)+
2 ⋅ x(0) ⋅ x(9) + 2 ⋅ x(1) ⋅ x(10) − x(9) ⋅ h

297

Schrans-Troost-h

Polynomial ring in 9 variables: x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), h

i[1] = 8 ⋅ x(1)ˆ2 + 8 ⋅ x(1) ⋅ x(2) + 8 ⋅ x(1) ⋅ x(3) − 8 ⋅ x(2) ⋅ x(3)+
2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6) − 2 ⋅ x(5) ⋅ x(6)+
2 ⋅ x(1) ⋅ x(7) − 2 ⋅ x(4) ⋅ x(7) − x(1) ⋅ h

i[2] = 8 ⋅ x(1) ⋅ x(2) + 8 ⋅ x(2)ˆ2 − 8 ⋅ x(1) ⋅ x(3) + 8 ⋅ x(2) ⋅ x(3)+
2 ⋅ x(2) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(5) + 2 ⋅ x(2) ⋅ x(6) − 2 ⋅ x(4) ⋅ x(6)+
2 ⋅ x(2) ⋅ x(7) − 2 ⋅ x(5) ⋅ x(7) − x(2) ⋅ h

i[3] = −8 ⋅ x(1) ⋅ x(2) + 8 ⋅ x(1) ⋅ x(3) + 8 ⋅ x(2) ⋅ x(3) + 8 ⋅ x(3)ˆ2+
2 ⋅ x(3) ⋅ x(4) + 2 ⋅ x(3) ⋅ x(5) − 2 ⋅ x(4) ⋅ x(5) + 2 ⋅ x(3) ⋅ x(6)+
2 ⋅ x(3) ⋅ x(7) − 2 ⋅ x(6) ⋅ x(7) − x(3) ⋅ h

i[4] = 2 ⋅ x(1) ⋅ x(4) + 2 ⋅ x(2) ⋅ x(4) + 2 ⋅ x(3) ⋅ x(4) + 8 ⋅ x(4)ˆ2−
2 ⋅ x(3) ⋅ x(5) + 8 ⋅ x(4) ⋅ x(5) − 2 ⋅ x(2) ⋅ x(6) + 2 ⋅ x(4) ⋅ x(6)−
2 ⋅ x(1) ⋅ x(7) + 2 ⋅ x(4) ⋅ x(7) + 6 ⋅ x(4) ⋅ x(8) − 6 ⋅ x(5) ⋅ x(8)−
x(4) ⋅ h

i[5] = −2 ⋅ x(1) ⋅ x(4) − 2 ⋅ x(2) ⋅ x(5) − 2 ⋅ x(3) ⋅ x(6) + 2 ⋅ x(1) ⋅ x(7)+
2 ⋅ x(2) ⋅ x(7) + 2 ⋅ x(3) ⋅ x(7) + 2 ⋅ x(4) ⋅ x(7) + 2 ⋅ x(5) ⋅ x(7)+
8 ⋅ x(6) ⋅ x(7) + 8 ⋅ x(7)ˆ2 − 6 ⋅ x(6) ⋅ x(8) + 6 ⋅ x(7) ⋅ x(8)−
x(7) ⋅ h

i[6] = −2 ⋅ x(2) ⋅ x(4) − 2 ⋅ x(1) ⋅ x(5) + 2 ⋅ x(1) ⋅ x(6) + 2 ⋅ x(2) ⋅ x(6)+
2 ⋅ x(3) ⋅ x(6) + 2 ⋅ x(4) ⋅ x(6) + 2 ⋅ x(5) ⋅ x(6) + 8 ⋅ x(6)ˆ2−
2 ⋅ x(3) ⋅ x(7) + 8 ⋅ x(6) ⋅ x(7) + 6 ⋅ x(6) ⋅ x(8) − 6 ⋅ x(7) ⋅ x(8)−
x(6) ⋅ h

i[7] = −2 ⋅ x(3) ⋅ x(4) + 2 ⋅ x(1) ⋅ x(5) + 2 ⋅ x(2) ⋅ x(5) + 2 ⋅ x(3) ⋅ x(5)+
8 ⋅ x(4) ⋅ x(5) + 8 ⋅ x(5)ˆ2 − 2 ⋅ x(1) ⋅ x(6) + 2 ⋅ x(5) ⋅ x(6)−
2 ⋅ x(2) ⋅ x(7) + 2 ⋅ x(5) ⋅ x(7) − 6 ⋅ x(4) ⋅ x(8) + 6 ⋅ x(5) ⋅ x(8)−
x(5) ⋅ h

i[8] = −6 ⋅ x(4) ⋅ x(5) − 6 ⋅ x(6) ⋅ x(7) + 6 ⋅ x(4) ⋅ x(8) + 6 ⋅ x(5) ⋅ x(8)+
6 ⋅ x(6) ⋅ x(8) + 6 ⋅ x(7) ⋅ x(8) + 8 ⋅ x(8)ˆ2 − x(8) ⋅ h

Bibliography

[1] Adams, W. W., and Loustaunau, P. An Introduction to Gröbner Bases. Graduate
Studies in Mathematics, AMS, 1994.

[2] Albrecht, M. Algorithmic Algebraic Techniques and their Application to Block Ci-
pher Cryptanalysis. PhD thesis, Royal Holloway, University of London, 2010.

[3] Albrecht, M., and Perry, J. F4/5. http://arxiv.org/abs/1006.4933.

[4] Amrhein, B., Gloor, O., and Kuchlin, W. On the Walk. �eoretical Computer
Science 187 (1997), 179–202.

[5] Arnold, E. A. Computing Gröbner bases with Hilbert Lucky Primes. PhD thesis,
University of Maryland, College Park, MD, 2000.

[6] Arnold, E. A. Modular algorithms for computing Gröbner bases. Journal of Sym-
bolic Computation 35 (April 2003), 403–419.

[7] Arri, A., and Perry, J. �e F5 Criterion revised.
http://arxiv.org/abs/1012.3664v3.

300 Bibliography

[8] Ars, G. Applications des bases de Gröbner à la cryptographie. PhD thesis, Université
de Rennes I, 2005.

[9] Ars, G., andHashemi, A. Extended F5 Criteria. Journal of Symbolic Computation,
MEGA 2009 special issue 45, 12 (2010), 1330–1340.

[10] Ars, G., andHashemi, A. Computing Syzygies by Faugère’s F5 Algorithm. Results
in Mathematics, Springer 59 (2011), 35–42.

[11] Astrelin, A. V., Golubitsky, O. D., and Pankratiev, E. V. Gröbner Bases and
Involutive Bases. Walter Gruyter, pp. 49–55.

