Vom Fachbereich Mathematik der Technischen Universitit Kaiserslautern zur Verleihung
des akademischen Grades Doktor der Naturwissenschaften (Doctor rerum naturalium,
Dr. rer. nat.) genehmigte Dissertation

Signature—based algorithms to
compute standard bases

Christian Eder

1. Gutachter: Prof. Dr. Gerhard Pfister
2. Gutachter: Prof. Dr. Vladimir P. Gerdt
Vollzug der Promotion: 13. April 2012

D 386

PREFACE

STANDARD BASES

The idea of standard bases has its origin in [90] by Gordan. Afterwards, Macaulay
([21]) and Grébner ([98]) used monomial orders to study Hilbert functions of graded
ideals. Moreover, they found [C-bases of zero—dimensional quotiend rings with this ap-
proach.

In 1965 Bruno Buchberger introduced the notion of a Grébner basis in his PhD thesis
([34]). The terminology acknowledges the influence of Buchberger’s advisor on his work,
Wolfgang Grobner. The term standard basis denotes a more general approach of Grébner
bases, which can be used not only over ground fields, but also over ground rings. Inde-
pendently, Buchberger, Grauert, and Hironaka introduced the notion of a standard basis
(Bz 3 IOnIO2]).

There exist very few concepts in the field of computational algebraic geometry and com-
mutative algebra with such an impact on the development of new concepts as standard
bases. Standard bases have various applications, for example, solving systems of polyno-

ii

mial equations, elimination, ideal membership, and ideal intersection problems. They are
one of the most important tools in computer algebra, computational algebraic geometry,
and computational commutative algebra.

Their computations can be understood as multivariate, non-linear generalizations of
the Euclidean Algorithm for computing the univariate greatest common divisors, of the
Gaussian Elimination of systems of linear equations, and of integer programming prob-
lems.

Whereas the general idea of how to compute a standard basis, based on Buchberger’s
Criterion, is quite straightforward and a practical implementation can be easily done, such
an ad-hoc algorithm is not efficient at all due to several problems concerning mostly useless
computations and overhead inrtroduced by them. Over the last, nearly so years lots of
improvements in terms of the computation of standard bases have been made. Not only
criteria to detect useless data during the algorithm’s working have been found, but also
selection strategies for better reducers, modular methods to keep coefficients small even
when computing in polynomials rings over the rationals, and quite a lot of other machinery
have been developed. Due to these ideas, more efficient algorithms are possible, which can
compute way harder examples previously intractable. Solving these, again, leads to new
insight in other fields of algebraic geometry and commutative algebra, giving impulses for
new approaches there.

SIGNATURE-BASED APPROACH

A special kind of those recent, algorithmic improvements in the area of standard bases
are the ones based on signatures. Those algorithms are in the focus of this thesis. In 2002,
Faugere published a new standard basis algorithm, called F5. This algorithm uses a com-
pletely new concept to detect useless data during the computations, called signatures. Also
it lays some restrictions on the input data, it is known as one of the most efficient stan-
dard basis algorithms nowadays due to its powerful criteria. The algorithm is known to
compute very few zero reductions. In the rather common situation of the underlying po-
lynomial system defining a complete intersection, it even does not reduce any polynomial
to zero. In general, reduction to zero is the primary bottleneck in the computation of a
standard basis, since it does not deliver any new information for the algorithm, but takes
lots of polynomial operations. It is thus no surprise that F5 has succeeded at computing
many standard bases that were previously intractable.

An open question surrounding the Fs algorithm regards correctness and termination.
Due to the aggressive criteria used in Fs, a proof for its correct computation cannot be
given as easily as for the classical algorithms using other criteria. Moreover, in a traditional
algorithm computing standard bases, the proof of termination follows from the algorithm’s
ability to exploit the Noetherian property of monomial ideals: each polynomial added to
the basis G expands the ideal generated by the leading terms of G. This is not true with

iii

Fs; the same criteria that detect reductions to zero also lead the algorithm to add to G
polynomials which do not expand the ideal of leading terms.

Lots of variants of F5 have been developed over the last couple of years, and a more
general view on signature-based algorithms are possible right now. Understanding those
algorithms lead to new insights in recent optimizations. The signature-based world is a
field of active research right now, with lots of new and promising results to come up in the
near future, hopefully leading to even better algorithms.

RESULTS OF THIS THESIS

This thesis is devoted to efficient computations of standard bases with an emphasis on
signature-based attempts. The structure of the presentation is the following:

)

(2)

(3)

(4)

In Chaptermwe give a short introduction to commutative algebra with a view to com-
putational aspects. In Section 7] we start the particular discussion about standard
bases. At the end of Chapter@mwe have covered the basic ideas behind the computa-
tional aspects and have already seen the most obvious problems with the standard
approach of the Buchberger Algorithm, STp.

Based on this first approach we give an in-depth overview of various optimizations
of the Buchberger Algorithm. These cover not only Buchberger’s criteria, but also
more sophisticated improvements like modular computations, usage of the Hilbert
polynomial, Grobner walks, or involutive methods. Thus Chapter 2 should be un-
derstood as a smorgasbord of ideas that where presented over the last 40 years to
receive more efficient algorithms computing standard bases.

Also attempts like using staggered linear bases or syzygies to improve standard ba-
sis computations fit to the content of Chapter] we present them in more detail in
Chapter g The reason we handle these different is based on the fact that those ideas
represent the origin of signature-based standard basis algorithms this thesis is ded-
icated to.

Beginning in Chapter @ we give a complete, generalized introduction to signature—-
based standard basis algorithms. This is done in such a general setting for the first
time. Besides introducing the basic notions and ideas, we present a rather generic
implementation of an standard basis algorithm using signatures called S1GSTD. As
this algorithm does not contain any criteria check or other optimization it can be un-
derstood as a mirroring of the first classical standard basis algorithm STD presented
in Section .8 It turns out that all optimized signature-based algorithms presented
in the rest of this thesis can be derived from this implementation by adding respec-
tive criteria checks and reduction processes.

iv

(5)

(6)

(7)

Whereas Chapter 5] discusses rather easy variants of SIGSTD, Chapter [is devoted
to Faugere’s F5 Algorithm. Although Faugere’s algorithm is the origin of all other
signature-based ones, the order of representation makes sense.

The algorithms presented in Chapter[can be understood in two ways:

a) On the one hand, they are optimizations of SIGSTD and their different ap-
proaches are presented in detail. Moreover, we give a vast comparison of their
performance devoting a whole section on experimental results.

b) On the other hand, all these algorithms are nothing else but, rather good, sim-
plifications of F5. From this point of view F5 can be interpreted as the most
aggressive one of all signature-based algorithms.

This in mind it is quite good to postpone the introduction to F5 and start with the
more comprehensible discussion of the other variants. Proving correctness and ter-
mination of the improved algorithms presented in Chapter[]can easily be done de-
riving the ideas of the corresponding proofs given for S1GSTD.

On the contrary, the corresponding proofs for Fs turn out to be a lot more tricky.
In Section [6.1] we give the first complete proof of F5’s correctness. Even more, we
give not only optimizations of Fs, but we also tackle the, still unsolved, problem of
showing F5’s termination. So besides improving the algorithm, a rather complex
theoretical background is part of Chapter[6]

Chapter [7] finishes this thesis, presenting various different topics, all of them fo-
cussing on the generalization and optimization of signature-based standard basis
algorithms. Partiallyi, complete new proofs are given never published before, some-
times approaches of active research are discussed and give the reader a deeper in-
sight in the topic. Most of these ideas need implementations and more theoretical
results, but they represent the worthwile field of signature-based algorithms, which
are promising to host lots of more improvements for standard basis computations in
the near future.

This thesis contains material from the author’s (partly published) articles [55-59]. In
particular, the thesis contains joint work with Justin Gash and John Perry. Most of the
results of these articles are generalized in this thesis, the respective publication is listed at
the beginning of the corresponding chapter respectively section it gives contributions to.

FINANCIAL SUPPORT

Financial support was provided by the Forschungszentrum Oberwolfach via a graduate
fellowship.

ACKNOWLEDGEMENTS

Danke.

CONTENTS

[Prefacd i
i Anntoducr o d e

L1 Rings.ideals.and modules ot

L2 Polynomial Fings . . .« v v v v 10

[L3 Monomial orders on polynomial ringdt 13

b1 The problem of zero reductiond« v v v oo 45

.2 Selection strategies for critical paird 46

viii Contents

103
104
111
118

125
126
135
143

149
150
157
162
166
168

173

183
184
203

211
216
217

7 G izi - 3 | aleorithms 239

igna ased a i and i i 240
247
252
74 Non-incremental Qignature—bas_cd_s_tan_d.a];d_basis_algg_rj.th_mﬂ 254

[zs__ Parallelization of signature-based algorithmd 258

lz6 _Computing syzygies with generalized signature-based algorithms 260
[A_Exampled 267

LisT OF FIGURES

LisT OF TABLES

[s.o Time needed to compute a standard basis, given in seconds! 177
[s.2 Number of zero reductions computed by the algorithmsl 178
Memo ed to compute a standard basis. given in Megabyte| 179

4 Number of all reduction steps during the comp onsl 180
Number o DA not d ed by the D 2 d 181

6 e of the ng standard DAsis!o oo oo 182

[6.s_ Number of all reduction steps during the computations] 220
[6.6 _Size of the resulting standard basis) 220

[6.z__Timings (in seconds) & degrees of F5, FsB.and FsB4 238

Xii

List of Tables

LisT OF ALGORITHMS

Xiv

List of Algorithms

;s SlimGB Algorithm computing a standard basis w.r.t. < (SLIMGBY. 69

16 Normal form wirt. G of SLIMGB (SLIMNE)ottt 70
iz Replacement check for SLIMGB (REPLACE2) oo oo e 70
18 Hilbert-driven variant of GM w.r.t. a global order < (HGM) 75

lo_ Dynamic variant of GM w.r.t. a ngbaLQMm 78
l20___Grobner walk to compute a reduced Gribner basis (GBWALK) 83

b1 Grébner basis conversion aleorithm (EGLMYo oo v oo oot . 87
b2 Modular standard basis computation (MODSTD) . . « « « v v v v v o vt 92

l23___Grobner trace reconstruction algorithm (GBTRACE) 95

s Initial staggered linear basis algorithm (STAGGB1) oo o ... 108
L6 Revised staggered linear basis algorithm (STaGGB2Y 110

i inear bases (STAGNF) m
8 Standard basis algorithm for the first module of syzygies (Syzi). 114

|29_S_];an_d_a];d_hasis_algorithm for the first module of Wzvgjf_s_(_szzj 116

ko Standard basis algorithm using syzygies to improve computations (SyzSTD) 118

i1 Normal form wrt. G of SyzSTD (SYZNF) oo oo oo 119

32 Generic signature-based standard basis computation w.r.t. < (SIGSTD) . . 136

L?.3_In_q;e_mgn1a]_sj,gn_anmr:basﬁd standard basis computation w.r.t. < (INCSIG) 138
l34___Semi-complete sig—safe reduction algorithm (SIGRED) 139
l3s___Slim semi-complete sig—safe reduction algorithm (SIGREDY 145

36 INcSiG including implementations of (NM) and (RW) (INCSIGCRIT) . . . 154
bz Generic implementation of (NM) (NONMIN?ZY . « « « o v v v v oo et 155
38 Generic implementation of (RW) (REWRITE2) . . « « v v v v v oo e v 156
bo__ S1GSTD with reduced standard bases (SIGSTDRED) 159
40 AP’s implementation of (NM) (NONMINAP?Y oo oo et 164
41 AP’simplementation of (RW) (REWRITEAP?) o . oo oot . 165
42 MM’s implementation of (RW) (REWRITEMMz)Y o oo oot .. 167

46 The Fs Algorithm(Fs) . « « o v v o e e e e e e e e 185
4z Fs’s implementation of (NM) (NONMINFs2) .« « o o o oo oo e e e 187

’ iteri i i i) 187
l40 Fs’s semi-complete sig—safe reduction algorithm (SIGREDF5) 189
lso Incremental F5step (INCES) . . o v oo v v oo e e e e 191
sL__Fs's rule adding algorithm (addRule] 193
ls2 Fs’s implementation of the Rewritten Criterion (REWRITEF52) 193

ls3___FsCs interreduction process (REDUCEFS) 206

List of Algorithms XV

l62___The F5Syz Aleorithm(FSSVZY « « v v v e e e 262

[63 Incremental Fs step computing syzveies(INCFSSYZ) 265

[64 FsSyz’s semi-complete sig-safe reduction algorithm (SIGREDFsSYZ) 266

1 AN INTRODUCTION TO STANDARD
BASES

This chapter introduces the basic notions of rings, ideals, and modules. After stating
and explaining essential properties and connections of these mathematical structures, we
focus our introduction on polynomial data. Section [Z gives a review of notations and
basics of polynomials.

After presenting the fundamental structures our area of research is based on in Sec-
tions[CI-[.6] we introduce the objects of main interest, namely standard bases. The notion
of standard bases as well as basic algorithms for their computations are given in Section[7
We finish this chapter with a short discussion on the complexity of standard basis compu-
tations motivating the wish to improve computations, which is content of Chapterz

For a more detailed introduction on commutative algebra we refer the reader to [12,60].
Good books covering those topics with a more detailed introduction to standard bases and
a stronger emphasis on computational aspects are, for example, [18}[50,[97,II1112].

Most of the proofs given in this chapter are either easy or can be found in any intro-
ductory book about commutative resp. computational algebra (for example in the ones

2 1 An introduction to standard bases

mentioned above). Thus, we skip most of the proofs, give some references where needed
and state them if they are short, beautiful, and give some deeper insight on the topics cov-
ered. None of the presented statements are genuine nor their proofs. We focus ourselves on
the topic of standard basis computations, thus some introductory aspects of commutative
resp. computer algebra are only shortly covered, whereas others are explained in detail.

Readers familiar with these topics may want to skim this chapter for notation and ter-
minology.

1.1 RINGS, IDEALS, AND MODULES

Let us start with the basic structures building the ground for concepts in computer
algebra.

Definition 1.1.1. A ring is a set R together with two binary operators

+:RxR—R,(a,b)—>a+b
:RxR—R,(a,b)—a-b=:ab

referred to as addition and multiplication, such that

(1) (R,+) is an abelian group with neutral element o € R. The inverse w.r.t. + of a € R
is denoted by —a.

(2) Multiplication is associative, i.e. (ab)c = a(bc) = abcforall a, b, c € R.
(3) The distributive laws a(b+c) = ab+acand (a+b)c = ac+bcholdforall a, b, c € R.

If, in addition, multiplication is commutative, i.e. ab = ba for all a, b € R, then (R, +,-) is
called a commutative ring. (R, +,-) is called a ring with (identity) 1g if 1z € R, 1g # 0, and
1ra=aforallaceR.

A subset S of aring R is called a subring of R if it is closed under the ring operations induced
from R (restricted to S).

Convention. In this thesis ring always means commutative ring with identity. Omitting the
notation of the two binary operators, we denote a ring just by R. Moreover, when the ring
corresponding to the identity is clear, we omit the subscript and denote it by 1.

Example 1.1.2.

(1) The integers Z, the rationals Q, the reals R, and the complex numbers C are rings
with their natural addition and multiplication. field as Z* + Z\{o}.

(2) Any field is an integral domain, e.g. the rationals, the reals, and the complex num-
bers.

1.1 Rings, ideals, and modules 3

A well-known algebraic structure is the vector space consisting of a field and a group,
connected together by an operation of the field on the group. This structure is generalized
in the following way:

Definition 1.1.3.

(1) Let R be a ring. An R-module M is a set M together with two binary operators
+:MxM - Mand-: Rx M — M (scalar multiplication) such that the following
hold forall a,b € R, m, m' € M:

a) (M, +) is an abelian group,

b) a-(b-m) = (ab)-m,

c) (a+b)-m=a-m+b-m,

d)a-(m+m)=a-m+a-m,

e) 1g - m = m.
An abelian subgroup N € M is called an R-submoduleif R- N ¢ N. In particular, an
R-submodule I of the R-module R is called an ideal of R.

(2) Let (S,+) be a monoid. An S-monomodule (or S-monoid module) N is a set N
together with two binary operators + : N x N - N and - : S x N - N such that the
following hold forall n € N, s,s" € S:

a) (s+s)-n=s-(s"n),

b) 15-n=n.
Remark 1.1.4. Note that the concept of a monomodule is used in Section @2]to prove termi-
nation of a generic signature-based standard basis algorithm. We do not use this definition

anywhere else, besides characterizing the property of being Noetherian (see Lemma[LT15),
in this thesis. The reader unfamiliar with this notion should not bother with it too much.

Example 1.1.5.

(1) Every abelian group is a Z-module: As 17-m = m the scalar multiplication is defined
byr-m:=(Q+-+1)m=m+-+m.
—_— ~—
r times r times

(2) If Ris aring, then R itself is an R-module with the ring operations. Also {o} is an
R-module resp. ideal of R.

(3) If R = K is a field, then R-modules are K-vector spaces. Moreover, {o} and I are
the only ideals in K.

(4) 2Zis the ideal of all even numbers in Z. On the other hand, 2Z+1 of all odd numbers
is not an ideal, for example, 2 € Z,3 € 2Z + 1,but2-3 =6 ¢ 2Z + 1.

(5) {f€C(R) | f(1) = o} isan ideal in C(R).

4 1 An introduction to standard bases

Definition 1.1.6. Let M be an R-module, N = {n,, ..., n;} be a non-empty subset of M,
and let I be an ideal in R.

(1) The set of all R-linear combinations of elements of N is a module over R. It is de-
noted (N) := (n,, ..., n,), the module generated by N . By convention, the module
generated by the empty set is 0 := (&).

(2) If M = (N), then N is called a system of generators of M.
(3) If #(N) < oo we call M finitely generated.

(4) If #(N) = 1 we call M cyclic. In the special case of M being an ideal, we speak of a
principal ideal. If every ideal in R is principal, then R is called a principal ideal ring.
If R is furthermore an integral domain than R is called a principal ideal domain.

(5) Niscalled an R-basis of M if each m € M has a unique representation m = Y;_, rin;.
If M has an R-basis, then M is called a free R-module.

(6) If M is a finitely generated free R—-module with R-basis N, then s is called the rank
of M, rank(M) = s.

(7) For t € N\{o} we set R := {(r1,...,7¢) | 11,...,7; € R}. Then R' is the free R-
module of all s—tuples w.r.t. component-wise addition and scalar multiplication.
Moreover, let e; = (0,...,0,1,0,...,0) € R" with the ith entry being 1 for all i €
{1,...,t},thentheset {e,,..., e} is an R-basis of R’, the so-called canonical basis.

(8) Foranyideal I c Rwe denote the radical of Iby /T := {a € R | 3d € N such that a“ ¢
I}.

(9) Iiscalled a prime ideal if for all a,b € I suchthat abe I = (aclorbel).

(10) Iis called a primary ideal if for all a, b € I such that ab € I and a ¢ I it holds that

be VI
(11) I R is called a maximal ideal if there exists no] ¢ R such that I ¢ J ¢ R.

(12) Let I,] c R be two ideals. Then we denote the ideal quotient of I by il by
I:]={reR|rJclI}.
Moreover, the saturation of I by] is given by
I:J%:={reR|3neNsuchthatr]" c I}.
Example 1.1.7.

(1) Theideal 2Z c 7Z is a free Z-module with rank 1.

(2) Thering R is a free R—-module of rank 1 with basis 1.

'Sometimes this is also denoted colon module resp. colon ideal.

1.1 Rings, ideals, and modules 5

(3) Theideal 67 is not a prime ideal in Z as 2 - 3 € 6Z whereas 2,3 ¢ 67Z.
(4) Z is a principal ideal domain.

In this thesis we are mainly interested in modules and their computations. For this we
have to consider some more basic properties and structures related to rings and ideals.

Lemma 1.1.8. Let M, and M, be modules over the ring R. Then the following hold:
(1) M, n M, is a module over R.

(2) We define the sum of M, and M, by
M, + M, :={m, +m, | m, e M,,m, € M,}.
M, + M, is a module over R, My ¢ M, + M, for k =1, 2.

We skip the straightforward proof and continue with an important definition we use
several times when improving standard basis algorithms and try to ensure their termina-
tion.

Definition 1.1.9. Let M be an R-module, N ¢ M a submodule, m € M. We define the
residue class of m modulo N by

m+N:={m+n|neN}.
The following property for residue classes modulo N is straightforward.

Lemma 1.1.10. Let M be an R-module, N ¢ M a submodule. For all a, b € M it holds that
a+N=b+N<=a-beN.

Definition 1.1.11. Let M be an R-module, N ¢ M a submodule. The set M/N := {m + N |
m € M} forms an R-module, the quotient module, together with the two binary opterators

(m+N)+(m'+N)=(m+m')+N
a-(m+N)=(am)+N
forallae R, m,m' € M.

In the special situation where we consider R as an R-module, I c R an ideal, the set
R/I forms a ring, the quotient ring.
There is a close connection between properties of the ideal I and those of the quotient ring
R/I:

Proposition 1.1.12. Let I be an ideal in the ring R.
(1) 1is prime < R/I is an integral domain.

(2) 1is maximal < R/1 is a field.

6 1 An introduction to standard bases

(3) Every maximal ideal is prime.
Proof.
(1) Leta,beR.abel< (ab)+I=(a+1I)-(b+1I)=o0c¢€R/I This proves (1).

(2) Iand R are the only ideals containing I <> R/I has only the ideals o and R/I. This
implies (2).

(3) A field is an integral domain, thus (3) follows from (1) and (2).

Example 1.1.13.

(1) For any prime number p, Z/pZ is a ring with the usual additon and multiplication.
Moreover, pZ is a maximal ideal in Z, thus ¥, := Z/pZ is a field. This also implies

that (2/pZ)" = (/pZ)\{o}.

(2) We have already seen in Example[[:1-7]that 67 is not a prime ideal. Thus Z/6Z is not
an integral domain:

(2+6Z)-(3+6Z) =6+6Z=0+6Z.

Definition 1.1.14. A (mono-)module M is called Noetherian if every submodule N ¢ M is
finitely generated. In particular, a ring R is called Noetherian if every ideal I in R is finitely
generated.

Clearly, any field K is Noetherian as the only ideals in C are (o) and (1).
The next lemma is very useful when it comes to computations. It is used to ensure
termination of most of the algorithms presented in this thesis.

Lemma 1.1.15.
(1) Submodules and quotient modules of Noetherian modules are Noetherian.

(2) Let M be an R-module, N ¢ M a submodule. Then the following are equivalent:
a) M is Noetherian.
b) N and M /N are Noetherian.

(3) Let M be an R-module. Then the following are equivalent:
a) M is Noetherian
b) For every ascending chain of submodules of M

M,cM,c--cMjc--

there exists k € N such that M; = My for all | > k.

¢) Every non-empty set of submodules of M has a maximal element with respect to
inclusion.

1.1 Rings, ideals, and modules 7

(4) Let (S, +) be amonoid, and let M be an S—monomodule. Then the following are equiv-
alent:

a) M is Noetherian
b) For every ascending chain of submodules of M

M,cM,c--cMjc--

there exists k € N such that M; = My for all | > k.

¢) Every non-empty set of submodules of M has a maximal element with respect to
inclusion.

Proof. Whereas the proof of the module part of Lemma [[.T:15] can be found in nearly any
textbook about commutative or computer algebra, the following, quite similar statement
for monomodules, Part[(4)} is not so common. For this, we refer to the proof of Proposition
1.3.4 in [i12]. O

Next we define maps between rings resp. modules which respect the corresponding
structure. Due to similar behaviour and properties of these maps, we do this in parallel.

Definition 1.1.16. Let R and S be rings, let 1z and 15 the respective units in R and S. A
map ¢ : R — S is called a ring homomorphism if for all a, b € R it holds that

(@) ¢(a+b)=9(a)+e(b),
(2) ¢(a-b)=¢(a) ¢(b),and
(3) ¢(1r) =15.
As every ring R is also an R-module, Definition [11linduces a map between modules:

Definition 1.1.17. Let M and N be R-modules. A map ¢ : M — N is called a module
homomorphism if for all a, b € M it holds that

(1) $(a+b) = ¢(a) + §(b) and
() $(a-b) = §(a)- (b).
Lemma 1.1.18. Let ¢ : R — S be a ring homomorphism. Then
(1) ¢(or) = os and
(2) ¢(—a)=—¢(a)forallacR.
Proof. The claims can be seen rather nicely in the following way:

¢(0) = ¢(o+0) =¢(0) + (o) = (1),
o=¢(0)=¢(a+(-a))=9(a)+¢(-a)= (2).

8 1 An introduction to standard bases

Corollary1.1.19. The statement of LemmalL1.18lalso holds for an R-module homomorphism
¢: M — NwithaeM.

Definition 1.1.20. Let ¢ : R — S be a ring homomorphism, I c R,] c § be ideals.

(1) The preimage of] under ¢ is defined by ¢7*(J) := {r € R | ¢(r) € J}. We denote
ker(¢) := ¢7'(0), the kernel of ¢.

(2) The image of I under ¢ is denoted im(¢) := ¢(R) = {¢(r) | r € R}. The image of ¢
restricted to I is denoted im(¢ |1) := ¢(I) = {¢(r) | r € I}.

(3) ¢ is called injective if ker(¢) = o.
(4) ¢ is called surjective if im(¢) = S.

(5) ¢ is called bijective if ¢ is injective and surjective. A bijective ring homomorphism
is also called an isomorphism. If there exists an isomorphism ¢ between two rings R
and S we say that R is isomorphic to S, denoted R = §

Remark 1.1.21. The above definitions can be translated one-to—one to an R—-module ho-
momorphism ¢ : M — N.

Proposition 1.1.22. Let ¢ : R — S be a ring homomorphism, I c R,] ¢ S be ideals. The
following properties hold:

(1) ¢7(J) is anideal in R.
(2) im(¢) is a subring of S.
Proof.

(1) 97(J) # @aso=g(o) e J. Ifa,b e ¢'(J) then ¢(a),p(b) € J. Asp(a+Db) =
¢(a) + ¢(b) €], it follows that a + b € ¢7'(J). If a € ¢7'(J) and r € R then
¢o(ra)=¢(r)-¢(a)e]. Thus ra € ¢~*(J), which proves the first assumption.

(2) Clear.

O

Corollary1.1.23. Let ¢ : M — N be an R-module homomorphism. The following properties
hold:

(1) ¢7*(N) is a submodule of M.
(2) im(¢) is a submodule of N.
Remark 1.1.24.

(1) In particular, from Corollary [1:23)it follows that ker(¢) is a submodule of M.

1.1 Rings, ideals, and modules 9

(2) Note the differences between Proposition and Corollary £123[2)} ¢(I)
need not be anideal in S for a ring homomorphism ¢ : R — S. For example, consider
¢ :Z — Q, then forany o # I ¢ Z ¢(I) is not an ideal in Q. This is due to one of the
main differences of module and ring homomorphisms: The one is based on modules
over the same ring, whereas the other maps from one ring to a (possibly) different
ring.

(3) For anideal I c R there exists the surjective ring homomorphism
¢:R—R/I,
with ker(¢) = I, the quotient map.

Proposition 1.1.25. Let M, N be R-modules, then

(1) the map m: M — M/N is a surjective R-module homomorphism and

(2) for any module homomorphism ¢ : M — N it holds that im(¢) = N/ ker(¢).
Proof.

(1) Clear.

(2) Let m € M. We define a map # : M/ker(¢) — im(¢) by n(m + ker(¢p)) = ¢(m).
Then 7 is well defined, an R-module homomorphism and surjective by construc-
tion. Take m such that 5(m + ker(¢)) = o. Then ¢(m) = o, i.e. m € ker(¢). Thus
m +ker(¢) = o + ker(¢) from which injectivity of # follows.

O

To finish this section, let us present two final statements, which turn out to be very
important considering our further research.

One of the main tools to improve many polynomial algorithms is using modular meth-
ods combined with the Chinese Remainder Theorem.

Theorem 1.1.26 (Chinese Remainder Theorem). Let R be a ring, let I,, ..., I, be ideals in
R.IfI;+1; =R foralls + t, then

E:

n
R/mIkE R/Ik.
k=1

=
Il

1

In particular, consider ¢ : R — TIy_, R/I constructed from the n morphisms R — R/I.
Then ¢ is surjective with ker(¢) = Nj_ I.

Proof. See, for example, Section 3.7 in [i12] or Section 2.8 in [18]. O

Using Lemma [T.15) we can state an important connection between Noetherian rings
and finitely generated modules.

Proposition 1.1.27. Let R be a Noetherian ring, and let M be a finitely generated free R-
module. Then M is Noetherian.

10 1 An introduction to standard bases

Proof. We can assume M = R’, N c M, and proceed by induction on s: If s = 1, then
M is an ideal in R and thus finitely generated. If s > 1, then we consider the module
homomorphism

¢ . RS N RS—I
(Grseosan)— (ay, ..., 04-0).

By 1z3[(1)] ker(¢) is a submodule of M, which is Noetherian as ker(¢) = R. Moreover,
R*/ker(¢) = R°7, which is Noetherian by our induction hypothesis. Thus by Statement-
of Lemma [[-115] the induction step is done.

Computations of standard bases are much easier over fields of finite characteristic p,
due to the fact that coefficient growth is bounded to p.

Definition 1.1.28. The characteristic of a ring R, denoted char(R), is the positive integer p
that generates the kernel of the ring homomorphism

9:Z—->R, n—>n-1g =1+ +1g.
———
n times

Example 1.1.29. For any prime number p the field IF, has characteristic char(IF,) = p.

Having set up a general basis for our discussions, we can go on and restrict ourselves to
some special rings, ideals, and modules, in which we are really interested in.

1.2 POLYNOMIAL RINGS

After introducing the basic algebraic structures in an arbitrary manner in the last sec-
tion, we now focus on special rings and ideals, namely consisting of elements called polyno-
mials. We see how those can be derived from the free R-module R® defined in Definition
L1.d(7)|by the following (general) construction:

Let R be a ring. Consider the se

RM .= {(a;)ien | ai € R,a; = o for almost all i}.
Together with the component-wise addition
(@i)ien + (bi)ien := (@i + bi)ien

and the mutliplication

k
(ai)ien - (bi)ien = (Z aibk*i)keN’

*Note that o € N.

1.2 Polynomial rings 11

R™ is a ring. Moreover, R™ is a free R-module with canonical basis {e; | i ¢ N},
e; € RM with 1in the (i + 1)st position, o otherwise. Thus we can identify (a;);cy with
Lien di€i.

From this we get the following proposition:

Proposition 1.2.1. Let R be defined as above. Then it holds that
(1) R is a commutative ring with identity e,.
(2) Forall i € N it holds that e; = e’

(3) There exists an injective ring homomorphism ¢ : R - R™) given by a — a - e, for all
acR.

The proof is straightforward. Moreover, with the above discussion we have already de-
fined our desired ring.

Definition 1.2.2. Let R be a ring, RM) a5 defined above.

(1) Set x = e,, the ring RMY is called the polynomial ring in one variable x over R. We
denote it by R[x]. Every element p € R[x] has a representation

finite)
p= Z cix', ¢ €R
ieN
where almost all ¢; = o. This representation is uniquely defined, up to the order of
the summands.

(2) For n > 1 we define the polynomial ring in n variables x,, . .., x, over R recursively
by
R{x\, ..., x0] = (R[Xp5 .. s Xna) [%0]-

(3) Let ¢ be as defined in Proposition zI((3)} An element ¢ € im(¢) is called a constant
(polynomial) of the polynomial ring.

In this thesis we are mainly interested in the polynomial rings, and thus in its elements

and their behaviour. Let us have a closer look at the elements of R[x,, ..., x,]:
Definition 1.2.3. Let R[x;,...,x,] be the polynomial ring in n variables, «; € N for all
ie{1,...,n}.

(1) A monomialm € R[x,,...,x,] in nvariables x,, ..., x, is a power product [T;_, x;".

The degree of a monomial m # o is denoted deg(m) = Y1, a;; deg(o) := —1. The
degree of a variable x; in m is denoted deg, (m) = a;.

(2) The set of all monomials in # variables is denoted by Mon(x,, ..., x,) == {TTi—, x;" |
«; € N}

(3) A term is a monomial times a coefficent (constant), ¢ € R, ¢ [T/, x{".

12 1 An introduction to standard bases

(4) Apolynomial p over R isa finite R-linear combination of monomialsin R[x,, ..., x,],
finite n
p= Z Clay,..sttn) H x;
(ayse.r0)N i=1

(5) The support of p is defined by supp(p) = {all terms in p}. Moreover, the monomial
support of p is defined by m-supp(p) = {all monomials in p}.

(6) The (total) degree of p is defined by deg(p) := max{a, + - + &y, | ¢(q,,...a,) # O} if
p#o.

Note that the representation of polynomials p in n variables defined in Definitionz3]{(4)]
is just a generalization of the representation in 1 variable stated in Definition

Remark 1.2.4. On the one hand every monomial is a term (with coefficient 1), on the other
hand, for example, o is a term, but not a monomial.

We are only interested in some specific polynomial rings, namely those over a ground

field KC. The following statement is fundamental for working with polynomial rings over
fields:

Theorem 1.2.5 (Hilbert basis theorem). If R is a Noetherian ring, then the polynomial ring
R[x,,...,x,] is Noetherian, too.

Proof. See, for example, Section 1.3 in [97] or Section 4.1 in [18]. O

In particular, it follows that IC[x,, ..., x,] is Noetherian as every field is Noetherian.
For an easier notation let us agree on the following:

Convention. We introduce a multi-indices notation for monomials by
n
o . o _ n
=]« a=(ay,...,a,) eN".
i=1

In the following we also investigate so—called local rings. A localization of a ring is noth-
ing else but allowing denominators, which enlarges the ring. One can think of this as the
step from the integers Z to the rationals Q. In terms of polynomial rings and algebraic
geometry localization of rings is used to get a more detailed view of some small neighbor-
hood around some point in K", e.g. for the study of singularities in algebraic varieties.
We give a really short introduction to local polynomial rings, limited to those cases we are
interested in. Local polynomial rings are only a minor point in this thesis. If you need
some more extensive introduction on local rings see for example Section 1.4 in [97].

Definition 1.2.6. A local ring R is a ring which has exactly one maximal ideal.

Fields are always local (with maximal ideal (o)), whereas the polynomial ring in # vari-

ables IC[x,, ..., x,] is not local. This is due to the fact that I := (x, — a,,...,x, —a,) isa
maximal ideal for all (a,,...,a,) € K".
Thus we need a procedure to “localize” K[x;, . .., x,]. One way is to localize K[x,, ..., x,]

at the point (o, ..., 0) resp. with the maximal ideal I := (x,, ..., x,):

1.3 Monomial orders on polynomial rings 13

Definition 1.2.7. The localization of K[x,, ..., x,] at the point (o,...,0) € K" is defined
as

K% oo Xnlixxn) = {% |a,beK[x,,...,x4],b(0,...,0) % o}.