[12] Atiyah, M. F., and MacDonald, I. G. Introduction to Commutative Algebra.
Addison-Wesley, London, 1969.

[13] Auerbach, R. L. �e Gröbner fan and Gröbner walk for modules. Journal of Sym-
bolic Computation 39 (2005), 127–153.

[14] Bardet, M. Étude des systèmes algébriques surdéterminés. Applications aux codes
correcteurs et à la cryptographie. PhD thesis, Université Paris 6, 2004.

[15] Bardet, M. On the Complexity of a Gröbner Basis Algorithm. INRIA Algorithms
seminar 2002–2004.

[16] Bardet, M., Faugère, J.-C., and Salvy, B. Asympotic Expansion of the Degree of
Regularity for Semi-Regular Systems of Equations. Manuscript downloaded from
www-calfor.lip6.fr/~jcf/Papers/BFS05.pdf.

[17] Bayer, D., and Stillman, M. On the complexity of computing syzygies. Journal of
Symbolic Computation 6, 2-3 (1988), 135 – 147.

[18] Becker, T., Weispfenning, V., and Kredel, H. Gröbner Bases. Graduate Texts in
Mathematics, Springer Verlag, 1993.

[19] Bettale, L., Faugère, J.-C., and Perret, L. Cryptanalysis of Multivariate and
Odd-Characteristic HFE Variants. In Public Key Cryptography - PKC 2011 (2011), D.
Catalano et al., Ed., vol. 6571 of Lecture Notes in Computer Science, Springer-Verlag,
pp. 441–458.

[20] Bigatti, A.M. Computation of Hilbert-Poincaré series. Journal of Pure and Applied
Algebra 119 (1997), 237–253.

[21] Bigatti, A. M., Caboara, M., and Robbiano, L. On the computation of the
Hilbert-Poincaré series. AAECC Journal 2 (1991), 21–33.

[22] Bigatti, A. M., Conti, P., Robbiano, L., and Traverso, C. On the computation
of the Hilbert-Poincaré series.

[23] Bini, D., and Pan, V. Improved parallel division and its extensions. In Foundations
of Computer Science (1992), vol. 33, pp. 131–136.

Bibliography 301

[24] Blinkov, Y. A., andGerdt, V. P. Involutive bases of polynomial ideals. Mathematics
and Computers in Simulation 45 (1998), 519–541.

[25] Blinkov, Y. A., and Gerdt, V. P. Minimal involutive bases. Math. Comput. Simul.
45 (March 1998), 543–560.

[26] Blinkov, Y. A., and Zharkov, A. Y. Involution approach to investigating polyno-
mial systems. Math. Comput. Simul. 42 (January 1996), 323–332.

[27] Bogart, T., Jensen, A. N., Speyer, D., Sturmfels, B., and Thomas, R. R. Com-
puting tropical varieties. Journal of Symbolic Computation 42, 1-2 (2007), 54 – 73.
E�ective Methods in Algebraic Geometry (MEGA 2005).

[28] Borosh, I. Exact solutions of linear equations with rational coe�cients by congru-
ence techniques. Mathematics of Computation 20, 107–112.

[29] Bosma, W., Cannon, J., and Playoust, C. �e Magma algebra system. I.
�e user language. Journal of Symbolic Computation 24, 3-4 (1997), 235–265.
http://magma.maths.usyd.edu.au/magma/.

[30] Brickenstein, M. Neue Varianten zur Berechnung von Gröbner Basen. Diploma
thesis, University of Kaiserslautern, 2004.

[31] Brickenstein, M. Slimgb: Gröbner bases with slim polynomials. Revista
Matemática Complutense 23, 2 (2010), 453–466. the �nal publication is available
at www.springerlink.com.

[32] Brickenstein, M., and Dreyer, A. PolyBoRi: A framework for Gröbner basis
computations with Boolean polynomials. Journal of Symbolic Computation 44, 9
(September 2009), 1326–1345.

[33] Buchberger, B. Gröbner Bases: An Algorithmic Method in Polynomial Ideal�e-
ory. 184–232.

[34] Buchberger, B. Ein Algorithmus zum Au�nden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal. PhD thesis, University of Inns-
bruck, 1965.

[35] Buchberger, B. A criterion for detecting unnecessary reductions in the construc-
tion of Gröbner bases. In EUROSAM ’79, An International Symposium on Sym-
bolic andAlgebraicManipulation (1979), vol. 72 of Lecture Notes in Computer Science,
Springer, pp. 3–21.

[36] Cabarcas, D. An Implementation of Faugère’s F4 Algorithm for Computing
Gröbner Bases. Master’s thesis, University of Cincinnati, Engineering, 2010.

[37] Cabarcas, D., and Ding, J. Linear Algebra to Compute Syzygies and Gröbner
Bases. In ISSAC 2011: Proceedings of the 2011 international symposium on Symbolic
and algebraic computation (2011), pp. 67–74.

302 Bibliography

[38] Caboara, M. A Dynamic Algorithm for Gröbner basis computation. In ISSAC’93
(1993).

[39] Caboara, M., DeDominicis. G,andRobbiano, L. MultigradedHilbert Functions
and Buchberger Algorithm. In ISSAC’96, Zürich, Switzerland (1996).

[40] Calmet, J., Hausdorf, M., and Seiler, W. M. A Constructive Introduction to
Involution. pp. 33–50.

[41] Caniglia, L., Galligo, A., and Heintz, J. Some New E�ectivity Bounds in Com-
putational Geometry. In Proceedings of the 6th International Conference, on Ap-
plied Algebra, Algebraic Algorithms and Error-Correcting Codes (London, UK, 1989),
Springer-Verlag, pp. 131–151.

[42] Caniglia, L. and Galligo, A. andHeintz, J. Equations for the projective closure
and e�ective Nullstellensatz. Discrete Appl. Math. 33 (October 1991), 11–23.

[43] Cayley, A. On the theory of elimination. Mathematical Journal 3 (1848), 116–120.

[44] Collart, S., Kalkbrener, M., andMall, D. Converting Bases with the Groebner
Walk. Journal of Symbolic Computation 24 (1997), 265–469.

[45] Collins, G. E., and Encarnación, M. J. E�cient Rational Number Reconstruc-
tion. Journal of Symbolic Computation 20 (1994), 287–297.

[46] Cox, D. A., Little, J., andO’Shea, D. Using Algebraic Geometry, 2nd ed. Graduate
Texts in Mathematics, Springer Verlag, 2008.

[47] Cox, D. A., Little, J., and O’Shea, D. B. Ideals, Varieties, and Algorithms, 3rd ed.
Undergraduate Texts in Mathematics, Springer, 2007.

[48] deKleine, J.,andMonagan, M. AModularMethod for computingGröbner bases.

[49] Decker, W., Greuel, G.-M., Pfister, G., and Schönemann, H. Sin-
gular 3-1-3 — A computer algebra system for polynomial computations, 2011.
http://www.singular.uni-kl.de.

[50] Decker, W., and Lossen, C. Computing in Algebraic Geometry - A Quick Start in
Singular. ACM 16, Springer Verlag, 2006.

[51] Decker, W., and Schreyer, F.-O. Varieties, Gröbner Bases, and Algebraic Curves.
Springer Verlag, tbc.

[52] Dellaca, R. D. Gröbner Basis Algorithms. PhD thesis, California State University,
Fullerton, 2009.

[53] Dubé, T. W. �e Structure of Polynomial Ideals and Gröbner Bases. SIAM Journal
of Computation 19, 4 (1990), 750–773.

[54] Ebert, G. L. Some comments on the modular approach to Gröbner-bases. ACM
SIGSAM Bulletin 17 (1983), 28–32.

Bibliography 303

[55] Eder, C. A new attempt on the F5 Criterion. �e Computer Science Journal of
Moldova 16 (2008), 4–14.

[56] Eder, C. On the criteria of the F5 Algorithm. preprint math.AC/0804.2033 (2008).

[57] Eder, C., Gash, J., and Perry, J. Modifying Faugère’s F5 Algorithm to ensure ter-
mination. ACM SIGSAM Communications in Computer Algebra 45, 2 (2011), 70–89.
http://arxiv.org/abs/1006.0318.

[58] Eder, C., and Perry, J. F5C: A Variant of Faugère’s F5 Algorithm with reduced
Gröbner bases. Journal of Symbolic Computation, MEGA 2009 special issue 45, 12
(2010), 1442–1458. dx.doi.org/10.1016/j.jsc.2010.06.019.

[59] Eder, C., and Perry, J. Signature-based Algorithms to Compute Gröbner Bases.
In ISSAC 2011: Proceedings of the 2011 international symposium on Symbolic and al-
gebraic computation (2011), pp. 99–106.

[60] Eisenbud, D. Commutative Algebra: with a View TowardAlgebraic Geometry, 3rd ed.
Graduate Texts in Mathematics, Springer Verlag, 2008.

[61] Faugère, J.-C. A new e�cient algorithm for computing Gröbner bases (F4). Journal
of Pure and Applied Algebra 139, 1–3 (June 1999), 61–88.

[62] Faugère, J.-C. A new e�cient algorithm for computing Gröbner bases without
reduction to zero (F5). 75–83.

[63] Faugère, J.-C. A new e�cient algorithm for computing Gröbner bases
without reduction to zero F5. In ISSAC’02, Villeneuve d’Ascq, France
(July 2002), pp. 75–82. Revised version from http://fgbrs.lip6.fr/

jcf/Publications/index.html.

[64] Faugère, J.-C. Algebraic cryptanalysis of HFE using Gröbner bases. INRIA Re-
search Report, n 4738.

[65] Faugère, J.-C. Interactions between computer algebra (Gröbner bases) and cryptol-
ogy. In ISSAC ’09: Proceedings of the 2009 international symposium on Symbolic and
algebraic computation (New York, NY, USA, 2009), ISSAC ’09, ACM, pp. 383–384.

[66] Faugère, J.-C. FGb: A Library for Computing Gröbner Bases. In Mathematical
So�ware - ICMS 2010 (Berlin, Heidelberg, September 2010), Fukuda, Komei and
Hoeven, Joris and Joswig, Michael and Takayama, Nobuki, Ed., vol. 6327 of Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, pp. 84–87.

[67] Faugère, J.-C., Gianni, P. M., Lazard, D., and Mora, T. E�cient Computation
of Zero-Dimensional Gröbner Bases by Change of Ordering. Journal of Symbolic
Computation 16, 4 (1993), 329–344.

[68] Faugère, J.-C., and Joux, A. Algebraic Cryptanalysis of Hidden Field Equation
(HFE) Cryptosystems Using Gröbner Bases. 44–60.

304 Bibliography

[69] Faugère, J.-C.and Lachartre, S. Parallel Gaussian Elimination for Gröbner bases
computations in �nite �elds. In Proceedings of the 4th International Workshop on
Parallel and Symbolic Computation (New York, NY, USA, July 2010), M. Moreno-
Maza and J.L. Roch, Ed., PASCO ’10, ACM, pp. 89–97.

[70] Faugère, J.-C. and Mou, C. Fast Algorithm for Change of Ordering of Zero-
dimensional Gröbner Bases with Sparse Multiplication Matrices. In ISSAC 2011:
Proceedings of the 2011 international symposium on Symbolic and algebraic computa-
tion (New York, NY, USA, 2011), ISSAC ’11, ACM, pp. 115–122.

[71] Faugère, J.-C. and ”Safey El Din”, M. and Spaenlehauer, P.-J. Gröbner Bases
of Bihomogeneous Ideals Generated by Polynomials of Bidegree (1,1): Algorithms
and Complexity. Journal of Symbolic Computation 46, 4 (2011), 406–437. Available
online 4 November 2010.

[72] Fröberg, R. An Introduction to Gröbner Bases. John Wiley & Sons, 1997.

[73] Fukuda, K., Jensen, A. N., Lauritzen, N., and Thomas, R. �e generic Gröbner
walk. Journal of Symbolic Computation 42, 3 (2007), 298–312.

[74] Fukuda, K., Jensen, A. N., and Thomas, R. R. Computing Gröbner fans. Mathe-
matics of Computation 76 (2007), 2189–2212. PRO 060522.

[75] Fulton, W. Introduction to Toric Varieties. Princeton University Press, 1993.

[76] Gao, S., Guan, Y., and Volny IV, F. A New Incremental Algorithm for Computing
Groebner Bases. Journal of Symbolic Computation – ISSAC 2010 Special Issue 1 (2010),
13–19.

[77] Gao, S., Volny IV, F., and Wang, D. A new algorithm for computing Groebner
bases. 2010.

[78] Gash, J. M. On e�cient computation of Gröbner bases. PhD thesis, University of
Indiana, Bloomington, IN, 2008.

[79] Gathen, J. von zur, and Gerhard, J. Modern Computer Algebra, 2nd ed. Cam-
bridge University Press, Cambridge, England, 2003.

[80] Gebauer, R., and Möller, H. M. Buchberger’s algorithm and staggered linear
bases. In Proceedings of the ��h ACM symposium on Symbolic and algebraic compu-
tation (New York, NY, USA, 1986), SYMSAC ’86, ACM, pp. 218–221.