Next we need to add some more structure, namely a monomial order, to our polynomial
rings to receive a unique representation of polynomials. We see that there exist special, so-
called “local” monomial orders, such that we can compute in the localized polynomial ring
K[xis...s Xn](x,.... x,) Without explicit denominators. Moreover, we need to add a corre-
sponding structure to modules over K[x,, ..., x,]. Both of these structures have much in
common, but they are handled differently. Since they are the main keys not only to enable
the notion and computation of a standard basis, but also to understand the differences be-
tween classical algorithms to compute standard bases and the signature-based approach,
we explain them in detail in their own section each.

1.3 MONOMIAL ORDERS ON POLYNOMIAL RINGS

Until now we have defined the basic algebraic structures we want to work with. Fur-
thermore, we have already started focussing ourselves on polynomial rings K[x,, ..., x,]
and their ideals. Having defined the elements of K[x,, ..., x,], called polynomials,

finite
p= > cax”

aeN"

they are uniquely defined, but only up to the order of their monomials. Thus our next task is
to add some new property called a monomial order < to K[x,, ..., x,] to achieve uniquely
defined polynomials in K[x;,...,x,] w.rt. <.

For this we should start with some more general orders and restrict them later on to the
monomial case:

Definition 1.3.1. A strict partial order < is a binary relation on a set S such that for all
a, b, ¢ € § the following conditions hold:

(1) =(a < a), (irreflexivity)
(2) (a<b)= -(b< a), (antisymmetry)
(3) (a<bandb<c) = (a < c). (transitivity)
A strict total order < is a strict partial together with the condition;

(4) Exactly one relation is true: a < b, b < a or a = b. (trichotomy)

14 1 An introduction to standard bases

Every total order (resp. partial order) < is a binary relation on a set S associated to a strict
total order (resp. strict partial order) < such that

a<b < a<bora=b.

A well-order < is a total order on a set S such that every non-empty subset of S has a least
element w.r.t. <.

Let us give some examples.
Example 1.3.2.

(1) The natural order <,,; on N or Z is a total order. In particular, <,,; induces a compo-
nentwise (natural) order on N”.

(2) Asan example for an order being not total assume the power set of Z together with
the order . If a # b € Z then neither {a} € {b} nor {b} c {a} hold.

Important in our further investigations is the partial order defined by the division of
two monomials:

Definition 1.3.3. x% <giy xP iff B — a € N". In spite of using the notation <g4;, we say that
x% divides xP. As a shorthand notation we use x* | x¥.

The following statement is a basis for the characterization of monomial orders defined
above.

Lemma 1.3.4 (Dickson’s Lemma). For any subset A c N" there exists a finite set B c A such
that for every a € A there exists an element 5 € B satisfying 8 <ua o.

Proof. See, for example, Section 1.2 in [97] or Section 4.3 in [18]. O

Let us restrict the above, general definition of a total order to an order on the set of
monomials Mon(x):

Definition 1.3.5. A monomial order < on K[x,,...,x,] is a total order on Mon(x) such
that
x% < xP — xVx% < x7xP for o, B,yeN".

Note that language is a bit sloppy as < is an order and thus defined on the set of all
monomials, Mon(x,, ..., x,), not on the polynomial ring IC[x;, . .., x, | itself.

This structure of a monomial order is the main tool to enable polynomial computations:
If we have defined a polynomial ring together with a monomial order we can write each
polynomial in the ring in a unique way. Thus it is possible for a computer algebra system
like SINGULAR [49] to store a polynomial as an ordered list, such that a lot of computations,
like equality checks of polynomials or reduction processes, are fast and easy. We have a
closer look at these computations in the following sections.

Definition 1.3.6. Let < be a monomial order on K[x,, ..., x,]. Then < is

1.3 Monomial orders on polynomial rings 15

(1) global <= x; >1fori=1,...,n,
(2) local < x;<1fori=1,...,n,and
(3) mixed if it is neither global nor local.

Next we give some well-known examples of monomial orders. For this, reconsider
the multi-indices notation: Let o, 3 € N" then we define « + § resp. & — f3 to be the
componentwise, natural addition resp. subtraction on Z.

Definition 1.3.7. The following are monomial ordersﬂ on K[x,,..., %]

(1) Global orders

a) Lexicographical order <i,:
x% < xP 1 the nonzero entry of lowest index in & — f8 is negative.
b) Graded lexicographical order <pp:
x% <pp xP 1> deg(x®) < deg(x*) or,
(deg(x*) = deg(x") and
the nonzero entry of lowest index in & — f3 is negative).
¢) Graded reverse lexicographical order <qp:
x% <gp xP 1o deg(x) < deg(xP) or,
(deg(x®) = deg(x*) and
the nonzero entry of highest index in a — § is positive).
(2) Local orders
a) Negative lexicographical order <s:

x% <) xP 1= the nonzero entry of lowest index in & — 8 is positive.

b) Negative graded lexicographical order <ps:
x% <ps xP 1> deg(x*) > deg(xP) or,
(deg(x%) = deg(x”) and
the nonzero entry of lowest index in a — f8 is negative).
¢) Negative graded reverse lexicographical order <45
x% <g xF 1> deg(x®) > deg(x") or,
(deg(x%) = deg(x”) and

the nonzero entry of highest index in a — f3 is positive).

3We use the SINGULAR notation for the presented monomial orders.

16

(3)

(4)

1 An introduction to standard bases

Product orders Assume the polynomial ring K[x,, ..., Xu, ¥1, - . > Y | together with
two monomial orders <, on Mon(x,, ..., x,) and <, on Mon(y,, ..., ¥m). Then we
get a product order <:= (<;,<,) by

X%yt < x/;y/; —=x" <, xP or,
(x* = xP and y* <, y'/;).
E.g., if <, is global, then monomials containing an x; are always larger than those
which do not.

If <, and <, are both global (resp. local), then < is global (resp. local). Otherwise <
is a mixed order.

(Matrix) weight orders Let W € GL(n,R) be a matrix. Then we define the weight
order by

x* <y xP e the nonzero entry of lowest index of Wa — W is negative.

Example 1.3.8. Assume the three monomials m,, m, and m; in K[x,, x,, X3, x4, x5 | where

2
m, = X)X, %, %7,
2.8
m, = x;x,,
my = x.

Note that deg(m,) = deg(m,) < deg(m;). Let us see how the above defined orders behave
and how they are related to each other considering m;,, m, and mj.

()

ms <jp M, <jp My,

(2) m, <y M, <js M,

(3) m, <Dp m, <Dp ms,

(4)
(5)
(6)

ms <ps M, <ps My,
m, <dp m, <dp ms,

ms <dgs M; <gs M,.

Remark 1.3.9. Note that any monomial order < on K[x;, ..., x,] can be represented by a
matrix weight order <y for some W € GL(n,R).

Proposition 1.3.10. Let < be a monomial order on K[x,,...,x,]. Then the following are
equivalent:

(1) <is a well-order.

(2) <isglobal.

(3) If a <par B, then x* < xB or x® = xB.

1.3 Monomial orders on polynomial rings 17

Proof. (1) = (2) aswell as (2) = (3) are trivial. So let us prove the direction (3) = (1):

For any non-empty set M of monomials in C[x,, ..., x, | there exists a finite set B c M by
Lemma 34 such that for any x* € M there exists xP € B such that B <nat «. Then either
xP < x% or xP = x*. Thus B contains a smallest element of M w.r.t. <. O

Equipping K[x,, . . ., x, | with a monomial order < we get a solution for our initial prob-
lem: We receive a uniquely determined representation for polynomials in fC[x,, ..., x,]:

p=cax” + c/;x'B +oetoyx?,

such that x* > xf > -~ > x? and ¢,, CBsevvsCy €K, Thus we can define special parts of p:
Definition 1.3.11. Let p € K[x,,...,x,] as above. Then we denote

(1) the leading monomial of p Im(p) = x*%,

(2) the leading coefficient of p 1c(p) = cq»

(3) the leading term of p It(p) = cax*,

(4) the tail of p tail(p) = p —1t(p), and

(s) the ecarfl of p ecart(p) = deg(p) — deg (1m(p)).

Furthermore, a polynomial p with lc(p) = 11is called monic.

As a last step let us consider localizations of polynomial rings again: We have intro-
duced the localization of K[x;,...,x,] at the point (o,...,0) € K" in Definition 27
We show how to use local monomial orders to avoid computations with denominators in

IC[XI, cees xn](x,,...,xn)-
In the following let the subset U in K[x;, ..., x,] be defined by

Uw={ueK[x,....,x,] |u#o0,lm(u)=1}.
The following property of U is straightforward.
Lemma 1.3.12. U is multiplicatively closed, that is
(1) 1€ U, and
(2) for a,b €S it holds that ab € U.

Definition 1.3.13. Let < be a monomial order on K[x,, ..., x,|. We define the localization
of K[x1,...,x,] wrt. U by

U'K[x15 .50 = {E la,ueK[x),...,x,),u#0,1lm(u) = 1}.
u

Clearly, it holds that

#Actually we should write écart as this is French for “separation” or “difference”

18 1 An introduction to standard bases

(1) <isaglobal order if and onlyif U = C*.

(2) <isalocal orderifand only if U = K[x;, ..., x,]\ (%1, ..., %4).
Proposition 1.3.14. Let < be a monomial order on K[x,, ..., x,].

(1) <isaglobal order if and only if K[x,, ..., x| = U7 K[%1, ..., x4]

(2) <isalocal order if and only if KC[X1, ... Xu](x,,..x) = U K[X050 005 X0]
Proof.

(1) Clear, since U = K* =< is global.

(2) K[xy,...,%4]\(%1,..., %) is the multiplicatively closed set of units in the local-
ized polynomial ring U7 K[x;, ..., x,] if and only if every p € K[x,,...,x,] with
Im(p) =1isin U. This is the case if and only if < is local.

O
Clearly, the units in the localized polynomial ring are defined to be

a

(U K[x0 ..., x])" :{b

Im(a) = Im(b) = 1}.
We see in Section[7/how this fact sometimes must be used to ensure termination for stan-
dard basis algorithms.

As a very last note on local polynomial rings let us state the following important fact,
whose proof can be found in [97]:

Proposition 1.3.15. U'K[x,, ..., x,] is Noetherian.

Convention. From the above discussion it is clear that we always need to equip the po-
lynomial ring U™'K[x,, ..., x,] with a monomial order <, as otherwise the elements we
are interested in are not uniquely defined. In the following we do not explicitly state the
monomial order for a better reading, i.e. when we write U7'K[x,,...,x,]| we always
mean U'K[x,,. .., x,] together with a monomial order < on U K[x,, ..., x, |. Further-
more, in this thesis P always denotes the localization of the polynomial ring in 7 variables
X1 .., X, over the ground field IC, P := U'K|[x,, ..., x,]. Writing K[x,,...,x,] we al-
ways assume our polynomial ring to be equipped with a well-order.

1.4 MONOMIAL ORDERS ON FREE P—MODULES

In the following we induce orders on free P-modules from the monomial orders de-
fined in the last section. Orders on modules are very important for signature-based stan-
dard basis algorithms, as we see in Chapter [}

1.4 Monomial orders on free P-modules 19

Right now we can define polynomials in P uniquely equipping the polynomial ring with
a monomial order as defined in Section 3} There are two reasons why we are interested in
orders on free P-modules M:

(1) We also want to compute standard bases of such modules.
(2) Signature-based standard basis algorithms are based on comparing elements of M.

Convention. In the following let M = @;_ Pe; always be a free P-module of rank s with
canonical basis elements e;.

Definition 1.4.1.

(1) A (module) monomial in M is an element of the form m = x*e; where x* is a mono-
mial in P.

(2) A term cm in M is a monomial m € M times a coefficient c € K.
(3) The index of a term t = cx“e; is denoted index(t) = i.

(4) An element f € M can be written as a finite K-linear combination of such mono-

mials m.
s finite
f= Z(Z cax“)e,» (1.4.1)
i=1 aeN”
where ¢, € IC, x* € Mon(x,, ..., Xy).

(5) The support of f € M is defined by supp(f) = {all terms in f}.
(6) The monomial support of f € M is defined by m-supp(f) = {all monomials in f}.

(7) The notion of the degree of a monomial m = x“e; is reduced to the one of the mono-

mial x* € P as defined inrz3[(1)}
deg(m) := deg(x%) = > a;.

Clearly, deg(f) := max{deg(m) | m a module monomial of f}.

Although we can write any element f € M as a sum of terms as in Equation [-4} this
representation is, again, unique only up to the order of the monomials. Thus we need a
monomial order on M. Naturally, this is a generalization of a corresponding monomial
order on P taking into account the canonical basis elements e;:

Definition 1.4.2. Let < be a monomial order on P. A module (monomial) order < on M
is a total order on the set of all monomials of M such that

(1) x%e; < xﬁej = x7x%; < xVx‘Bej and

@ 4B o < aBo.
1 1-
(2) x* < xf = x%¢; < xPe

20 1 An introduction to standard bases

foroa,B,ye N"and i,je{1,...,s}.

Let us note some important facts about the correspondences of the module monomial
order on M and the monomial order on P, from which it is induced.

Remark 1.4.3. From the above definition it is clear that any monomial order on the polyno-
mial ring P can also be understood as a module monomial order on the module P = Pe,.
Thus the module monomial order is a generalization of the usual monomial order defined
in Section L3}

Proposition 1.4.4. Let < be a module order on M, < the corresponding monomial order on
P. Then the following hold:

(1) <isa well-order <= < is a well-order.
(2) < is global resp. local resp. mixed <= < is global resp. local resp. mixed.
Proof. These facts follow easily from Property[(2)] of Defintion [7:2} O

Let us give examples for module orders we need in the signature-based attempt of com-
puting standard bases.

Example 1.4.5. Again, let < be the monomial order on P which induces the module order
< on M. The main new structure one can tweak with are the canoncial basis elements of

M.
(1) <; denotes the order which emphasizes the index of the canonical basis element:
x%e; <ixﬁej = i<jor,
i=jand x* < xP.
(2) <m denotes the order which emphasizes the monomial:
x%ej <m xﬁej = x% < xP or,
x*=xPandi<j.
When talking about signature-based algorithms in the following we see that there are
other useful module orders. More about this is postponed to Chapter 4}

Similar to the polynomial case we can now identify and define special parts of elements

feM.

Definition 1.4.6. Given a module order < on M every element f € M can be uniquely
represented by

f=cax®e;i+ f',
cq € KC, x% € Mon(x,, . .., x,) such that for all nonzero terms c/;x/3 ej of f" it holds that
x%e; > x‘Bej.

As in the situation of polynomials, Definition [[3:11} we can identify special parts of f:

1.4 Monomial orders on free P-modules 21

(1) the leading monomial of f Im(f) = x%e;,

(2) the leading coefficient of f 1c(f) = cq»

(3) the leading term of f It(f) = cax“e;,

(4) the tail of f tail(f) = f —1t(f), and

(5) the ecart of f ecart(f) = deg(f) - deg (Im(/)).
Furthermore, a module element f with lc(f) = 11is called monic.

Convention. Likewise the polynomial case we always equip M with a module monomial
order < to receive uniquely defined elements, thus the notation of M implies a module
monomial order.

It is urgent to get some more information of the relationship between two module
monomials when talking about normal forms and standard bases in the following sections.

Definition 1.4.7. We say that x%e; divides xPe j if and only if
i=jand x* | xP.
As a shorthand notation we use x%e; | xe;.

As a last note let us give some example why we need to be cautious with the repre-
sentation of an element f € M as given in Equation 4.7 where we grouped the different
monomials by the index of the canonical basis elements e;. We have used this straightfor-
ward notation only to simplify notations at that point of our study of free P-modules.

Example 1.4.8. Let P = K[x, y,z], M = P?. Assume the three monomials

m, = —2x>ye,,
2
m, = 4x3yz’e,,

_ 4
my =z%e,.

Let us construct the element f € M being the sum of m,, m, and m,. At this point we have
to fix a monomial order on M to give a uniquely defined representation of f:

(1) If we pick <; induced by <4, we get the following:
f=(ax*yz> —2xy)e, + z'e,.
This coincides with the representation given in Equation [[7-1}
(2) If we pick <, induced by <4, we get a different sequence of the monomials:
f=axPyz’e, + z%e, — 2x7ye,,
which does not correlate with Equation 71}

With this, we conclude our introduction to monomial orders on polynomial rings and
free modules. For more details on monomial orders see for example [97].

22 1 An introduction to standard bases
1.5 GRADINGS

In this section we want to characterize gradings. We define them in general, but focus
on the main usage of them in this thesis: Homogenizing module elements resp. polynomi-
als. These homogenized elements have some properties one can use to improve standard
basis computations as explained in more detail in Chapter @ Moreover, the restriction
to homogeneous input was one of the drawbacks of the initial presention of Faugere’s Fs
Algorithm in [62] (see Section [6:1]for more details).

Definition 1.5.1.

(1) Aring R is called a graded ring if there exist abelian subgroups R, such that
a) R=®,5,R,, and
b) forall v, 4 > o it holds that R,R, € Ry,.
(2) An R-module M is called a graded R-module if there exist abelian subgroups M,
such that
a) M =&, M,, and
b) forall 4, v > o it holds that R, M, € M,,,,.
(3) Anelement of f of R, resp. M, is called homogeneous (of degree v). A not homoge-

neous element is sometimes also called inhomogeneous. Moreover, we define that o
is a homogeneous element of every degree.

(4) Amodule M = (f,,..., f;) is called homogeneous if f; is homogeneous for all i €

{1,...,r}.

Remark 1.5.2.

(1) Every element f in M can be decomposed into

f:va,

V=0

such that f, € M, for all v. This decomposition is unique due to the fact that M is a
direct sum of the M,s.