[81] Gebauer, R., and Möller, H. M. On an installation of Buchberger’s algorithm.
Journal of Symbolic Computation 6, 2-3 (October/December 1988), 275–286.

[82] Gerdt, V. P. On an Algorithmic Optimization in Computation of Involutive Bases.
Program. Comput. So�w. 28 (March 2002), 62–65.

Bibliography 305

[83] Gerdt, V. P., and Yanovich, D. A. Implementation of the FGLM Algorithm and
Finding Roots of Polynomial Involutive Systems. Programming and Computer So�-
ware 29 (2003), 72–74.

[84] Gerdt, V. P., andYanovich, D. A. Parallel computation of Janet and Gröbner bases
over rational numbers. Program. Comput. So�w. 31 (March 2005), 73–80.

[85] Giovini, A., Mora, T., Niesi, G., Robbiano, L., and Traverso, C. “One sugar
cube, please” or selection strategies in the Buchberger algorithm. In ISSAC’91 (1991),
pp. 49–54.

[86] Giusti, M. ANote on the Complexity of Constructing Standard Bases. In European
Conference on Computer Algebra (2) (1985), pp. 411–412.

[87] Giusti, M. Complexity of standard bases in projective dimension zero. In EURO-
CAL (1987), pp. 333–335.

[88] Giusti, M. Complexity of Standard Bases in Projective Dimension Zero II. In
AAECC (1990), pp. 322–328.

[89] Golubitsky, O. D. Converging term order sequences and the dynamic Buchberger
algorithm.

[90] Gordan, P. Neuer Beweis des Hilbertschen Satzes über homogene Funktionen.
Nachrichten König. Ges. der Wiss. zu G¨tt. (1899), 240–242.

[91] Gräbe, H.-G. On lucky primes. Journal of SymbolicComputation 15 (1994), 199–209.

[92] Gräbe, H.-G. �e Tangent Cone Algorithm and Homogenization. Journal of Pure
and Applied Algebra 97 (1994), 303–312.

[93] Gräbe, H.-G. �e SymbolicData Project – Tools and Data for Testing Computer Al-
gebra So�ware, 2011. http://www.symbolicdata.org .

[94] Grassmann, H., Greuel, G.-M., Martin, W., Neumann, W., Pfister, G., Pohl,
W., Schönemann, H., and Siebert, T. Standard Bases, Syzygies and their imple-
mentation in Singular. Beiträge zur angewandten Analysis und Informatik, Aachen
(1994), 69–96.

[95] Grauert, H. Über die Deformation isolierter Singularitäten analytischer Mengen.
Inventiones Mathematicae 15, 3 (1972), 171–198.

[96] Greuel, G.-M., and Pfister, G. Advances and Improvements in the �eory of
Standard Bases and Syzygies. Archiv der Mathematik 66 (1996), 163–176.

[97] Greuel, G.-M., andPfister, G. A Singular Introduction to Commutative Algebra,
2nd ed. Springer Verlag, 2007.

[98] Gröbner, W. Über die algebraischen Eigenscha�en der Integrale von linearen Dif-
ferentialgleichungen mit konstanten Koe�zienten. Mohatsh. der Mathematik, 47
(1939), 247–284.

306 Bibliography

[99] Harris, J. Algebraic Geometry – A �rst course, 3rd ed. Graduate Texts in Mathema-
tics, Springer Verlag, 2010.

[100] Hartshorne, R. Algebraic Geometry, 8th ed. Graduate Texts in Mathematics,
Springer Verlag, 1997.

[101] Hironaka, H. Resolution of Singularities of an Algebraic Variety over a Field of
Characteristic Zero: I. Annals of Mathematics 79, 1 (1964), 109–203.

[102] Hironaka, H. Resolution of Singularities of an Algebraic Variety over a Field of
Characteristic Zero: II. Annals of Mathematics 79, 2 (1964), 205–326.

[103] Idrees, N., Pfister, G., and Steidel, S. Parallelization of Modular Algorithms.
Journal of Symbolic Computation 46 (2011), 672–684.

[104] Janet, M. Sur les systèmes d’equations aux Dérivées Partielles. Gauthier-Villars,
Paris (1920).

[105] Jensen, A. N. Gfan, a so�ware system for Gröbner fans and tropical varieties. Avail-
able at http://www.math.tu-berlin.de/ jensen/so�ware/gfan/gfan.html.

[106] Joux, A., and Vitse, V. A Variant of the F4 Algorithm. In Topics in Cryptology –
CT-RSA 2011, Kiayias, Aggelos, Ed., vol. 6558 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2011, pp. 356–375.

[107] Kalkbrener, M. On the complexity of Gröbner Bases Conversion. Journal of Sym-
bolic Computation 28 (1999), 265–273.

[108] Kobayashi, H., Moritsugu, S., and Hogan, R. W. Solving Systems of Algebraic
Equations. In Proceedings of the International Symposium ISSAC’88 on Symbolic and
Algebraic Computation (London, UK, 1989), ISAAC ’88, Springer-Verlag, pp. 139–
149.

[109] Kollreider, C., and Buchberger, B. An improved algorithmic construction of
Gröbner-bases for polynomial ideals. SIGSAM Bull. 12 (May 1978), 27–36.

[110] Kornerup, P., and Gregory, R. T. Mapping integers and hensel codes onto Farey
fractions. BIT Numerical Mathematics 23 (1983), 9–20. 10.1007/BF01937322.

[111] Kreuzer, M., and Robbiano, L. Computational Commutative Algebra 2, 1st ed.
Springer Verlag, 2005.

[112] Kreuzer, M., and Robbiano, L. Computational Commutative Algebra 1, 2nd ed.
Springer Verlag, 2009.

[113] Kühnle, K., andMayr, E. W. Exponential space computation of Gröbner bases. In
Proceedings of the International Symposium on Symbolic and Algebraic Computation,
ISSAC 96, Zürich, July 24-26 (1996), pp. 63–71.

Bibliography 307

[114] Lazard, D. Gröbner bases, Gaussian elimination and resolution of systems of al-
gebraic equations. In EUROCAL’83, European Computer Algebra Conference (1983),
J. A. van Hulzen, Ed., vol. 162 of Springer LNCS, pp. 146–156.

[115] Lazard, D. Algèbre linéaire surK[x1 , . . . , xn] et élimination. Bull. Soc.Math. France
105 (1977), 165–190.

[116] Lazard, D. Systems of algebraic equations. In EUROSAM (1979), pp. 88–94.

[117] Lazard, D. Resolution des Systemes d’Equations Algebriques. �eor. Comput. Sci.
15 (1981), 77–110.