(2) Note that an homogeneous module resp. ideal M = (f,, ..., f;) is only generated by
homogeneous elements, we do not require that each element f € M is homogeneous.
What follows from the definition in[51[(4)]is that f is generated by homogeneous
elements. For example let M = (x> + y*,x> — x*>y) be a homogenenous ideal in
K[x, y] with <g, then

f=x-x’y+x*+y*eM,

but f is inhomogeneous.

1.5 Gradings 23

We are interested in some special gradings on the polynomial rings P: Some polynomi-
als have a special structure where all monomials it consists of share a property, in particular
the degree.

Definition 1.5.3.

(1) A polynomial p € P is called homogeneous (of degree d) if every monomial of p
has degree d. We denote the set of all such polynomials P; = {p € K[x;,...,x,] |
deg(t) = dforallt € supp(p)} for d > o. This is sometimes called the standard
grading on P.

(2) Given any polynomial p € K[x;,...,x,] and some extra variable x,

P :xgeg(*g)p(ﬁ,...,ﬁ) I E

Xo Xo

denotes the homogenization of p with respect to x, . p" is then homogeneous of degree

deg(p).

(3) Conversely, for every homogeneous polynomial P € K[x,,...,x,] there exists a
dehomogenization with respect to x, defined by

Pdeh :P(l,xl,...,xn) EK:[xn---:xn]-

(4) Furthermore, the following connection hold:
P=x! P(1,x,...,%,)"
where [= max{s € N| every monomial of P includes x! such that ¢ > s}l

Of course, one needs to adjust a new order <;, switching from U K[x,,...,x,] to
U'K[xo,...,x,] when homogenizing:

Definition 1.5.4. Let < be a monomial order on U™'K[x,, ..., x,], which can be repre-
sented by a weight matrix A € R"™*", Furthermore, let x* and x* be two monomials in
K[x,...,x,]. We define the induced homogenized monomial order <j, by

x5x% <p xLxP s + deg(x®) <pat £+ deg(xF) or,
(s+deg(x*) =t+ deg(x*) and

x% < xP).
Any such induced homogenized monomial order <j, can be represented by a weight matrix

1 cee 1
(0]
Ay = A

(0]

5In Section [I3 we see that this is equivalent to the condition that x§ divides x£.

24 1 An introduction to standard bases

Using the definitions of Section [-7lhomogenization and dehomogenization generalize
naturally to the world of modules.
One can conclude from the above defnitions easily the following statements:

Corollary 1.5.5. With the notations from above the following statements hold:
(1) The induced homogenized order <y, is a well-order on M.

(2) If f € M is homogeneous, then ecart(f) = o.

(3) Forany f € M we have the following correspondence between the leading monomial
of f and the leading monomial of f:

Imo, (/") = x5 Im_ ().

Remark 1.5.6. Note that similar to Corollary [5:5](3)] for any module element f in M the
ecart(f) can be intepreted in terms of the homogenization of f: Homogenizing f with
respect to x, we just need to know the degree of x, in Im_, (f"),

ecart(f) = deg, (Im., (fh))

In the following sections of this chapter we use the homogeneity of elements only as
a sideline, but define the basic ideas of standard basis computations. We get back to the
ideas of homogenization when introducing improvements to the fundamental standard
basis algorithm (Section 7).

1.6 HILBERT-POINCARE SERIES AND DIMENSIONS

Next we define one very important invariant in commutative algebra, the Hilbert-Poin-
caré series. Used in graded rings resp. modules it stores the dimensions of the homoge-
neous parts of the graded structures. There are various ways introducing this topic, we use
an attempt strongly related to [97].

Let R be a Noetherian graded ring with R, = K. Then we know by Proposition-T27]that
every finitely generated graded R-module M is Noetherian, too. Thus each homogeneous
part M, is a finite dimensional K-vector space, it makes sense to speak of dimy (M,). This
is an important invariant in the following.

Definition 1.6.1. Let R be a Noetherian graded ring, and let M = ®,ezM, be a finitely
generated R-module.

(1) We define the Hilbert function of M by

HMZ 7 — 7
v — dimg(M,).

1.6 Hilbert-Poincaré series and dimensions 25

(2) The Hilbert-Poincaré series of M is defined by

HSy(t) := ZZHM(v)tV e Z[[t, t]].

Example 1.6.2. For each degree d > o we have

Hp(d):(d+n_1): (d+n—1)(d+n—2)...(d+1).

(n-1)!

Remark 1.6.3. For v € N it holds that 1 < Hy(v) as R, is never empty.

n-—-1

A well-known statement on the Hilbert-Poincaré series for positively graded modules
over the polynomial ring P is the following.

Theorem 1.6.4. Let M = ®,5,M, be a finitely generated, positively graded P-module. Then
there exists a polynomial p(t) € Z[t] such that the Hilbert-Poincaré series can be written
a

HS (1) = (lp_(?)n.

Proof. See, for example, Section 5.2 in [97]. O

(1.6.1)

Theorem 1.6.5 (Hilbert). Let M be a finitely generated, graded module over P. Then there
exists a polynomial HP y(t) with deg (HPy(t)) < n — 1 such that HSy(t) = HPy(t) for
t>o.

Moreover, one can deduce from the above theorem the Hilbert polynomial: Cancel out

the common factor of p(t) and (1-t)" in Equation.6.1land use the results () = Y9 g;t!
and (1 - t)™ for m < n to construct the above mentioned polynomial:

Definition 1.6.6. With the above construction the polynomiaﬂ

HPM(t):iQi(t_i+m_l)

i=o m-1
is called the Hilbert polynomial of M.

In Section 7] we discuss how to use the information stored in the Hilbert polynomial
to improve the computation of a standard basis of a homogeneous ideal I.

With this we finish our introduction to Hilbert-Poincaré series, giving a last remark on
the situation in the case of local rings.

If < is a local order on P the Hilbert-Samuel function is the counterpart of the Hilbert
function in the homogeneous case. The connection to the Hilbert function is given by the
following theorem.

Note that # is the number of variables in P.

7(2):ofork<o

26 1 An introduction to standard bases

Theorem 1.6.7. Let P be equipped with a local order <, Q c P a primary ideal, and M
a finitely generated P-module. Then the Hilbert-Samuel function x fulfills the following
equation:

d
XI(\Q/I(d + 1) = ZngQ(M)(i)’

where gro,(M) = @72,Q"/Q""".

We do not go any further with this local situation, as it is not of main interest in this
thesis.

1.7 NORMAL FORMS AND STANDARD BASES

Having equipped M = P* with a monomial order < in Section [[.7} we receive uniquely
defined elements in M. This enables us to define the standard basis of a submodule M c
M. A standard basis is nothing else but a nice set of generators of M, where nice should
be understood as being equipped with some properties useful for computations with M.

A standard basis is a generalization of a Grobner basis which was discovered by Bruno
Buchberger in 1965 in his PhD thesis ([34]). He named it after his advisor Wolfgang
Groébner. Independently, Buchberger, Grauert and Hironaka introduced the notion of a
standard basis ([34)[95)101,102]).

In the following sections we present algorithms for computing such bases, which are,
in the special situation of < being global and M being an ideal in P, just generaliziations
of the Gaussian elimination algorithm and the Euclidean algorithm.

Next, we focus on the characterization of the normal form of an element f € M w.r.t.
some G ¢ M. It turns out that computing the normal forms of special elements called
s—vectors is the main step when searching for a standard basis of a given submodule.

Although the situation having a global order is of main interest in this thesis, the spe-
cial behaviour in case of local (and thus also mixed) orders is important to be understood
for a deeper inside in the advantages and disadvantages of signature-based standard basis
algorithms.

Remark 1.7.1. We introduce standard bases in the world of modules. Clearly, we are in-
terested in standard bases of ideals in P, too. This is just a specialization of the module
case, thus included. We give extensive explanations and examples of peculiarities, wher-
ever these are important for our further investigations.

The next lemma is very important in what follows.
Lemma 1.7.2. Any free, finitely generated P-module is Noetherian.

Proof. This follows from the fact that 7P is Noetherian combined with Proposition 127}
O

1.7 Normal forms and standard bases 27

As alast preliminary step we need to define some more structure needed in the follow-
ing discussion.

Definition 1.7.3. A sequence S is an ordered list of objects. It contains elements and has a
(possibly infinite) length denoted #(S), like a set. On the contrary, the elements are ordered
and the same element can appear several times at different positions in the sequence.

Let us start with the definition of the element of main interest in this thesis.
Definition 1.7.4.

(1) For any subset S ¢ M we define

L.(S):= (lm(s) |se S\{o}),

the leading submodule of S. In particular, if L.(S) c P is an ideal we speak of the
leading ideall of S. If the order is clear by context, we just write L(S).

(2) Let M ¢ M be a submodule. A finite sequence G = {g,,...,¢,} ¢ M is a standard
basis for M if
L(M) = (lm(gl),...,lm(g,» = L(G).

Remark 1.7.5.

(1) Note that L(M) = L(G) = (Im(g,),...,Im(g,)) is equivalent to the fact that for
every f € M there exists I € {1,...,r} such that Im(g;) | Im(f).

(2) For a shorter notation we say that G is a standard basis when we mean that G is a
standard basis for (G).

(3) If < is a well-order on M, then G is also called a Grobner basis.
Proposition 1.7.6. Let M c M be a nonzero submodule.

(1) There exists a standard basis G for M.

(2) Let G ¢ M be a standard basis for M. Then (G) = M.
Proof.

(1) By Lemma[r72] M is Noetherian, thus L(M) is finitely generated. We can choose
finitely many monomials m,, ..., m, generating L(M). By definition the m; are
leading monomials of appropriate elements g,,...,g, € M. It follows that G :=
{gs,..., g} is a standard basis of M.

(2) Clear.

Note that a standard basis depends on the chosen monomial order <.

81n the following, an ideal generated by monomials only is called a monomial ideal.

28 1 An introduction to standard bases

Example 1.7.7. Let us have a closer look at the ideal I = (p,, p,) ¢ U'K[x, y,z] where
pi=x*—yand p, =xy -z

(1) On the one hand, if we choose <45 Im(p;) = y and Im(p,) = z, thus we easily see
that (y, z) = L(I). In other words, { p,, p,} is already a standard basis for I.

(2) On the other hand we can choose the order <4p,. ThenIm(p,) = x*> andIm(p,) = xy,
but (x*,xy) # L(I) as

pyi= -y —y) +x(xy-2) =y —xzel

and Im(p,) = y* ¢ (x>, xy). One can easily show that G = {p,, p,, p;} is a standard
basis for I.

This is a crucial problem in the theory of standard basis computations. Given a module
M, it can be possible to compute a standard basis w.r.t. an order <, for it in seconds on
a small computer, whereas the computation w.r.t. to another order <, can be unsolvable,
even on super computers. There exist methods to use a standard basis w.r.t. <, to compute a
standard basis w.r.t. <,, but this is not an easy process and can sometimes be harder (slower,
consuming more memory, etc.) than computing from scratch w.r.t. <,. We investigate this
problem and possible solutions in more detail in Chapter 2

Right now we have shown the existence of a standard basis G for any o # M c M
and any monomial order <. G needs not to be uniquely defined as there could be another
standard basis G’ consisting of all elements of G and some linear combinations of those. We
can require some more properties on G to receive the unique, so-called reduced standard
basis of M.

Definition 1.7.8. Let G be a finite sequence in the free P-module M.

(1) Gis called interreduced if
a) o¢ Gand
b) for every g € G it holds that Im(g) ¢ L(G\{g}).

(2) Let f € M. Then we say that f is top-reduced with respect to G if Im(t) ¢ L(G).
Furthermore, we say that f is reduced with respect to G if no monomial of the power
series expansion of f is contained in L(G).

(3) We say that G is reduced if

a) 0¢G,

b) each g € G is top-reduced w.r.t. G\{g},

c) for each g € G it holds that tail(g) is reduced w.r.t. G and
d) for every g € G it holds that lc(g) =1.

Lemma 1.7.9. Let M € M be a submodule. If G is a reduced standard basis for M, then G
is unique.

1.7 Normal forms and standard bases 29

Proof. Assume that there exists another reduced standard basis H for M. By [£z8|[(3)b]
#(G) = #(H). LetG = {g,,..., g} and H = {h,,..., h,}, both sorted by increasing
leading monomials. Foralli € {1,...,r} gi—h; e M. If g;—h; + othenlm(g;—h;) € L(M).
By L.z8|[3)dIm(g; — h;) ¢ L(G) as well as Im(g; — h;) ¢ L(H). This contradicts our
assumption that G and H are reduced standard bases for M. O

The definition of the reduced standard basis needs a bit of explanation: A reduced stan-
dard basis might not always exist. Moreover, its computation might be not possible in
finitely many steps using polynomials only in general:

(1) Starting with a standard basis G we want to transform G to an interreduced basis G':

a) Delete all zeros from G.

b) Delete all elements g’ such that there exists g € G\{g’} with Im(g) | Im(g’).

(2) From G’ we get the reduced standard basis G"":
a) For all polynomials g € G’ we set g := @ g
b) If there exists a polynomial g’ € G’ such that Im(g’) | Im(tail(g)) we need to

reduced tail(g). This is the hard part computing a reduced standard basis and
sometimes even impossible (see Example [710).

Example 1.7.10. Assume the polynomial ring U™ K[x] with the local monomial order <4,
and the ideal I = (g) where g = x — x” is a polynomial. Clearly, a corresponding standard
basis is G = {g}. Trying to compute the reduced standard basis we see that tail(g) = x> is
divisible by Im(g). Reducing g by xg we get

gi=g+xg=x-x"+x"-x*=x-x

Now tail (g) = x3 is again divisible by Im(g) and we easily see that this process of reduction
does not end in finitely many steps. Although we have seen that there exists a reduced
standard basis of I we cannot compute it this way!

Remark 1.7.11. Note that in the case of M being equipped with a well-order < the compu-
tation of a reduced Grébner basis for any given submodule M is always possible in finitely
many steps. This is due to the fact that for any g € G it holds that Im(g) + tail(g) by
Definition [[:3:3]and Proposition [:3:10} thus a situation as in Example [710]is not possible.

Having stated the term “reduction” quite too many times without a correct definition it
is time to introduce the notion of a normal form:

Definition 1.7.12. Let G denote the set of all finite sequences G in M. The map
n:MxG->M
(f,G) = n(f.G)
is called a normal form of M if for all f € M and all G € G the following hold:

9We explain in the following what we exactly mean by the term “reduction’, right now the reader’s intuition and
natural understanding is quite propriate.

30 1 An introduction to standard bases

(1) n(o,G) =o.
() Ify(f,G) #o=1m(n(f,G)) ¢ L(G).

(3) Let G={g,..., &}, u € P* aunit. Then there exists a representation

uf -n(f,G) = Zpigi, pi € K[x1, ..., %],

such that
max{Ilm(p;gi) [1<i<r} <Im(uf -5(f,G)).
This is called the standard representation of uf — n(f,G) w.r.t. G.

We say that n(f, G) is the normal form of f w.r.t. G. Moreover, if we demand 7(f, G) to
be reduced w.r.t. G for all G € G, then we call 1,4 (f, G) a reduced normal form.

Lemma1.7.13. Let M be a submodule of M, G ¢ M a standard basis for M, and a normal
form of M. Then the following hold:

(1) Forany f € M itholds: f e M <> n(f,G) = o.
(2) M ={G).
Proof.

(1) On the one hand, if #(f,G) = o, then uf € M. Thus f € M. On the other hand, if
n(f,G) # o, then 7(f,G) ¢ M. Since (G) c M this implies f ¢ M.

(2) (G) c¢ M is clear. Now assume g € (G) such that g ¢ M. By[(1)] this means that
n(g, G) # o, a contradiction.

O

Next we state 3 different algorithms of how to compute normal forms: Algorithms m
andElcompute the normal form resp. the reduced normal form if a global order < is given.
We see that these algorithms can lead to an endless loop computing normal forms if a non—
global order is given. We illustrate all these algorithms, fundamental for the computation
of a standard basis, with an example:

LetP = U'K[x, y,z], M = P?, f = x%e,. Let G be the sequence consisting only of the
module element r = x*e, — xze, — xe,. First, we assume the following orders: <q, and <p,.
Let us compute the normal form of f w.r.t. G:

h:=x%e,
Dy, = {r}
hi=h-xr=x3%, —x%e, + x’ze, + x’e,
=x’ze, + x’e,
Dy, = {}

1.7 Normal forms and standard bases 31

Algorithm 1 Normal form w.r.t. G for a global order < (GNF)
Input: f € M, a finite sequence G in M
Output: h € M, anormal form of f wrt. G
1t h <« f
2: while (h # oand Dy, := {g e G |Im(g) | Im(h)} #+ @) do
32 Choose any g € Dy,
4 LettePsuchthat tlt(g) =1t(h).
5 h< h- tg
6: return h

Algorithm 2 Reduced normal form w.r.t. G for a global order < (GNFq)

Input: f € M, a finite sequence G in M
Output: h € M, areduced normal form of f w.rt. G
r h<o,g«f
2: while (g # 0) do
3 g+« GNF(g,G)
if (g # 0) then

4
5 h<h+lt(g)
6: g < tail(g)

7. return h

So at this point the normal form computation stops and we get
n(f,G) = x*ze, + x’e,.

From here the reduced normal form (Algorithm z) would go on, having already com-
puted the normal form in Line[3 Note that in Algorithm @ g has the role h plays in Algo-
rithm[@ 4 is just the bucket the nonzero leading terms of (g, G) are stored in (Line[g), at
this point h = o.

g:=1(g,G) =xze, + x’e,.
As g # o we go on in Line[5jand set
hi=h+lt(g) = x*ze,
g = tail(g) = x’e,.
Next we are back in Line[§land compute the normal form of g:

g:=x"e,

Dg:={r}
gi=g—-r=x"e,—x"e, + Xz&; + xe,

=xze, + xe,.