[118] Lazard, D. Solving zero-dimensional algebraic systems. Journal of Symbolic Com-
putation 13, 2 (1992), 117–131.

[119] Macaulay, F. S. On some Formulæ in Elimination. Proceedings of the London
Mathematical Society 33, 1 (1902), 3–27.

[120] Macaulay, F. S. �e algebraic theory of modular systems. Cambridge University
Press, 1916.

[121] Macaulay, F. S. SomeProperties of Enumeration in the�eory ofModular Systems.
Proceedings of the London Mathematical Society, 26 (1939), 531–555.

[122] Mandache, A. M. �e Gröbner basis algorithm and subresultant theory. In IS-
SAC’94 Proceedings (1994), pp. 123–128.

[123] Marc Giusti. Some E�ectivity Problems in Polynomial Ideal �eory. In EU-
ROSAM (1984), no. Computation, pp. 159–171.

[124] Mayr, E. W. Some complexity results for polynomial ideals. Journal of Complexity
13, 3 (1997), 303–325.

[125] Möller, H. M., andMora, T. Upper and lower bounds for the degree of Gröbner
bases. In EUROSAM 84, Cambridge, July 9–11, 1984 (1984), pp. 172–183.

[126] Möller, H. M., Mora, T., and Traverso, C. Gröbner bases computation using
syzygies. In ISSAC 92: Papers from the International Symposium on Symbolic and
Algebraic Computation (1992), pp. 320–328.

[127] Monagan,M., Geddes, K.O., Heal, K.M., Pearce, R., Labahn, G., Vorkoetter,
S. M., McCarron, J., and DeMarco, P. Maple 15 Programming Guide. Mapleso�,
Waterloo ON, Canada, 2011.

[128] Monagan, M., and Pearce, R. Parallel Sparse Polynomial Multiplication Using
Heaps. In ISSAC 2009 (2009), pp. 295–315.

[129] Monagan, M., and Pearce, R. Parallel Sparse Polynomial Division Using Heaps.
In PASCO 2010 in Grenoble, France (2010), pp. 105–111.

308 Bibliography

[130] Mora, T. An Algorithm to Compute the Equations of Tangent Cones. EUROCAM
82, Lecture Notes in Comp. Sci.

[131] Mora, T. Solving Polynomial Equation Systems II:Macaulay’sParadigm and Gröbner
Technology: Macaulay’s Paradigm and Gröbner Technology: v. 2 (Encyclopedia of Ma-
thematics and its Applications). Cambridge University Press, 2005.

[132] Mora, T. �e FGLM Problem and Möller’s Algorithm on Zero-dimensional Ideals.
in Gröbner Bases, Coding, and Cryptography, Springer, 1 (2009), 27–45.

[133] Mora, T., and Robbiano, L. �e Gröbner fan of an ideal. Journal of Symbolic
Computation, 6 (1988), 183–208.

[134] Noro, M. An E�cient Implementation for Computing Gröbner Bases over Al-
gebraic Number Fields. In Mathematical So�ware – ICMS 2006, Iglesias, A. and
Takayama, N., Eds., vol. 4151 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2006, pp. 99–109.

[135] Noro, M. Modular Algorithms for Computing a Generating Set of the Syzygy
Module. In Computer Algebra in Scienti�c Computing, Gerdt, V., Mayr, E., and
Vorozhtsov, E., Eds., vol. 5743 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2009, pp. 259–268.

[136] Pan, V. Y., andWang, X. On Rational Number Reconstruction andApproximation.
SIAM J. Comput. 33 (February 2004), 502–503.

[137] Pauer, F. On lucky ideals for Gröbner basis computations. Journal of Symbolic
Computation 14, 5 (1992), 471 – 482.

[138] Pfister, G. On Modular Computation of Standard Basis. Analele Stiinti�ce al Uni-
verstitatii Ovidius, Mathematical Series XV, 1 (2007), 129 – 137.

[139] Pommaret, J. F. Systems of Parital Di�erential Equations and Lie Pseudogroups.
Gordon & Breach, New York (1978).

[140] Rau, J. Tropical intersection theory and gravitational descendants: Intersections of
tropical cycles and applications to enumerative geometry. Südwestdeutscher Verlag
für Hoschulschri�en, 2010.

[141] Sala, M., Mora, T., Perret, L., Sakata, S., and Traverso, C., Eds. Gröbner Bases,
Coding, and Cryptography. Springer Verlag, 2009.

[142] Sasaki, T., and Takeshima, T. Modular Method for Grobner-basis Construction
over Q and Solving System of Algebraic Equations. Journal of information processing
12, 4 (1989), 371–379.

[143] Schwartz, N. Stability of Gröbner bases. Journal of Pure and Applied Algebra, 53
(1988), 171–186.

Bibliography 309

[144] Stegers, T. Faugère’s F5 Algorithm revisited. Master’s thesis, Technische Univerität
Darmstadt, revised version 2007.

[145] Sturmfels, B. Gröbner Bases and Convex Polytopes. University Lecture Series, No.
8, 1996.

[146] Sturmfels, B. Solving Systems of Polynomial Equations, 2002.

[147] Sturmfels, B. Combinatorial Commutative Algebra. Graduate Texts in Mathema-
tics, Springer Verlag, 2004.

[148] Sun, Y., and Wang, D. A New Proof of the F5 Algorithm. CoRR abs/1004.0084
(2010).

[149] Sun, Y., and Wang, D. A generalized criterion for signature related Gröbner ba-
sis algorithms. In ISSAC 2011: Proceedings of the 2011 international symposium on
Symbolic and algebraic computation (2011), pp. 337–344.

[150] Sylvester, J. J. CollectedMathematical Papers of James Joseph Sylvester. Cambridge
University Press, Cambridge, England, 1912.

[151] Thomas, J. Di�erential Systems. American Mathematical Society, New York (1937).

[152] Tran, Q.-N. A fast algorithm for Gröbner basis conversion and its applications.
Journal of Symbolic Computation 30, 4 (2000), 451–467.

[153] Traverso, C. Gröbner Trace Algorithms. In ISSAC’88 (1988).

[154] Traverso, C. Hilbert Functions and the Buchberger Algorithm. Journal of Symbolic
Computation 22, 4 (1996), 355–376.

[155] Wall, B. On the computation of syzygies. ACM SIGSAM Bulletin 23 (1989), 5–14.

[156] Wang, P. S. Parallel polynomial operations on SMPs: an overview. Journal of Sym-
bolic Computation 21 (1996), 397–410.

[157] Wang, P. S., Guy, M. J. T., and Davenport, J. H. P-adic reconstruction of rational
numbers. ACM SIGSAM Bulletin 16 (May 1982), 2–3.