32 1 An introduction to standard bases

At this point we see that neither xze, nor xe, is divisible by x*e, thus in the following steps
we just add those terms to h:

hi=h+1t(g) = x*ze, + xze,
g :=tail(g) = xe,
Dg:={}
hi=h+1t(g) = x*ze, + xze; + xe,
g:=tail(g)=o
Thus the reduced normal form of the initial f is

r’red(f’ G) = XZZel + XxXze, + xe,.

As we have explicitly stated, these algorithms are assumed to terminate only if we have
a global order. Assume the same elements, but now with <4, and <;. In this setting the
terms of the elements are reordered:

f=x%,

r=xe,+x"e, — xze,.
Once more, let us try to compute the normal form #(f, G) using Algorithm @

h:=x%e,
Dy, = {r}
hi=h+x"r=x%, —x%e, + x*e, — x’ze,
=x*e, — x3ze,
Dy, :={r}
hi=h+x%r=x%e, + x3ze, — x*e, + x’e, — x*ze,
=x’e, + X3ze, + x*ze,
Dh = {T}

We see that this computation does not terminate: The exponent k of Im(h) = xFe,

increases by 1 every time we reduce h by r. Right now, the initially a bit strange definition of
a normal form (T712[(3)) with the multiplier u € P* rescues us. Remember our discussion
about the localized polynomial ring P = U7 K[x,, . .., x,] at the end of Section[3} Having
alocal order <j; P* is no longer restricted to ¥, but includes all elements u € P such that
Im(u) =1.

The main idea behind computing the normal form of an element for a non-global order is
to compare the ecarts of the reducer and the element to be reduced and possibly add new
elements to the list of reducers Dj,. This was first presented by Mora in [130]. We state the
variant of the surroundings of the SINGULAR team ([94}[96l[97]) using the slightly different
definition of the ecart we have already given in Definitions [3.11and [1.4.6]

1.7 Normal forms and standard bases 33

Algorithm 3 Normal form w.r.t. G for a non-global order < (LNF)

Input: f € M, a finite sequence G in M
Output: h € M, anormal form of f wrt. G
1t h <« f
2 D« G
3: while (h# oand D), < {ge D|Im(g) | Im(h)} + @) do
4 Choose g € Dy, such that ecart(g) = min{ecart(g’) | ¢’ € D}.

5. if (ecart(g) > ecart(h)) then

6 D« Du{h}

7 Let t € Psuch that tlt(g) = It(h).
8 h<h-tg

o: return h

We see that the choice of the reducer depends on the corresponding ecart (Line [).
Moreover, in Line[@]possibly new reducers are added to D. These are the two main changes
compared to Algorithm Mwhich ensure termination in the non-global case. Let us review
our example again, now using LNF:

h:=x3e,
D:={r}
Dy, :={r}

Inasmuch as ecart(h) = o and ecart(r) = 2 we add h (now denoted by hq) to D.

D := {r, hold}
h:i=h+x"r=x%, - x%e, + x*e, — x3ze,
=x*e, — x3ze,
Dy :={r, hola}

Again, ecart(ho1q) < ecart(r), thus we use hoyq to reduce h:

h:=h-xhgq = x*e, — x>ze, — x*e,

=—x3ze,
Now Dy, = {} and the algorithm terminates with a normal form of f:

n(f,G) = —xze,.

Let us review the reduction steps in LNF once more to see how this selection of a reducer
w.r.t. a minimal ecart and addition of new elements to the list of reducers leads to a termi-
nating normal form computation including the above mentioned unit u € P*:

h=f+x"r—xf=-xze,.

34 1 An introduction to standard bases

This normal form computation can be reformulated combining both summands including

f:
(1-x)f-x*r=xze

This is the normal form of f as given in Definition [Z1z] with unit u =1 - x € P*.

Remark 1.7.14.

(1) Algorithm [3)is the most general one, i.e. it ensures correctness and termination for
any given order. Note that in the case of a global order < appending h to the set of

possible reducers D is useless as Im(h) > Im (h - % g), which implies Im(h) +

lm(- % g) due to Proposition [3:10} Thus & is never used as a reducer in the
following. In this situation LNF is just GNF with a special choice of reducers (min-
imal ecart) and some overhead due to appending elements not usable as reducers
to D. Requiring an optimized implementation of the normal form algorithms one
always implement LNF and GNF, using LNF only for non-global orders.

(2) Note that the choice of reducers in Algorithm @ can influence the result.

We do not prove correctness or termination of the presented algorithms. We consider
ourselves satisfied with the understanding of how they work and the intuitive insight that
both are correct and terminate. For example, proofs can be found in sections 1.6 and 1.7
resp. 2.3 of [97].

Asalast notelet us recover Example[:710t Using LNF we can easily compute the normal
form of f = x w.r.t. G = {r} with r = x — x> without any trouble considering termination:

(1-x)x-r=o.

The main idea behind the definition of a normal form is to get a characterization of
a standard basis. Moreover, this turns out to be strongly related to what we want to be
understood as a “reduction”

Definition 1.7.15. Let f,h € M, let M denote the set of all monomials in M, let G be a
sequence in M, g € G.

(1) f top-reduces to h w.r.t. G if there exist g € G, m € M such that Im(f) = mIm(g)
and h = f - izégmg

(2) f reduces to h w.rt. G if there exist g € G, a term t in the power series expansion of
f, m e M such that Im(t) = mlm(g)and h = f - llcc((g mg.

We also use the more implicit notations f is (top—)reducible (w.r.t. G) in the respective cases
above.

Lemma 1.7.16. Let o + f € M, let G be a sequence in M.

(1) If f is not reducible w.r.t. G, then f is in normal form w.r.t. G, i.e. f = n(f,G).

1.8 'The basic standard basis algorithm 35

(2) If f has a standard representation w.r.t. G, then f is top-reducible w.r.t. G.
(3) f has a standard representation w.r.t. G if and only if n(f,G) = o.
Proof. Clear. O

This gives us a neat characterization of a standard basis. We see in the next section that
the normal form algorithms form the main part of a standard basis computation.

Theorem 1.7.17. Let G = {g,,..., g} be a finite subset in M. G is a standard basis if and
only ifeach o # f € M = (G) has a standard representation w.r.t. G.

Proof. 1f G is a standard basis for M, then for every o # f € M it holds that #(f,G) = o.
If o # f € M has a standard representation w.r.t. G, then there exists ¢ € G such that
Im(g) | Im(f). Thus G is a standard basis for M. O

The main problem of the characterization in Theorem [717is that it does not outline
any idea of how to compute a standard basis using a termination-ensured algorithm.

1.8 THE BASIC STANDARD BASIS ALGORITHM

Until now we have defined what a standard basis G for a submodule M in M is and we
have already found a nice characterization of standard bases in Theorem [-7T7} requiring
any element o # f € M to have a standard representation w.r.t. G. The problem is that
there are infinitely many elements in M, thus we are still missing an algorithmic way to
compute a standard basis given any submodule M.

In this section we introduce the notion of s-vectors. Those are a special linear combi-
nation of two module elements, which enable us to give an algorithmic characterization of
standard bases.

Note that we are only interested in how to compute a standard basis in this chapter. The
question of computing them efficiently using various kinds of optimizations is postponed
to the following chapters.

Definition 1.8.1. Let f, g € M\{o} such that Im(f) = x*¢; and Im(g) = xPe;. Let G =
{g:, ..., g} be afinite subset of M.

(1) We define the least common multiple of f and g by
lem (Im(f),Im(g)) =7, y = (max{(xl,ﬁl}, ...,max{ay,, B,}) e N".
Moreover, we introduce a shorthand notation 7(f, g) := lem (Im(f),1m(g)).

(2) Analogously, we define the greatest common divisor of f and g by

ged (Im(f),Im(g)) := %7, y = (min{a,, B, },. .., min{a,, B, }) e N".

36 1 An introduction to standard bases

(3) We define the s-vector of f and g by

lc T(f;g) —lc (f.8) ifi = i,
S(f:g) ::{ (g) x f (f) xB g)
o else.
If f, g € P are polynomials we also call S(f, g) the s-polynomial of f and g
(4) We say that S(f, g) has a standard representation w.r.t. G if
S(f.8) = Zpigi, pi€P,

such that
max{lm(p;gi) [1<i<r} <7(f, g).

Remark 1.8.2.

(1) For f, g € P think of P = P, i.e. two polynomials can be assumed to always have
i = j in the above definition of an s-vector.

(2) The definition of a standard representation of S(f, g) is strongly connected to those
given in Definition 712} To see this, note that Im (S(f, g)) < 7(f, g).

Theorem 1.8.3 (Buchberger’s Criterion). Let G = {g,,..., g} be a subset in M. Then the
following are equivalent:

(1) G is a standard basis.
(2) Foralli,je{u,...,r}, S(gi, gj) has a standard representation w.r.t. G.
Intuitive idea of proof sketched.

(1) = (2) By Theorem[7I7levery o # f € M has a standard representation w.r.t. G. For
any two elements g;, g; € G it holds that S(g;, gj) € M, thus clearly[(2) holds.

(2) = (1) Remember that if S(f,) has a standard representation w.r.t. G. This is equiv-
alent to # (S(f.£),G) = o by Lemma[t716} Any element g € (G) can be written
as

g= ZP:‘gi’ pieP

finite

1

r

Z(Z agmy)gi, ag € IC, mg € Mon(xy,...,x,).
ik

For an intuitive understanding let us assume the special situation that

g=a,mg —amyg,.

If we want to compute the normal form of g two situations can arise:

1.8 'The basic standard basis algorithm 37

(1) aym;lm(g,) # a,m,1lm(g,), say a,m,Ilm(g,) > a,m,Ilm(g,). Then we can
reduce g to zero by

n(g,G) = aym, g — a,m,g, — aym, g + a,m,g, =o0.
| ——— ————
g 1st reducer 2nd reducer

(2) a,m,lm(g,) = a,m,lm(g,). From Definition [L8alit follows that

7(8 &) | mIm(g).

Thus there exist m’ € Mon(x,, ..., x,) and a’ € K such that

a'm't(g,, g) = aym, Im(g,).

This enables us to rewrite a,m, g, — a,m, g:
a,m g, — A, My g, = a,m,S(gl’ gZ)
By our assumption 77 (S(gi, g;),G) = o, thus (g, G) = o.

Remark 1.8.4.
(1) Note that restricting the number of s—vectors in Theorem by assuming that
i > jis no problem:
a) S(gi,gi)=oforalie{s,...,r}.
b) S(gi,gj) =-S(gi>gj) foralli,je{1,...,r}.

(2) In some textbooks the combination of Theorem [717] and Theorem is called
Buchberger’s Criterion. We divide this into two parts, as Theorem [1.8.3]is the main
part we are interested in from the computational point of view in this section.

This enables us to compute standard bases in finitely many steps.

Remark 1.8.5. If < is a well-order STD is also known as Buchberger’s Algorithm. This special
case of the above presented algorithm was published first in Bruno Buchberger’s PhD thesis

([32D).

Two notions appearing the first time in Algorithm [are important for our further in-
vestigations.

Definition 1.8.6. The set P defined in Line & of Algorithm [{]is called pair set. The tuples
(f,g) € P are called critical pairs. The degree of the critical pair (f, g) is defined to be

deg (z(f. ¢))-

Let us proof why STD is an algorithm computing a standard basis.

Theorem 1.8.7. Let F ¢ M be the input of STp. Then STD is an algorithm computing a
standard basis G of (F) w.r.t. <.

38 1 An introduction to standard bases

Algorithm 4 Standard basis computation w.r.t. < (STD)

Input: F={f,..., f,} asubset of M, NF a normal form
Output: G a standard basis for (F) w.r.t. <
: G« F
v P {(fuf) i]}
3: while (P + @) do
4 Choose (f, g) from P.
. P P\{{(f9)}

5

¢ heslf.e)
7 h <—NF(h,G)
8
9

if (h # o) then
P<Pu{(gh)|geG}
10: G+« Gu{h}

1: return G

Correctness and Termination of Algorithm g}

(1) Correctness follows from Theorem[1.8:3]as well as the fact that all normal form algo-
rithms (GNF, GNF,.q4, and LNF) compute correct normal forms.

(2) If h # o in Line[8 then by Property[(2)] of Definition 712 Im(h) ¢ L(G). Thus
whenever such an element 4 is added to G, then L(G) strictly increases, i.e. L(G) &
L(G u {h}). As M is Noetherian we know by Lemma that this chain of
increasing modules has to become stationary. This means that at some point no new
elements h are added to G, and thus no new critical pairs are added to P. So P = &
and STD terminates after finitely many steps.

O

Remark 1.8.8. Note that the normal form used in Line [7]in Algorithm [is not explicitly
given: Depending on the order and the variant of standard basis we want to receive this
choice varies:

(1) If<isaglobal order and there are no further requirements on the basis, we use GNF
(Algorithm m).

(2) If < is global and we want to get a reduced standard basis, we use Algorithm i Be
careful, in this situation the return value G of STD is not a reduced standard basis.
For this we have to delete every element g € G such that there exists ¢’ € G with
Im(g’) | Im(g) at the end, and we have to normalize the remaining elements.

(3) If < is non-global, we use the normal form described in Algorithm [3|to prevent a
loop of infinite reduction steps.

At this point, we finish the main part of our introductory chapter with an example of
a standard basis computation for an ideal w.r.t. a global order. We describe every step in
detail, although many computations turn out to be “useless” Exactly these steps are the
main issue with STD and need to be avoided as much as possible.

1.8 'The basic standard basis algorithm 39

Example 1.8.9. Let F = {p,, p,, p;} be a finite set of polynomials in K[x, y, z],

pr=xy—-1
p2:x2_1:
ps=y —xz.

Let <4 be the graded reverse lexicographical order on K[x, y, z]. For the choice in Line[]
we use the rule first in, first out. In this example we use the reduced normal form, thus we
stick to Algorithmz We set G := {p,, pa, p; |- Initially P is set in the following way:

pP:= {(Pz’Pl)’ (P3> P1)» (Pa’PZ)}-

The computations start with S(p,, p;):
P:=P\{(ps,p1)}
S(parpr) =ypo—xpr=x"y—y-x"y+x
=x-y.
Clearly, h := #(x — y) = x — y, thus we need to add h to G:

Pai=x-Yy
Pi=PU{(pgpr)s Py)y (pas 3)}
G:=Gu {P4}

Next we go on with S(p;, p,):

pP:= P\{(Pa’pl)}
S(psp)) =xps —ypr=xy" - x"z-xy"+y

=-x’z+y,
n(=x*z+y)=-xz+y+x’z-z
[—
zZps

=y-z
Thus the element p; := y — z has to be added for further computations:

P::PU{(Ps’Pl)’(PS’PZ)’(PS’Pa)’(Ps’IM)}
G:=Gu{ps}

Next pair to be computed:

P:=P\{(ps, p2)}
S(psp2) =x°py =y’ po=x"y =X’z =x"y + y*
=-x’z+y?,
H(=x*z+y*)=-xXz+y* +x°z-xz-y* + xz
—

—
*zp2 P

40 1 An introduction to standard bases

So nothing new has to be added and we can go on with the next pair in P:

p:= P\{(Pwpl)}
S(parpi) =yps—pr=xy-y —xy+1
=—y’+1,
n(=y*+1)=-y"+1+y* - yz+yz-2°
—— Y
JYPs Zps
=-Z2+1

Before adding this element to G, multiply it by —1 and add new pairs with this element to
P:

Psi=2"—1
P:=PU{(ps:p1)> (s> P2)> (P> P3)s (s> P4)» (P> s) }
Gi=Gu{ps}

Next pair to be computed:

pP:= P\{(P4’p2)}
S(p4rp2) =xpy—pa=x"—xy-x"+1

=-Xxy+1,
n(-xy+1)=-xy+1+xy—-1
—
3
=o.

It turns out that for each pair remaining in P the normal form of the corresponding s-
polynomial is zero. Thus we get a Grobner basis

G = {p1, 2> P3> Pa» P5> Ps -

To receive a reduced Grébner basis we have to remove some of the elements. Easily one
sees that the uniquely defined reduced Grobner basis of I is given by

G'={py Pss P }-

Remark 1.8.10. Note that all 15 s—polynomials mentioned in Example[i.8.9]are generated in
Algorithm#land most of the normal form computations consist of various reduction steps.
This is very time consuming: Together with the two reductions to zero we have explicitly
done above, we have 12 s—polynomials altogether, which are computed and reduced, but
which do not give any new information for the standard basis we are searching for.

So let us have a more detailed look at the overhead STp has computed in this example:

(1) 15 s—polynomials are generated and their normal forms are computed.

1.9 On the complexity of standard basis computations 41

(2) 3 of them add new polynomials, which need to be added to receive a standard basis
for (F) in the end.

(3) 12 of them, i.e. ﬁth of the investigated data is just useless.

In ChapterZwe give possible optimizations to compute as much as possible useful data
only.

1.9 ON THE COMPLEXITY OF STANDARD BASIS
COMPUTATIONS

As a last step in our introduction to standard bases let us give a small insight to the
area of the complexity of standard basis computations. For this, we restrict ourselves to the
polynomial case.

For algorithms one mostly measures the complexity in two different types: time com-
plexity and space complexity. Let us introduce the so-called Landau-notation:

Definition 1.9.1. Let g : N — R be a function on the natural numbers. An algorithm A
has a complexity of O(g(n)) if and only if a Turing machine can compute the result of an
input of A in ¢ - g(n) steps for constant ¢, n € N.

Example 1.9.2. Assume that the time complexity T'(n) of an algorithm is given by T'((n) =
687n° + 123n* + 12. Then we write T(n) = O(n°).