[158] Wang, X., and Pan, V. Y. Acceleration of Euclidean algorithm and rational number
reconstruction. SIAM Journal on Computing 32 (2003), 548–556.

[159] Wichmann, T. Der FGLM-Algorithmus: verallgemeinert und implementiert in
Singular. Diploma thesis at the university of Kaiserslautern (1997).

[160] Winkler, F. A p-adic approach to the computation ofGröbner bases. Journal of
Symbolic Computation 6 (December 1988), 287–304.

[161] Yanovich, D. A. Parallelization of an Algorithm for Computation of Involutive
Janet Bases. Program. Comput. So�w. 28 (March 2002), 66–69.

310 Bibliography

[162] Zharkov, A. Y. Solving zero-dimensional involutive systems. Birkhauser Verlag,
Basel, Switzerland, Switzerland, 1996, pp. 389–399.

[163] Zobnin, A. I. Generalization of the F5 algorithm for calculating Gröbner bases
for polynomial ideals. Programming and Computer So�ware 36 (2010), 75–82.
10.1134/S0361768810020040.

311

Index

addF5Crit, 187

AP, 162

basis of a module, 4

bijective

ring homomorphism, 8

Buchberger’s 1st Criterion, 50

extended version, 50

Buchberger’s 2nd Criterion, 51

Buchberger’s Algorithm, 37

canonical basis of a module, 4

Chain Criterion, 51

characteristic, 10

of a �eld, 10

of a ring, 10

coe�cient, 19

coe�cient growth, 88

coe�cient of a polynomial, 11

complete intersection, 73

complete labeled polynomial, 261

complete sig–safe reduction, 132

complex, 112

exact sequence, 112

of modules, 112

complexity classes, 41

complexity of an algorithm, 41

complexity of standard basis computations,
41

constant, 11

convex polyhedral cone, 79

dimension, 79

dual, 79

face, 79

312 Index

facet, 79
critical pair, 37
normal, 163

of labeled polynomials, 133
sig–equivalent, 133
useless, 45

curr–index labeled polynomial, 249
polynomial part of the label, 249

cyclic module, 4

degree
of a module monomial, 19
of a monomial, 11
of a polynomial, 12

of a signature, 130
weighted, 71

degree of a variable, 11
dehomogenization of a polynomial, 23
Dickson’s Lemma, 14
divisibility

of monomials, 14
involutive monomial, 98, 99
of module monomials, 21

dual of a convex polyhedral cone, 79
dual pairing, 79

dynamic Gröbner basis algorithm, 77

ecart
module element, 21
polynomial, 17

weighted, 71
Euclidean algorithm, 26
exact sequence, 112
extended Product Criterion, 50
extended version of Buchberger’s 1st Cri-

terion, 50

F4 Algorithm, 56, 57
Gaussian elimination, 56

improved version, 64
reduction process, 60, 67
simplifying reduction, 68
symbolic preprocessing, 57, 59

F5 Algorithm, 103, 115, 184, 185

computing syzygies, 262

normalized critical pair, 186
normalized element, 186
rule, 192
rules, 192

F5 Criterion, 186
F5+ Algorithm, 228
F5–critical pair, 225
F5B Algorithm, 223
F5C Algorithm, 207
F5t Algorithm, 223
face of a convex polyhedral cone, 79
facet, 79

facet, 79
fan, 79
Farey fractions, 89
Farey rational map, 89, 91
Fgb, 62
FGLM Algorithm, 85, 87, 100
�nitely generated module, 4
free module, 4
free resolution, 104
of �nite length, 112

free resolution of a module, 112

G2V, 168
super top–reduction, 169

Gauss basis, 104
Gauss generating set, 104
Gaussian elimination, 26, 55, 56
Gebauer–Möller implementation, 53
Gfan, 85
global monomial order, 15
Gröbner basis, 26, see also standard basis
change of order, 77, 83, 85
dynamic algorithm, 77
FGLM Algorithm, 85, 87
Gröber fan, 82
Gröbner cone, 82
Gröbner walk, 83
staggered linear basis, 105

Gröbner cone, 82
Gröbner fan, 77, 82
convex polyhedral cone, 79
fan, 79

Gröbner trac algorithm

Index 313

Gröbner trace reconstruction algorithm,
95

modular, 97
Gröbner trace, 94
Gröbner trace algorithm, 94
Gröbner trace, 94
Gröbner trace reconstruction algorithm,

95
modular, 97

Gröbner trace reconstruction algorithm,
95, 95

Gröbner walk, 83
Gröbner cone, 82
Gröbner fan, 82

graded lexicographical monomial order,
15

graded module, 22
homogeneous element, 22
inhomogeneous element, 22

graded reverse lexicographicalmonomial
order, 15

graded ring, 22
homogeneous element, 22
inhomogeneous element, 22

greatest common divisor, 35

height of a prime ideal, 73
height of an ideal, 73
Hilbert function, 24
Hilbert polynomial, 25, 25
Hilbert–driven standard basis computa-

tion, 72, 74
Hilbert–lucky prime number, 90
Hilbert–Poincaré series, 25
Hilbert–driven standard basis compu-

tation, 72
Hilbert–Samuel function, 26
homogeneous
standard basis, 49

homogeneous element, 22
homogeneous ideal, 22
homogeneous module, 22
homogeneous polynomial, 23
homogenization of a polynomial, 23
homomorphism

module homomorphism, 7
ring homomorphism, 7

ideal, 3
height of, 73
initial, 81
leading ideal, 27
maximal ideal, 4
primary ideal, 4
prime ideal, 4
principal, 4
quotient, 4
radical of an ideal, 4
saturation, 4
vanishing set, 73
variety, 73
zero–dimensional, 86

ideal quotient, 4
image
of a module homomorphism, 8
of a ring homomorphism, 8

improved F4 Algorithm, 64, 65
symbolic preprocessing, 66

improved version of the F4 Algorithm
simplifying reduction, 68

IncF5, 191
IncF5+, 230
IncF5B+, 235
IncF5C, 210
IncF5E, 215
IncF5Syz, 265
incremental standard basis computation,

137
IncSig, 138
IncSigCrit, 154
IncSigG2V, 172
index
of a labeled polynomial, 130

index of a module element, 19
induced homogenized order, 23
inhomogeneous element, 22
initial ideal, 81
initial monomial, 81
injective
module homomorphism, 8

314 Index

ring homomorphism, 8
interreduced standard basis, 28
involutive autoreduced set, 99
involutive basis, 99
autoreduced set, 99
involutive set, 99
monomial divison, 98, 99
normal form, 99

involutive monomial division, 98, 99
involutive normal form, 99
involutive set, 99
isomorphism, 8

kernel
of a module homomorphism, 8
of a ring homomorphism, 8

label
of a labeled polynomial, 128

labeled polynomial, 128
coe�cient of the signature, 130
complete, 261
critical pair

normal, 163
critical pair sig–equivalent, 133
curr–index, 249

polynomial part of the label, 249
degree, 130
degree of signature, 130

index of, 130
label, 128
leading coe�cient, 130
leading monomial, 130
leading monomial of the label, 130
leading term, 130
least common multiple, 130
monomial part of the signature, 130
non–minimal signature criterion, 151
polynomial part, 128
redundant, 221
rewritable signature criterion, 151
sig–redundant, 136
signature of, 128
slim, 143

standard representation, 131

term of the signature, 130
labels of a polynomial, 127
leading coe�cient
module element, 21
polynomial, 17

leading ideal, 27
boundary of, 85
edges of, 85
monomials not reducible by, 85
sides of, 85

leading monomial, 17
module element, 21

leading submodule, 27
leading term
module element, 21
polynomial, 17

least common multiple, 35
lexicographical monomial order, 15
line segment between two vectors, 81
local monomial order, 15
local ring, 12
Hilbert–Samuel function, 26

localization of polynomial ring, 17
localization of the polynomial ring, 13
lucky prime number, 90

Macaulay matrix, 56
Magma, 62
Maple, 62, 260
maximal ideal, 4
mixed monomial order, 15
modular Gröbner trace algorithm, 97, 97
modular standard basis computation, 89,

92
Farey fractions, 89
Farey rational map, 89, 91
Gröbner trace algorithm, 94
Hilbert–lucky prime number, 90
lucky prime number, 90
parallelization, 92

module, 3
basis, 4
canonical basis, 4
cyclic, 4
�nitely generated module, 4

Index 315

free module, 4
generators of an module, 4
graded, 22
greatest common divisor, 35
Hilbert function, 24
Hilbert polynomial, 25
Hilbert–Poincaré series, 25
homomorphism, 7
leading submodule, 27
monomial order, 19
monommial, 19
Noetherian, 6
quotient module, 5
rank of a module, 4
regular sequence, 74
residue class, 5
scalar multiplication, 3
submodule, 3
term, 19

module element
divisibility, 21
ecart, 21
leading coe�cient, 21
leading monomial, 21
leading term, 21
least common multiple, 35
monic, 21
monomial support, 19
s–vector, 26, 35, 36
support, 19
tail, 21

module homomorphism, 7
image, 8
injective, 8
kernel, 8
preimage, 8

module monomial order, 19
monic
module element, 21
polynomial, 17

monoid module, seemonomodule
monomial
degree, 11
degree of a variable, 11
divisibility, 14

in amodule over a polynomial ring, 19
in a polynomial ring, 11

monomial order, 14
Dickson’s Lemma, 14
global, 15
graded lexicographical, 15
graded reverse lexicographical, 15
induced homogenized, 23
lexicographical, 15
local, 15
mixed, 15
negative graded lexicographical, 15
negative graded reverse lexicographi-

cal, 15
negative lexicographical, 15
product, 16
re�nement, 82
weight, 16

monomial support
of a module element, 19

monomodule, 3
Noetherian, 6

multiplicatively closed set, 17

natural order, 14
negative graded lexicographicalmonomial

order, 15
negative graded reverse lexicographical

monomial order, 15
negative lexicographicalmonomial order,

15
Noetherian
module, 6
monomodule, 6
Noetherian ring, 6

non–minimal signature criterion, 151
NonMin?, 155
NonMinAP?, 164
NonMinF5?, 187
NonMinG2V?, 170
normal critical pair, 163
normal form, 26
global, 31
local, 33
reduced, 30, 31

316 Index

standard representation, 30
weak, 29

normalized critical pair, 186
normalized element, 186

order
global, 15
local, 15
mixed, 15
module monomial, 19
monomial, 14
natural, 14
partial, 14
re�nement of a weight vector order, 82
strict partial, 13
strict total, 13

total, 14
well–order, 14

ordered list, 27

pair set, 37
critical pair, 37

parallel modular standard basis compu-
tation, 92

partial order, 14
PolyBoRi , 66
polynomial, 10, 12
coe�cient of a, 11
constant, 11
degree of, 12

dehomogenization of, 23
ecart, 17
greatest common divisor, 35
homogeneous, 23
homogenization of, 23
initial monomial, 81
labels, 127
leading coe�cient, 17
leading monomial, 17
leading term, 17
least common multiple, 35
monic, 17
monomial support, 12
s–polynomial, 36

support, 12

tail, 17
total degree of, 12
w–homogeneous, 81
weighted degree, 71

polynomial ring, 11
localization, 13, 17
monomial, 11
polynomial, 12

term, 11
preimage
of a module homomorphism, 8
of a ring homomorphism, 8

primary ideal, 4
prime ideal, 4
height of, 73

principal ideal, 4
principal ideal ring, 4
principal syzygy, 112
Product Criterion, 50
extended version, 50

product monomial order, 16

quotient map, 9
quotient module, 5
quotient ring, 5

radical of an ideal, 4
rank of a module, 4
reduced standard basis, 28

reduction, 28, 34
top–reduction, 34

redundant labeled polynomial, 221
re�nement of a weight vector order, 82
regular sequence, 74
Replace? in SlimGB, 70
Coe�cient–elimination strategy, 70
Coe�cient–length strategy, 69
Elimination strategy, 69
Length strategy, 69
Property, 69

residue class, 5
rewritable signature criterion, 151
Rewrite?, 156
RewriteAP?, 165

RewriteG2V?, 171

Index 317

RewriteMM?, 167
Rewritten Criterion, 192
ring, 2
graded, 22
homomorphism, 7
local, 12
Noetherian, 6
principal ideal domain, 4
principal ideal ring, 4
quotient ring, 5
subring, 2

ring homomorphism, 7
bijective, 8
image, 8
injective, 8
isomorphism, 8
kernel, 8
preimage, 8
quotient map, 9
surjective, 8

s–polynomial
least common multiple, 35

s–vector, 26, 35, 36
least common multiple, 35
of labeled polynomials, 132

saturation of an ideal, 4
SB–critical pair, 225
scalar multiplication, 3
selection strategy
normal, 47
sugar, 48

semi–complete sig–safe reduction, 132
sequence, 27
set of generators, 4
sig–equivalent critical pair, 133
sig–redundant labeled polynomial, 136
sig–safe reduction, 132
complete, 132
semi–complete, 132

sig–standard basis, 163
sig–unsafe reduction, 132
signature
of a labeled polynomial, 128
coe�cient, 130

degree, 130
generalized, 253
labeled polynomial, 128
leading monomial, 130
monomial part, 130
non–minimal, 151