In complexity theory one defines so-called complexity classes to group algorithms. For
us, two of them are important:

(1) A problem is known to be P if the corresponding algorithm solving it, is O(g(n)),
where g is a polynomial in #.

(2) A problem is known to be Expspack if the corresponding algorithm solving it, is
O(zg(”)), where g is a polynomial in 7.

Let us try to parametrize the computation of standard bases based on the corresponding
input. There exists a quite natural setting of parameters to define a finite set F = {f;,..., f;}
of polynomials in P:

(1) the number n of variables in P,
(2) the number r = #(F) of elements in F,
(3) the maximal degree dp,y := max{deg(f;) | fi € F},and

(4) the maximal coefficient ¢y := max{ all coefficients of f; | f; € F}.

42 1 An introduction to standard bases

Having this as input data, the complexity of computing the standard basis G relies on
them:

(1) The maximal degree during the computation is bounded by a function in #, r and

dmax~

(2) Also #(G) is bounded by a function in n, r and dpax.

(3) The maximal coeflicient appearing during the computation is bounded by a function
in n, 1, dmax and cmax.

In some special situation these upper bounds can be given, e.g. [17[86H88}123,125]. We
do not want to discuss this in detail and just give a feeling for “how hard” this problem
really is in general.

In [41,42] it is shown by Caniglia, Galligo and Heintz that the complexity of computing
a Grobner basis w.r.t. the graded reverse lexicographical order <g, for the input set F =

{fir.-os fr}is
) o(dn,

max

)if#({aeK" | fi(a)=oforall f; € F}) < 00, and
(2) O(d:

max

) if the solutions at infinity are also finite.

On the other hand, the same computations w.r.t. the lexicographical order <j, lead to
computations with a complexity of dstr 9,
In 1990 Doubé has presented an upper bound for the degree of elements in the reduced

standard basis. As already discussed above, it strongly depends on the input data.

Theorem 1.9.3 (Dubé). Let I = (f,,..., f;) € P be an ideal, < any monomial order on P.
The degree of polynomials in the reduced standard basis for I has the upper bound

-1

2

D:= 2(% + dmax)
2

Proof. See [53]. O

This means that we have a doubly-exponential bound on the degrees of the elements
in the standard basis. In [127] the following is shown:

Theorem 1.9.4 (Mayr). Given an ideal I in a polynomial ring of n variables, generated by
finitely many polynomials, the reduced standard basis G for I w.r.t. a monomial order < can
be computed in EXPSPACE.

All in all we have to state the following:

Remark 1.9.5. The complexity of standard basis computations can be doubly-exponential
in the number of solutions of the polynomial system.

Thus the problem in focus of this thesis can be characterized as being “not so easy”.
With this premises in mind, it makes sense to think about how to improve the compu-
tations of standard bases. This is the content of the following chapters.

2 WAYS TO IMPROVE STANDARD BASIS
COMPUTATIONS

In Chapter @ we have introduced the topic of standard basis computations. Closing
Section [with an example of a Grobner basis computation for an ideal we have seen
that, also the standard algorithm is quite easy to understand, it has one huge drawback:
redundant computations. Most of the computations in Example[1.8.9]generated new critical
pairs not needed for the Grébner basis. Their corresponding s—vectors are computed and
then the reduction process starts. In the end, these redundant reductions just tell us that
the s—vector we investigate already fulfills the Buchberger Criterion (Theorem and
we do not need to add something new to the intermediate Grobner basis. This is not what
we want to have. We would like to only compute new data needed for the basis. Thus one
needs to think about ways to distinguish the useful and the useless data.

In this chapter we present ideas how to improve STp. This can be done not only by
adding some criteria for the critical pairs, but also by different implementations of STp. The
main differences can be found in the decisions one has to take during the computations.
Other ideas related to speed—up the computational time of standard basis algorithms are

44

2 Ways to improve standard basis computations

given, too.
Besides considering criteria to reject useless critical pairs there have been other ideas
developed which try to improve the following important steps of STD:

(1)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

In Linefof AlgorithmZwe have to choose the next critical pair STD shall investigate.
In the case of homogeneous elements as input one can always sort the pair set P by
the degree of the critical pairs, whereas in the inhomogeneous case the sugar degree
gives a good choice. It can be understand as “the degree the corresponding element
would have if we start with homogeneous elements as input” and was presented first
in [85]. Thus we get some strategies how to order and how to choose critical pairs from
P.

In Section 23 we present the two main criteria to pick out useless critical pairs in
advance, which go back to Buchberger, [3435,109]]. Different attempts using these
criteria where developed. Subsequently we present the one being most influentual,
the Gebauer-Modller implementation ([81]) in Section =3}

Another important point of STD is the normal form computation of the s—vectors.
In [114}[117] Lazard presented a new way describing the reduction steps with the
Sylvester matrix. This method was improved in by Faugere in 1999.

Also the second possible choice in STD is investigated: If we have several possible
reducers, which one should be chosen? Some recent work is done in [[61], but a much
more comprehensive discussion can be found in [31]: The main idea is to store the
intermediate reduced elements if they have some nice properties which can be useful
for upcoming reductions.

One can use the Hilbert(-Poincaré) series to speed up the standard basis computa-
tion, as shown in [154]: Compute the standard basis G, w.r.t. a “nice” order <, and get
the Hilbert series. Then one can use the Hilbert series to get bounds for the number
of elements in intermediate versions of G,, the wanted standard basis w.r.t. <,. This
idea is discussed in Section 7}

Other ideas are related to the monomial order the computations are based on: If
you want to compute a standard basis G, in a given order <,, but this is too hard
a problem, try to compute the standard basis G, of your input w.r.t. some related
order <,. Afterwards, compute G, using G,. There are several attempts of doing this

([238}[421/67[1523159]]). We discuss the most efficient ones in Section 28]

A standard basis computation over the rationals as ground field K could be reduced
to several computations of the same input over ground fields of characteristic p < oo,
p aprime number. Those ideas have been evolved a lot over the last years, due to the
fact that those modular computations benefit from multi-core processors, which are
designed to compute several independent workloads in parallel ([6l[103153]). We
give a deeper insight in this topic in Section

A complete different approach to compute standard bases is done using involutive
methods ([1,[24}25]). Using a slightly different definition of the term “division”

2.1 The problem of zero reductions 45

instead of the normal one leads to a new normal form computation. Based on this
so—called involutive bases can be computed, which are related to standard bases.

The intention of this chapter is to make the reader aware of how to improve standard
basis algorithms in the classical sense, i.e. without using signatures. The knowledge and un-
derstanding of these ideas is essential to grasp the benefits and problems of the signature—
based approach.

2.1 THE PROBLEM OF ZERO REDUCTIONS

The main drawback we see for the standard basis algorithm STD as presented in Sec-
tion[L8lis the vast number of reductions to zero. These reductions are in some sense uselss
for the standard basis computation.

Firstly, let us define what the term “useless” means in our setting.

Definition 2.1.1. Let f, g € M. A critical pair (f, g) in STD is called useless if and only if
7 (S(f,g)) = o. If a pair is not useless we call it useful.

The concept behind this notation is the following: We want to compute a standard basis,
i.e. weneed to getaset G = {gi,..., g} such that S(gi,g;j) =oforalli,je {1,...,s} with
i>j

St starts with a set of elements, say F = {fi,..., f;}. Some of the s-vectors S(f;, f;)
might reduce to zero w.r.t. F, others may not. On the one hand, those, which do not reduce
to zero, are important for us, for example, assume that S(f;, f;) reduces to an element
fi, i # ow.r.t. F. We need to ensure that it reduces to zero, if we want to receive a standard
basis by Theorem [1.8:3] Thus the only possibility to achieve this situation is to enlarge F,
F"=Fu{f;;}. By construction it is clear that S(f;, f;) reduces to zero w.r.t. F'. Iterating
this process over all s-vectors, in the end, we receive a standard basis G. On the other
hand, those s—vectors reducing to zero w.r.t. F are not important at all. At the end of their
reduction we do neither enlarge F nor do we generate new critical pairs. Thus, nothing
in our data set has changed when 7 (S (fx-f1)) = 0. We could compute G without even
considering the s—vector, its reduction is useless for our task.

In bigger computations more than 9o percent of the reduction steps done in STD lead
to zero reductions, even in Example a very small example we have done by hand,
80 percent of the computed data does not influence the computation of G and produce
computational overhead. We want to avoid this; for bigger problems we even have to do
so as otherwise the standard basis is not computable even on super computers respectively
compute servers.

46 2 Ways to improve standard basis computations

2.2 SELECTION STRATEGIES FOR CRITICAL PAIRS

We have seen that there are two different choices in the standard basis algorithm Stp:
(1) How to choose the next critical pair (f, g) from the pair set P?
(2) How to choose the reducer in NF if there are different possible ones?

A discussion giving some answers and heuristics for the second question can be found
in Section

Here we focus our attention on the question how to choose the next critical pair from P
efficiently. What we want to do in terms of the pseudo code of STD is to improve Line@from
Algorithm[4] Instead of just picking a critical pair from P we want to select a special subset
of P and sort the included elements, such that the received order, in which to compute and
reduce s-vectors, is hopefully more efficient for standard basis computations. We call the
algorithm to select a special subset of P SELECT, instead of Line[d]in Algorithm []we have
to be a bit more explicit:

Algorithm 5 Standard basis algorithm including selection strategy (STD)

Input: F={f,,...,f,} asubset of M, NF a normal form
Output: G, a standard basis for (F) w.r.t. <
: G« F
2 P {(fnf) |i> 1)
3: while (P + @) do
4 P < SeLecT(P)
P« P\P'
while (P’ + @) do
(f,g) < First element of P’
PEP\{(f.9))
h<S8(f.8)
10: h < NF(h,G)
1 if (h # o) then
12: P« Pu{(gh)|geG}
13: G < Gu{h}
14: return G

2 ® N 2w

In Line[g]a special, ordered subset P’ € P is chosen. Next, only the elements of P’ are
taken into account (Line[6), whereas all elements of P\P’ are held back. So the “magic”
happens in SELECT. Let us give some examples of possible selection strategies for P":

Assume the following situation: We have just computed the normal form of S(f, g),
possibly added a new element h = 5 (S(f,g)) # o to G, generated new critical pairs with
h and added them to P. What is our next choice considering P? One could just choose the
oldest element from P, i.e. the element added to P before all other elements currently in
P have been added. Other choices could be: the youngest element, the element of lowest
lcm, the element of highest lcm, etc.

2.2 Selection strategies for critical pairs 47

The choice of these elements is very important for the performance of Stp: The critical
pairs possibly become new elements in G, and thus new reducers for further normal form
computations. For example, assuming < to be a global order, it is not helpful to get a new
element h from a normal form computation of an s-vector with deg(h) = 8, if there are
hundreds of critical pairs left in P, whose s—vectors have degree < 8.

()

(2)

Let us start with a special situation: Assume for the moment that the input F =
{fi»..., fr} of STD is homogeneous, i.e. all f; are homogeneous. We note that the
s—vectors S(f;, fj) for any two elements f;, f; € F are homogeneous, too, by con-
struction. Computing the normal form, we only have homogeneous reducers, thus
again, (S(fi, fj)) is homogeneous. So no inhomogeneous elements are added to
G ={g,...,g} during the computations of STp. Moreover, the following impor-
tant equation holds:

deg (1(gr> 1)) = deg (S(gr-£1))-

If (S (gk»£1)) # o then even the following holds:

deg (7(gk- g1)) = deg (S(gi-g1)) = deg (1 (S(gr-21)))- (221)

One of the most common and natural strategies to choose critical pairs is the nor-
mal selection: SELECT(P) takes all pairs such that the degree of their lowest com-
mon multiple is minimal, removes them from P and adds them to P’. Next P’ is
either ordered by increasing (resp. decreasing) lem, or by the indices of the elements
generating the pair (i.e. the point, when the pair has been added to P), or just left
unordered. If the input of STD is homogeneous, with each selection the degree of
elements in P’ increases. This strategy was defined at first by Buchberger in [33].

Assuming the normal selection if the input of STD is inhomogeneous, we see some
drawbacks of this method: Equation Zzadoes no longer hold, but only the inequal-
ities
deg (7(ge- 81)) > deg (S(gr- 81)) > deg (n(S(g-1)))-

Thus the situation d := deg(7(gk. g1)) > deg(#(S(gk>g1))) is rather possible.
This implies that the lcm of pairs generated by g’ := (S (Lk gz)) can be lower
than d. Thus selecting the next subset of P, P’ can consist of elements of degree
lower than d. As the drop of the degree during the reduction process of s—vectors
can be rather big, we end up computing lots of elements of lower degree after the
computation of elements of higher degree. This is not really efficient as explained in
the above discussion. Thus to avoid the processing of elements of a degree d before
elements of degree < d are treated, in the inhomogeneous case, one just selects one
element from P at a time, namely the one whose lcm fulfills the following property:

7(gr &) = min{7(gi, ;) | (gi» gj) € P}.

Although this increases the likelihood of taking the element of lowest possible de-
gree, it still has a big disadvantage: Assume a lexicographic order in the inhomoge-
neous case. Then STD could compute two elements with the variable x, eliminated.

48

(3)

2 Ways to improve standard basis computations

In this situation the algorithm always processes the pairs generated by these two
elements until a standard basis of the ideal generated by these two elements is com-
puted. Not until this point the other elements are taken into account. This could have
a really bad impact on the runtime and the memory consumption of the algorithm.

Note that the normal strategy is still much more efficient than just choosing any
element of P arbitrarily. Grouping pairs of the same degree has a great impact on the
performance of the algorithm.

A commonly used idea to cope with those bad behaving inhomogeneous input is
to homogenize it as explained in Section 5} Computing the standard basis G of the
homogenized inputEl with the normal strategy is safe and efficient. In the end, one has
to dehomogenize G and receives a standard basis G’ of the initially inhomogeneous
input. Again, there is a big downside of this approach: G can be a lot larger than G/,
i.e. alot of overhead / useless data for the original problem is computed.

Another possibility to handle such inhomogeneous input is to compute a standard
basis w.r.t. another order and deduce the basis one searches for from it. A short
overview of corresponding methods is given in Section 2.8

A solution of this problem using just a different selection strategy is explained next.

The so-called sugar selection was presented 1991 in [85]. The main idea is to equip
each critial pair with another degree, the so-called sugar degree which is the degree
the pair would have if we would have homogenized the input in the beginning. The
crucial point is now to order the pair set P in 3 different steps by the following prop-
erties (in the given order):

a) sugar degree,
b) usual degree (w.r.t. the given order),
c) indices of the generators of the critical pair.

This enables us to sort the pairs as they would be sorted in the case of a homoge-
nization, but without the drawbacks of the overhead a real homogenization would
raise.

Let us define the sugar degree of a critical pair explicitly as it is also important for
signature-based algorithms computing with inhomogeneous data. We show the close af-
filiation between the sugar degree and the signature of an element in Section[73

Definition 2.2.1. Let the finite subset F = {f,, ..., f,} of elements f; in M be the input for
StD, let t € P be a term.

()

The sugar degree of an initial f; is defined by
s-deg(f;) := deg(fi)-

(2) For any element g € G generated during the computations of STD and any term

t € M we define
s-deg(tg) := deg(t) + s-deg(g).

"Note, only the generators of F are homogenized, we do not homogenize I = (F).

2.3 Buchberger’s criteria 49

(3) Moreover, for any two elements g, h € G we define
s-deg(g + h) := max{s-deg(g),s-deg(h)}.

The above definition ensures that the sugar degree is the corresponding degree of the
computed elements, if we homogenize the input before STD starts its computations.

To end this section, let us state one last, nice fact about homogeneous standard basis
computations:

Definition 2.2.2. A finite set G = {g,, ..., g} in M of homogeneous elements g; is called
a d-standard basis if for all i,j € {1,...,s} with deg(7(gi,g;)) < d the corresponding
s—vectors S(g;, g;) have a standard representation w.r.t. G.

Proposition 2.2.3. Let F be a finite set of homogeneous elements in M, equip STD with the
normal selection strategy. Denote the intermediate standard basis by G, let P’ c P be the
subset of all pairs of degree d during the computations of STD. At the moment all pairs of P’
are treated, i.e. P' = @, G is a d-standard basis for F.

Proof. By construction, all s-vectors S(gi, g;) with deg (T(gis gj)) < d have standard rep-
resentation w.r.t. G. O

We postpone the discussion of selecting a “good” reducer to Section [2.6las this problem
is strongly related to the topics of sections 23— 25}

2.3 BUCHBERGER’S CRITERIA

Next we discuss the most obvious improvement of STD one can think of: Try to compute
the normal form of as few as possible s—vectors. The problem is that if we take not enough
of them into account, or the wrong ones, we do not receive a standard basis at the end of
STD’s computations.

Note that we give proofs (or at least sketches of them) for the two criteria stated, al-
though they can be found in any introductory textbook about computer algebra. The rea-
son for this is again that the reader should be able to compare the classical criteria to the
signature-based ones. It turns out that proving the correctness of signature-based stan-
dard basis algorithms is much harder than for their classical counterparts. This is due to
the fact that all attempts presented in this chapter are only based on investigating the crit-
ical pairs resp. s-vectors themselves, whereas one has to take care of much more structure
in the signature-based situation.

For an easier notation we restrict ourselves to considering only polynomials in P w.r.t.
a well-order in this section.

The easiest criterion is Buchbergers 1st Criterior] stated by Buchberger in [34]. It de-
pends only on the two elements f and g generating the s—vector S(f, g), but not on any

*Buchberger’s 1st Criterion is also known as Product Criterion.

50 2 Ways to improve standard basis computations

other element in P. The crucial point is that if Im(f) and Im(g) have nothing in common,
then the normal form of the corresponding s-vector is zero.