NonMin?, 155
NonMinAP?, 164
NonMinF5?, 187

of a module element, 127
of a polynomial, 128
of length j, 253
rewritable, 151

Rewrite?, 156
RewriteAP?, 165
RewriteMM?, 167

set of all signatures of a polynomial,
128

sig–safe reduction, 132
sig–unsafe reduction, 132
term, 130

SigRed, 139
SigRedF5, 189
SigRedF5+, 231
SigRedF5Syz, 266
SigRedG2V, 169
SigStd, 136
SigStdQ, 250
SigStdRed, 159
simplifying reduction, 68
Singular , 55, 66, 92
slim labeled polynomial, 143
SlimGB, 69
Replace?, 70
SlimNF, 67, 70

SlimNF, 67, 70
staggered linear basis, 104, 105, 110
staggered linear basis algorithm, 108
initial version, 108
normal form, 111
revised version, 110

standard basis
sig–, 163

standard basis, 1, 26, 27
normal form, 29

318 Index

Buchberger’s 1st Criterion, 50
Buchberger’s 2nd Criterion, 51
Buchberger’s Algorithm, 37
Chain Criterion, 51
coe�cient growth, 88
complexity, 41
critical pair, 37
dynamic algorithm, 77
extended Product Criterion, 50
extended version of Buchberger’s 1st Cri-

terion, 50
F4 Algorithm, 56
F5 Algorithm, 184
FGLM Algorithm, 85, 87, 100
Gebauer–Möller implementation, 53
Gröbner basis, 27
Gröbner fan, 77
Gröbner trace algorithm, 94
Gröbner walk, 83
Hilbert–driven, 72, 74
homogeneous, 49
improved F4 Algorithm, 64
incremental computation, 137
interreduced, 28
leading ideal, 27
leading submodule, 27
modular computation, 89, 92
non–minimal signature criterion, 151
normal form, 26
normal selection strategy, 47
of degree d, 49
pair set, 37
parallelized computations, 92
Product Criterion, 50
product criterion, 50
reduced, 28
reduced normal form, 30
reduction, 34
regular sequence, 74
rewritable signature criterion, 151
s–polynomial, 36
s–vector, 26, 36
SigStd, 136
SigStdQ, 250
SigStdRed, 159

SlimGB, 66
SlimNF, 67, 70
standard representation, 30, 36
sugar selection strategy, 48
SyzNF, 119
SyzStd, 118
syzygy–based computation, 118
top–reduction, 34
useless critical pair, 45

standard grading, 23
standard representation, 30
of a labeled polynomial, 131
s–vector, 36

strict partial order, 13
strict total order, 13
submodule, 3
subring, 2
sugar degree, 48
super top–reduction, 169
support
monomial support of a polynomial, 12
of a module element, 19
of a polynomial, 12

surjective
ring homomorphism, 8

Sylvester matrix, 56
symbolic preprocessing, 57, 59, 66
Syz1, 114
Syz2, 116
SyzNF, 119
SyzStd, 118
syzygy, 103, 112
matrix, 117
principal, 112

syzygy algorithms, 114, 116
Syz1, 114
Syz2, 116

syzygy matrix, 117
syzygy module, 112

tail
module element, 21
polynomial, 17

term
in a module, 19

Index 319

in a polynomial ring, 11
top–reduction, 34
toric geometry, 81
total degree of a polynomial, 12
total order, 14

useless critical pair, 45

vanishing set
complete intersection, 73

vanishing set of an ideal, 73
variety
complete intersection, 73

variety of an ideal, 73
vector space, 3

w–homogeneous polynomial, 81
weight
ecart, 71

weight order, 16
weighted degree of a polynomial, 71
weighted ecart, 71
well–order, 14

WissenschaftlicherWerdegang

2002 Abitur am Carl-Bosch-Gymnasium, Ludwigshafen

seit 04/2002 Studium der Mathematik an der TU Kaiserslautern

12/2005 Diplom in Mathematik, TU Kaiserslautern

seit 04/2008 Doktorand bei Prof. Dr. Gerhard P�ster,
TU Kaiserslautern

CurriculumVitae

2002 Abitur at the Carl-Bosch-Gymnasium, Ludwigshafen

since 04/2002 Study of mathematics at the University of Kaiserslautern,
Germany

12/2005 Diplom in Mathematics, University of Kaiserslautern

since 04/2008 Ph.D. studies with Prof. Dr. Gerhard P�ster,
University of Kaiserslautern

	Preface
	An introduction to standard bases
	Rings, ideals, and modules
	Polynomial rings
	Monomial orders on polynomial rings
	Monomial orders on free P–modules
	Gradings
	Hilbert–Poincaré series and dimensions
	Normal forms and standard bases
	The basic standard basis algorithm
	On the complexity of standard basis computations

	Ways to improve standard basis computations
	The problem of zero reductions
	Selection strategies for critical pairs
	Buchberger's criteria
	The Gebauer–Möller implementation
	Normal form computations and their relation to Gaussian elimination
	Picking a good reducer
	Using the Hilbert–Poincaré series
	Going the indirect way
	Modular standard basis computations
	Involutive bases
	Concluding remarks

	Syzygy modules and standard bases
	Staggered linear bases
	Syzygies and free resolutions
	Computing standard bases using syzygies

	An introduction to signature–based standard basis algorithms
	Basic ideas behind signatures and labeled polynomials
	A generic signature–based standard basis algorithm
	Some remarks on sig–safeness

	Signature–based criteria to detect useless critical pairs
	Generic criteria based on signatures
	Reducing computational overhead in `39`42`"613A``45`47`"603ASigStd
	An explicit choice in (RW)
	A variant of `39`42`"613A``45`47`"603AAP using sparser polynomials
	`39`42`"613A``45`47`"603AG2V – Complete reduction, weakened (RW)
	Experimental results

	Faugère's `39`42`"613A``45`47`"603AF5 Algorithm
	Faugère's initial presentation of `39`42`"613A``45`47`"603AF5
	`39`42`"613A``45`47`"603AF5C – `39`42`"613A``45`47`"603AF5 using reduced bases
	Classifying `39`42`"613A``45`47`"603AF5 in the signature–based world
	Experimental results
	Termination–ensured variants of `39`42`"613A``45`47`"603AF5

	Generalizing signature–based algorithms
	Signature–based algorithms and inhomogeneous input
	Computing the ideal quotient
	Generalizing signatures
	Non–incremental signature–based standard basis algorithms
	Parallelization of signature–based algorithms
	Computing syzygies with generalized signature–based algorithms

	Examples
	Index