Lemma 2.3.1 (Buchberger’s 1st Criterion). Let f, g € P be two elements such that (f, g) =
Im(f)1Im(g). Then S(f, g) has a standard representation w.r.t. {f, g}.

Proof. 1t 7(f,g) =1m(f)Im(g), then we get
S(f>8) =le(g) Im(g) f ~1e(f) Im(f)g-

As the leading terms of the two summands cancel each other by construction we get

S(f,) =1e(g) Im(g) tail (f) —le(f) Im(f) tail (g).
Now we can compute the normal form of S(f, g) in two steps:

(1) For all terms s; in tail(f) we subtract s;¢ from S(f,g). In the end we get a first
intermediate normal form 5’ w.r.t. {g}:

1’ (S(f.8)) =le(g) Im(g) tail () — tail (f)g ~le(f) Im(f) tail(g)
tail (f) tail(g)
= tail(g) f.

(2) Clearly, we reduce this to zero by subtracting f; f for all terms ¢; in tail(g).
Allin all we have 1 (S(f,g)) = o. O

Using Buchberger’s 1st Criterion in Example would delete the following critical
pairs:
(P3>P2)> (P4> P3)> (P52 £2)> (P5: P4)s (Pss Pr)s - > (Pos ps).-

Thus 9 of the 12 s—polynomials which lead to zero are not computed if we use Buchberger’s
1st Criterion in STD when building new critical pairs, i.e. in lines@and g Checking the
greatest common divisor resp. least common multiple of Im(f) and Im(g) can be done in
much less computational steps than any reduction step in the example. Thus this is a big
improvement of STD.

Needless to say, there are still 3 critical pairs left in our example, which reduce to zero.
In practice, Buchberger’s 1st Criterion is an improvement of STD, but it does not find nearly
all useless critical pairs.

Their detection can be optimized by

(1) improving Buchberger’s 1st Criterion and
(2) adding another criterion to STD.
For Case[(1)] we can define an easy extension of Lemmap3g

Corollary 2.3.2 (Extended version of Buchberger’s 1st Criterion). Let f, g € P, m a mono-
mial in Mon(x,, ..., x,) such that for all t € supp(f) U supp(g) it holds that m | t. If

‘r(i £ = Im(f) %, then S(f, g) has a standard representation w.r.t. { f, g}.

m’> m m

2.3 Buchberger’s criteria 51

Sadly, in Example [1.829] this extended version does not detect any other useless critical
pair besides the ones also detected by the one presented in Lemma 31

Remark 2.3.3. Note that the extended version of Buchberger’s 1st Criterion does not need
much additional computations compared to the usual one: For any new element f we need
to compute the greatest common divisor of all terms ¢ € supp(f) once. Even assuming
densdl elements the time needed to compute the gcd is very small compared to a reduction
step when computing, for example, a normal form.

For Case[(2)|we use the idea developed in : Buchberger stated a second criterion,
and most of the classical standard basis algorithms are based on it.

Lemma 2.3.4 (Buchberger’s 2nd Criterionld). Let f>g, h € P, F afinite subset of P. Assume
that

(1) Im(g) | 7(f, h), and

(2) S(f,g) and S(g, h) have a standard representation w.r.t. F. Then S(f,h) has a
standard representation w.r.t. F.

Proof. Wl.o.g. we can assume that lc(f) = lc(g) = lc(h) = 1. Aslm(g) | 7(f, h) there
exist monomials m s, mj, in P such that

mye(f,) = T(f.h) = mye(g, h).
This gives us a rewriting for S(f, h):
_ihh) o 1(fh)
(k)= lm(f)f Im(h) :

e) o T(eh) (g h)
=" I T T Tm(g) € ™ m(g) ¢ Im(h)

=0

=myS(f,8) —mygS(g: h).

By assumption S(f, g) and S(g, h) have a standard representation w.r.t. F, thus S(f, h)
has a standard representation w.r.t. F, too. O

Reconsidering Example[1.8:9]again we could use Buchberger’s 2nd Criterion to see that
(ps» p») need not be computed: Im(p,) | 7(p;, p,) and the normal forms of S(p,, p,) and
S(p;, p1) are already computed. Thus by Lemma [2:3.4] we can securely remove (p;, p,)
from P.

Remark 2.3.5. Note that the efficiency (and also the correctness) of Buchberger’s 2nd Cri-
terion depends highly on the order in which the critical pairs are checked. Thus its imple-
mentation is not as easy as the one of Buchberger’s st Criterion. A very good implemen-
tation of both criteria is given by Gebauer and Moller in [81]. This is discussed in more
detail in Section [Z7]

3We have not defined this explicitly until now, just think of elements consisting of lots of terms.
4Buchberger’s 2nd Criterion is also known as Chain Criterion.

52 2 Ways to improve standard basis computations

Let us define some more notations.
Convention.

(1) In the situation of Lemma[z3-we say that (f, g) is detected by Buchbergers 1st Cri-
terion.

(2) Similarly, in the situation of Lemma[z3-gJwe say that (f, h) is detected by Buchberger’s
2nd Criterion.

Using Corollary z-3-7jand Lemma[Z:3.4) we can conclude an improved version of Theo-

rem[1.8.3
Corollary 2.3.6. Let G ={g,,..., g} be a subset in P. Then the following are equivalent:
(1) G is a standard basis.

(2) Foralli> je{1,...,r} one of the following hold:
a) S(gi,g;j) has a standard representation w.r.t. G.
b) S(gi,gj) is detected by Buchberger’s 1st Criterion.
c) S(gi»gj) is detected by Buchberger’s 2nd Criterion.

Also the statement of Corollary [2.3.6] follows easily from the above discussion, imple-
menting it efficiently is a hard task. Next we discuss a highly optimized implementation of
a standard basis algorithm using Buchberger’s criteria.

2.4 THE GEBAUER-MOLLER IMPLEMENTATION

In this section we show in detail how the criteria presented in Section -3]can be imple-
mented in STp. Whereas Buchberger’s 1st Criterion is no problem, his 2nd Criterion is a
bit harder to integrate in STD. As in the last section, we describe the polynomial situation
w.r.t. a well-order only.

One possible problem is a two—out-of-three deletion: Assume f, g,k € P such that
Im(g) | 7(f,h). If two of the three lowest common multiples involved are equal, e.g.
7(f,g) = 7(f, h), then one can choose which critical pair to be removed:

(1) Remove (f,h), but compute S(f,g) and S(g, h), or
(2) remove (f, g), but compute S(f, h) and S(g, h).

Both choices are possible, the problem is not to remove both at the same time, (f, h) by
g and then (g, h) by f. One way would be to always check that two of the corresponding
critical pairs have been investigated, before removing the third one. This generates some

2.4 The Gebauer-Moller implementation 53

overhead in the algorithm, but ensures the correctness. As we are interested in efficient
standard basis algorithms, this is not an adequate solution.

In the following we state the so-called Gebauer-Moller implementation of a standard
basis algorithm ([81]]). It removes critical pairs as early as possible, doing the criteria checks
in different steps. To understand its correctness we need the two following, easy statements:

Lemma 2.4.1. Let f, g, h ¢ F c P. Then the following are equivalent:
(1) Im(f) [7(g, h).
(2) 7(f.8) | 7(g h).
3) =(f,h) [(g h).

Proof. [(1)]=>[2)]and[(2)]=>[(3)|are clear. Assuming that 7(f, k) | 7(g, h), there exist mono-
mials 1, A ¢ € P such that

At(f,h) = 7(g, h)
Aslm(f) = (g, h).

Thus[(3)]=[(1)] O

Corollary 2.4.2. Let f, g, h € F c P, Ag, Ay, be two monomials in P such that Ay > 1, A, > 1
and

Ae(f.8) = 7(g),
At(f,h) =1(g h).

Then ©(f.g) + (f.h) and T(f,h) + 7(f.g).

Proof. Assume that 7(f, g) | 7(f,h). Then by LemmapgZ11lm(g) | 7(f, h). Moreover,
7(g,h) | 7(f,h). This contradicts the assumption that A, > 1. The second statement
follows analogously. O

The Gebauer-Moller implementation, presented in the follwing, consists of two sepa-
rate algorithms:

The only difference to Algorithm [from Section Z2is the usage of another algorithm,
called UPDATE, when new elements are added: In UpDATE the criteria of Section are
used to check which pairs should enter the set of critical pairs P.

Let us have a closer look at Algorithm [7} Buchberger’s criteria are checked in 4 steps:

(1) InLinemall critical pairs (f, ¢) not being generated by h are checked by Buchberger’s
and Criterion w.r.t. h. But only those pairs are deleted where 7(f, g) # 7(f, h) and
7(f,g) # 7(g, h). Only in this step elements of P,1q can be removed from the set of
critical pairs. Later on only elements including / are checked and possibly deleted.

(2) InLineg]we search in the set P of all critical pairs including & for pairs (f, h), (g, h),
whose least common multiples are multiples of each other: 7(f, h) | (g, h). In this
situation we remove the pair (g, h) from P’. Note that by Corollary =72 for those
(f.h), (g, h) the corresponding (f, g) is not deleted in the first step.

54 2 Ways to improve standard basis computations

Algorithm 6 Improved standard basis computation w.r.t. < (GM)

Input: F={f,..., f,} asubset of P, NF a normal form
Output: G, a standard basis for (F) w.r.t. <

1t G« fl

2 P« @

3 for (i=2,...,r)do

4 P < Uppate(P,G, f;)

5: G+« Gu {f,}

6: l<r

7. while (P + @) do

8: P’ < SeLECT(P)

o P« P\P
10: while (P’ # @) do
1: (f,g) < First element of P’

12: P' < P'\{(f.g)}
13 h<S8(f,8)

14: h <—NF(h,G)
15: if (h # o) then

16: f1+1 <h

17: P < UppatTE(P, G, fi11,)
18: G+ Gu {flﬂ}

19: I« 1+1

20: return G

(3) The third step is very similar to the second one: In Line g we start deleting all those
(g, h) from P" where 7(f,h) = (g, h). With the same argument as above, the
corresponding pair (f, g) is not deleted in step 1.

(4) As the last step, we check all remaining pairs in P’ by Buchberger’s 1st Criterion and
delete those detected.

Remark 2.4.3. Note that a crucial point of any implementation of Buchberger’s 1st and 2nd
Criterion is to check the 2nd Criterion first, the 1st one later. Why is this so important?
Deleting one useless critical pair from the algorithm the 2nd Criterion needs three pairs,
say (f,g), (f,h) and (g, h). Assume that we have already considered (f, g) and (f, h),
then we can delete (g, k). Now let furthermore 7(f,g) = Im(f)Im(g). Then we can
also remove (f, ¢) and only need to compute (f, h). Doing this process the other way
around, we check the 1st Criterion first, which means that we delete (f, g) before we check
the 2nd Criterion. Thus (f,h) and (g, h) are left and we cannot remove any of them.
This should illustrate that the Gebauer-Méller implementation is highly efficient checking
Buchberger’s 1st Criterion as last step in[(4)}

This implementation is a very efficient one: It does not depend on the selection strategy
of the pairs, it does not depend on the order <. Moreover, it checks critical pairs in the mo-
ment they are generated and does not keep them until they are selected; this saves memory

2.5 Normal form computations and their relation to Gaussian elimination 55

Algorithm 7 Updating the set of critical pairs (UPDATE)

Input: P4 a set of critical pairs, G a subset of P, h € F
Output: P, a set of critical pairs
1: forall (f, g) € Pold do
if (Im(h) | 7(f, g) and 7(f, h) # 7(f,g) and 7(g, h) # 7(f, g)) then
Poa < Poia\{(f> 8)}
P {(f.h)| f € G}
forall (f,h) e P'do
Fix (f,h) e P".
forall ((g,h) e P'\{(f,h)})do
if (31 >1s.t. 7(f, h) = Ar(g, h)) then
P" < P'\{(g,h)}
10: forall (f,h) e P’ do
11 Fix (f, h) eP.
1 forall ((g,h) e P\{(f,h)})do
13: if (T(f,h) =1(g,h)) then
w P e PA{(gh)
15: forall (f,h) € P’ do
6. if (7(f, h) =1Im(f)Im(h)) then
v P e PA{(f.h)
18: Phew < oldUP’
19: return Py

[

L ® N v ke

and overhead in the computational point of view. SINGULAR’s standard basis algorithm is
based on a highly optimized version of the Gebauer-Moller implementation together with
a lot of computational tricks.

2.5 NORMAL FORM COMPUTATIONS AND THEIR RELATION
TO (GAUSSIAN ELIMINATION

In this section we show how normal form computations are related to Gaussian elimi-
nations. We give a very short overview of the main ideas as the topic is not in the focus of
this thesis. Nevertheless, every signature-based standard basis algorithm can be equipped
with a so-called F4-ish reduction, thus the importance of the knowledge of the main ideas
should be self-evident.

Note that we explain the main ideas only in terms of ideals resp. polynomials w.r.t. a
well-order on P, to keep this introduction as easy as possible and to not confuse the reader
with overwhelming notations.

56 2 Ways to improve standard basis computations

In the late 1970s Lazard was the first who discovered a relationship between the com-
putation of a standard basis and the computation of the resultant of the Sylvester matrix
([(14,116}[150]). In these days elimination theory got some new life and bigger examples
started to be computable.

In these first approaches the computation of the resultant was restricted to two polyno-
mials in only 1 variable. Having two polynomials f = ¥¥ a,x', g = Z;':o bjx’ € K[x] the
Sylvester matrix of f and g is defined to be

s ... ap O ... 0
] times o a, ... ?k o ... o
) .. o 4, ag
b, by o o
k times o b ?l ° °
o) o b, b,

where k need not be equal to I. If we denote the above matrix by Syl(f, g) we have the
property that ged(f, g) is not constant if and only if det (Syl(f, g)) = o. The main prob-
lems of this method are:

(1) Itis only usable in the univariate case.

(2) Itis only usable for two polynomials. One can use this method recursively on more
than two polynomials, but then the degree of the generated polynomials increases
exponentially, thus the performance is very bad.

A generalization of the Sylvester matrix is the Macaulay matrix, discovered first in [120]:
This solves the above mentioned drawbacks of the Sylvester matrix: It can be used in the
multivariate case and for finitely many polynomials at the same time. Thus solving alge-
braic systems was possible with this construction.

Sadly, this was still not optimal, and Stp has a way better performance computing
Grobner bases to prepare the resolving of systems of algebraic equations. In 1999, Faugeére
presented the F4 Algorithm([61]). The main differences to STD are:

(1) F4 does several normal form computations simultaneously.
(2) F4 uses Gaussian elimination to compute the normal forms of s—polynomials.

(3) F4 precomputes all possible reducers for a bunch s—polynomials before any reduc-
tion step takes place.

F4 transforms the polynomial data into rows of matrices. The reduction process itself is
nothing else but a special Gaussian eliminationf] without swapping columns. We present
the pseudo code of F4 in Algorithm[§

Let us assume F = {f,, ..., f,} as input for F4. We want to compute the standard basis
G for (F).

5In the following we always use “Gaussian elimination” as short notation for “Gaussian elimination without
column swaps”.

2.5 Normal form computations and their relation to Gaussian elimination 57

Algorithm 8 Faugere’s F4 Algorithm (F4)

Input: F={f,,..., f} asubsetof P w.r.t. <
Output: G, a standard basis for (F) w.r.t. <
G <« H-g, M« 3,P<2
2 G« f1
3 for (i=2,...,7)do

4 P < UppaTE(P,G, f)
5: G <~ G] {f,}
6: |« r

7. while (P + @) do

8:
9:
10:
11

12

P’ < SeLecT(P)
P < P\P'
(H,M) < SymMPre(P', G)
G' < F4RepucTioN(H, M)
while (G" + @) do
h « First element of G’
P < Uppate(P, G, h)
G+« Gu{h}
G" < G'\{h}

17: return G

)

(2)

First of all we build critical pairs (f;, f;j), precomputing the corresponding multi-
pliers for the s—polynomial construction, i.e. terms t;, t; in P such that ¢; 1t(f;) =
tj1t(f;). Note that using the algorithm UPDATE defined in Section 4 we can avoid
some useless pairs.

After having computed these data we select a bunch of critical pairs P’ out of the
pair set P by some selection strategy. Next the so—called symbolic prepocessing starts
in Line®l The pseudo code of this part is given in Algorithm

There we need to prepare the data set a bit (Linesm-[8): We compute the multiples for
generating the s—polynomials corresponding to the critical pairs (Line[7) and store
the corresponding elements in a set H. Besides this, we store all included monomials
in another set called M (Lines[Bland[r7). Note that the leading monomials are added
to M at the end of the algorithm: We do not need to search for reducers of 1,1Im(g)
and A;Im(f), they reduce each other as they are equal (see also Remark z51[(3)).
Nevertheless, we need these monomials in M to be able to construct the matrix A as
explained in the following.

In Line 3] we search for reducers in G whose leading monomials divide any mono-
mial of the multiplied generators Ay, - f; of the critical pairs, which are stored in the
set H (Line[7), or the already found and multiplied reducers feqgred, also stored in
H (Line[m).

In the end we return both, H and M, the sets of all multiplied polynomials necessary
for the reduction (w.r.t. G) of the critical pairs in P’.

58

(3)

(4)

2 Ways to improve standard basis computations

This reduction process takes place in an algorithm called F4REDUCTION: We use the
cardinalities of the sets H and M to define a matrix A e IC*(F)*#(M) including all
data necessary. For all i € {1, . ,#(H)} and j e {1, .. ,#(M)} the entry

- _Jo if m; ¢ m-supp(h;),

" le(t) if i € supp(h;) and Im(tg) = m;.
We can think of A as the matrix consisting of the coeflicients of all polynomials in H,

whereas each row corresponds to a polynomial in H and each column corresponds
to a monomial in M.

At that point the normal form computations of the s—polynomials corresponding to
the critical pairs in P’ are nothing else but the Gaussian elimination of A without
column swapping. This means that we compute the row echelon form of A.

In Linesol - [i5]of Algorithm Iolwe retransform the rows of A’ to polynomials. From
the standard basis point of view we are only interested in those rows resp. polyno-
mials g; s.t. Im(g;) ¢ L(G).

In the end, back in Algorithm [8] we generate new critical pairs, again using Buch-
berger’s criteria to find useless ones, and start again selecting a new bunch of critical
pairs in Line[8]

Remark 2.5.1.

()

(2)

(3)

Algorithm [8] is not the basic F4 Algorithm presented in [[61]: The basic version of
F4 does not include the algorithm UPDATE to detect useless pairs. Neither is Al-
gorithm [Blequivalent to the improved F4 from [61]: This improved version includes
another optimization, the algorithm SiMpPLIFY, which tries to choose better reducers.
The discussion of this is postponed to the next section.

Again note that in F4AREDUCTION we are not allowed to swap columns when pro-
cessing the Gaussian elimination for A. This would change the monomial order (the
monomials labelling the columns would not be in decreasing order w.r.t. < any-
more).

Also note that we only need to search for reducers of the monomials in m-supp (f-
Im(f)) resp. m-supp (¢-1m(g)) in SYMPRE due to the fact that the leading mono-
mials are equal, A ¢Im(f) = Aglm(g). Thus the corresponding leading coefficients
are in one column. It follows that they reduce themselves and no further reducer
must be searched in G. This is similar to the usual normal form computation: We
first build the s—polynomial. By this, the leading terms already cancel out each other,
and we search for reducers of the terms left in S(f, g).

A similar argument holds for the intermediate added reducers in Line [16] of Algo-
rithmg) Of course, these leading monomials need to be added to M to determine
the number of columns of A correctly in F4REDUCTION (Line[f7]in Algorithm [j).

The following theorem is proven in [61]:

2.5 Normal form computations and their relation to Gaussian elimination

59

Algorithm 9 Symbolic preprocessing of possible reducers (SYMPRE)

Input: P a set of critical pairs, G a set of reducers
Output: H a set of polynomials, M a set of monomials

1:

2
3
4

5

H - Q) M <« Q, D < Q
while (P # @) do
(f,g) « First element of P
P<P\{(f.9)}
o e
Af < iy

(/.8
)Lg < Im(g)

H < Hu{le(g)Asf,1e(f)Aeg}

M« Mu{Asm; | mgsem-supp (f —1t(f))}u{Agmgy | mg e m-supp (g -1t(g))}

while (M # @) do
Choose m e M
M < M\{m)
D« Du{m}
if (3h € Gs.t. Im(h) | m) then
Ah <~ %
H<+<Hu {)th}
M« Mu {)Lhmh | my, € m-supp (h —lt(h))}

: M < Du{lm(h)|heH}
: Sort M w.r.t. <, decreasing leading monomials.
: return (H, M)

Theorem 2.5.2. Let F c P be the input of F4. Then F4 is an algorithm computing a standard

basis G of (F) w.r.t. <.

Let us investigate the main differences between STD resp. GM and F4 a bit more closely:

takes place. Then the next reducer is searched for, and so on.

F4 needs to precompute all reducers first, since otherwise one would not know the

(1) If we select only one critical pair at a time in Line [in Algorithm [8l F4 behaves
very similar to GM: It reduces one s-polynomial, possibly adds new data to P and
G, and then goes on to the next critical pair. The difference lies in the symbolic
preprocessing: On the one hand, F4 searches for reducers and starts the reduction
process (Gaussian elimination) after all possible reducers have been found. GM, on
the other hand, searches for a reducer, and if one is found, the reduction immediately

size of the matrix A. Other than that, it is a nice distinction between the different

steps of the inner loop of a standard basis algorithm:
a) Generate critical pairs.
b) Search for reducers.

¢) Reduce all preprocessed data.

60 2 Ways to improve standard basis computations

Algorithm 10 Reduction process in F4 (F4REDUCTION)

Input: Gand H = {h,, ..., h,} sets of polynomials, M = {m,, ..., m} a set of monomials
Output: G’ a set of polynomials

t Fl<g

2 A« Orxs

3 for(izl,...,r) do

4 for(jzl,...,s)do

5: if (Im(h;) = m;) then
6: Ai,j <—1C(h,)

7: hi <~ h,' - lt(hl)

& H—a, M« &

9: A’ < Gauss(A)

:for(izl,...,r)do
8i <O
for(jzl,...,s)do
if (A;j # o) then
8i < &+ Aijm,
F' <« F'u{g}
: G« {gieF |Im(g) ¢ L(G)}

. return G’

- e - m -
J a5 & & B E O

(2) The real idea is not to select only one pair, but to get a subset P’ of P including
several elements and to precompute the whole reducer data beforehand, doing only
one Gaussian elimination for all these elements.

Of course, one needs to be careful with the size of P’: If P’ is too big the resulting
coeflicient matrix A could be too large to be computed, possibly even to be stored on
a computer. One needs to find a good choice which pairs should be taken. A more
detailed discussion on this is given in Section 2} The best selection strategies for a
wide range of examples are the normal selection and the sugar selection.

Let us give a small example of how F4 works, using the normal selection strategy:

Example 2.5.3. Let F = {f,, f,} ¢ K[x, y,z] where

fi=xy-2*
L=y -2

We equip KC[x, y, z] with the graded reverse lexicographical order <4p,. Clearly, G = {g,, &, }
where g; = f; for i € {1,2}. We generate the only possible critical pair and add it to P:

P:={(g» g}

Clearly, P’ = P and we enter the symbolic preprocessing: We first compute the multipliers

2.5 Normal form computations and their relation to Gaussian elimination 61

of g, and g, and generate the sets H and M:

A& = Y& =xy" = yz'
Ao, =Xg = xy* —x2°
= H:={xy*—xz*,xy* - yz*}
M :={xy* xz*, yz*}.
Note that no reducer is found in G for xz* as well as yz?, thus we compute the matrix A:

xy* xz* yz*

A = 1 -1 0] Xg>
T 1 o -1 s

Computing the row echelon form A’ of A, we get a new polynomial g, for G:

xy* xz* yz*

A 1 -1 o xXg,
e o 1 -1 Vg — Xg»

Retransforming the two rows we get the set F” consisting of

!

g
8 =xz" - yz’

xy* - xz*

We see that Im(g!) € L(G), whereas Im(g,) ¢ L(G). Thus renaming g, := g, we get
G' = {g;}. Only one new critical pair is generated, (g;,), as 7(g;,) = Im(g;) Im(g,)
and thus the pair (g;, g,) is detected being useless by Buchberger’s 1st Criterion.
Again we have only one element in P’ = {(J o gl)}. Computing as in the first iteration we
get

A& =28 =xyz" - z*
Ae,8 = Y8 =xyz" —y'z’
= H:={xyz’ - y’2*, xyz* - z*}
M :={xyz*, y*z*, z*}.
This time there exists a reducer, namely g,, since Im(g,) = y* | y*z>. This means that we

add z*g, to H and the monomial part of zz(g - It(gz)) = —z* to M. At this point no
further reducers are found, thus we start again with F4REDUCTION:

xyz* y*z* 2zt
1 -1 o0 V&3
A, = 1 o -1 z*g
o 1 -1 z*g,
xyz* y*z* z*
1 -1 o Vs
= A= o 1 1] Z&-yg

o o o 28— (2286 - ¥g;)

62

2 Ways to improve standard basis computations

We see that none of the retransformed polynomials has a leading monomial not already in
L(G). So, no new critical pairs are generated, P = @ and F4 terminates. We have computed
the standard resp. Grobner basis

G={xy-2*,y"-2°,x2° - yz*}.

Remark 2.5.4.

()

(2)

The F4 Algorithm is implemented in several computer algebra systems: The initial
implementation is done in Faugere’s FGB package. This package can be used in the
MapLE system ([127]), too. Moreover, there exists a very efficient implementation
of F4 by Allan Steel for MaGMA ([29]). Besides these low-level implementations
various high-level implementations in interpreted languages are available, one of
the most recent ones by Daniel Cabarcas ([36]).

One of the most important advantages of F4 these days is the natural way of paral-
lelizing the Gaussian elimination. In [[69]] Faugere and Lacharte present a strategy
how to parallelize the matrix operations in polynomial rings over finite fields, e.g.
grouping the matrix into different blocks, using different attempts for sparse, semi-
sparse, and dense blockdd, etc. For an 8-core architecture they achieve a speed-up
between 6-8 in big examples like Katsura-13 in characteristic 65,521.

Of course, one can also parallelize polynomial arithmetic, as shown in [128l129}[156] .
To achieve a good parallelization, this means a nearly linear one, in terms of the vast
majority of polynomial storage structures is much harder than to achieve a similar
result in F4.

In Section 5 we discuss signature-based criteria. We can easily change the algorithm
UppATE in Algorithm [8 to achieve a combination of signature-based standard basis al-
gorithms and linear algebra reduction processes. Moreover, the order of the rows in the
matrix A has a strong connection to the signatures attached to the polynomials.

Let us finish the discussion of the basic ideas of F4 by giving a transition to the next
section: Although F4 already has an advantage over GM by using linear algebra to compute
normal forms of s—polynomials, the real enhancement can be found in the selection of the
best possible reducer in F4. This is done using the algorithm SimpLIFY. The selection of
reducers is a very important topic, it is not only used in F4, but it can be applied to GM
and other variants of STD, too. It has a big impact on the performance of the algorithms,
not only considering timings, but also focussing on memory usage.

6 Again just a sloppy note: The sparsity of a block B of a matrix A is defined by the difference of the number of
elements in B and the number of zero entries in B.

2.6 Picking a good reducer 63
2.6 PICKING A GOOD REDUCER

In Section[zZ35)we have seen how to use linear algebra to reduce several s—polynomials at
the same time using matrices. When starting the retransformation step in F4REDUCTION
we only use those g’ whose leading monomials are not already in L(G) for further com-
putations (see Line[16lin Algorithm o). All the other computations which are done during
the Gaussian elimination of A are not used in any further step for the computation of the
standard basis, thus those steps are in some sense useless. The topic of this chapter is to
give an overview of ideas how to prevent algorithms from useless computations.

This time we do not try to delete those useless computations beforehand, but try to make
them useful for furhter reduction steps. Again, we restrict ourselves to the polynomial
situation w.r.t. a well-order on P.

Let us see how one can reuse already reduced elements, and how to choose a “good”
reducer. We introduce this topic using F4, but one easily sees that this is a general problem
of standard basis algorithms. There exist lots of papers on this topic, we restrict ourselves
to the ideas given by Faugere in [61], and as a follow-up by Brickenstein in [30,[31]. This
restriction is justified by the fact that the above methods are known to be applicable for the
most part to signature-based standard basis algorithms.

Let us start with a closer look at F4’s reduction process (Algorithm [o):

(1) We start storing all critical pairs and all possible reducers in the coefficient matrix
A.

(2) Next we compute the row echelon form A’ of A.

(3) At the end we investigate all retransformed polynomials from F’:
a) Iflm(h) ¢ L(G) we use g in the following.
b) Iflm(h’') € L(G) we do not use g’ any more.

Step[(3)b]is the problematic one: h’ is some, possibly reduced, multiple of an element g; €
G={g.... g} le

h' =Y uigi, where Im(h") = Im(uy,) Im(g,) for some ko € {1,...,s}. (2.6.1)

i=1

It is very probable that in an upcoming reduction, i.e. Gaussian elimination, Im(4’) is
needed to reduce. Then F4 would add the multiple Im(uy,)gx, in Algorithm SYMPRE to
the set of reducers. But what happens next? SymMPRE adds all monomials of the product
Im(uy,) (gk, —1t(g,)) to the set M (Line[16). Thus in the following also for these mono-
mials appropriate reducers are searched for. Most of these reducers will be the very same
as those already in the representation of 4’ given in[2:61] This means that we redo lots of
reduction steps we have already done in the Gaussian elimination, from whose resulting
matrix A’ the polynomial h’ was extracted.

Thus using h’ as reducer instead of Im(uy,) gk, saves us from doing stuff twice! More-
over, we only need to add the new reducers of h’ which are possibly available at this time

64 2 Ways to improve standard basis computations

of the algorithm. All the other reducers are not added to H and thus not to A. This means
that we have two very important optimizations:

(1) We re-use already known reductions, thus as few as possible reduction steps are
done all in all. Moreover, reductions with the same reducers are preveneted as much
as possible from taking place multiple times during the computations of F4.

(2) Another big advantage is the fact that we construct and store a much smaller matrix
A in the following. Each new reducer added to H adds a new row to A. Using h’
instead of Im(uy,) gk, and all its reducers g; means that we add only 1 line instead
of several ones. Moreover, it is possible that h’ is sparser than g, , which means
that it includes less monomials than Im(uy,)gk,. Thus even more #(M) does not
increase as much using h’ as it would otherwise. This leads to less reducer searching
in SyMPRE and less columns in A.

This idea of reusing as much as possible already done reduction steps is included in the
improved version of F4]. We mark the changes from F4 to the improved F4 in Algorithms[a
—[3in the pseudo code; Algorithm [[7]is completely new.

We need to add some more bookkeeping elements to the algorithms enabling F4 to keep
track of those elements in Algorithm moiwhich are in F'\G’. We need to store these in a set
B and check them for being possibly better reducers in the following steps. The structure
of B can be characterized as follows:

(1) #(B) = #(G), this means that for every element g € G there exists a corresponding
element B, € B.

(2) Every By itselfis a set containing tuples of the type (1, p,), where m, is a monomial
inP, p, apolynomial. In general for an element g € G we define the map ¢, : P - P

by

o else.

if (m,, € B,,
¢o(my) = {Pg (myg, pg) € By

(3) For every such element (my, p,) the following holds:
a) mgyg was considered in some previous Gaussian elimination as input row of A.

b) mgg reduced to p, where myIm(g) = Im(py).

Thus, whenever the Gaussian elimination in Algorithm [[3] has been finished we check all

elements g; € P (retransformed from A’) whether their leading terms are already in L(G)
Im(g:)

Tm(g) 1S

or not. Based on this they are either added to G" (Line[r7) or the multiplier m, =

computed and the tuple (myg, g;) is added to By, where Im(g) | Im(g;) (Linezq).

We see that, besides storing information of previously done reductions in the set B,
the algorithm SiMPLIFY is called in SyMPRE. This is the main optimization, described in
Algorithm 7}

7In the following chapters we always consider the improved version of F4. Thus we keep the already introduced
notation for all algorithms being part of F4.

2.6 Picking a good reducer 65

Algorithm 11 Improved F4 Algorithm (F4)

Input: F={f,,..., f} asubsetof P w.r.t. <
Output: G, a standard basis for (F) w.r.t. <
B« 3,G <3, H-«@, M« Q,P<g
2 G« f1
3 for (i=2,...,7)do
4 P < Uprpatie(P,G, fi)
5: G+ Gu {f,}
6: l<r
7. while (P + @) do
8: P' < SeLect(P)
o P« P\P/
10: (H,M) < SymPre(P’, G, B)
w: (G', B) < F4RepucTioN(H, M, B)
;. while (G’ # @) do
13: h < First element of G’
14: P < Uppate(P, G, h)
15: G+« GuU {h}
16: G' < G'\{h}
17: return G

Let us explain the important steps of SIMPLIFY: It receives three arguments, namely a
monomial m, a polynomial f and the set B. m and f have been selected by SYMPRE to
be added to the list of elements which build the coefficient matrix A in F4REDUCTION. At
this point we do not add m - f to H and all monomials in m(f - lt(f)) to M, but we
search for possibly further reduced elements corresponding to m - f (Lines[[8l and [[7]in
Algorithm [Iz).

So, how does this search works? It just implements our ideas from this section’s intro-
duction: We search for all possible divisors u of m and check if ¢ s(u) # o, i.e. the tuple
(u, p) € By, where p = ¢¢(u) (Line[). If this is the case we replace m resp. f by “* resp. p
(Line[8)). This process goes on recursively until no new replacement can be donefl.

Besides the clear improvement of

(1) doing less reductions multiple times,
(2) using possible reducers with sparser tails, and
(3) having smaller matrices A

we also need to understand the drawbacks of the improved version of F4:

(1) Sometimes the replacement of a reducer is not sparser at all. Thus lots of checks in
SyMPRE have to be done and the column size of A does not strictly decrease.

80f course, this is not an efficient way to implement it. The description focusses on the explanation of the idea.

66 2 Ways to improve standard basis computations

Algorithm 12 Improved Symbolic preprocessing of possible reducers (SYMPRE)

Input: P a set of critical pairs, G a set of reducers, B a set of sets of polynomal tuples
Output: H a set of polynomials, M a set of monomials

1 He g, M+ @3,D<+ g

2: while (P + @) do

3. (f,g) < First element of P

P<P\{(f.8)}

(f.&)
s A< 1Tm(}g)
6 Ag Lilf(’g)

72 f' < SwmpLIFY(Af, f, B)

8 g < SiMPLIFY(A,, g, B)

o HeHu{l(@)f (g}

w0: M« Mu{mp | mpem-supp (f —1t(f"))}u{my | mg e m-supp (g’ -1t(¢g'))}
u: while (M # @) do

122 Choose me M

13 M« M\{m}

142 D< Du {m}

15: if (3h € Gs.t. Im(h) | m) then

16: /1]1 <~ %

17: h" < SimpLIFY (A, b, B)

18: H< Hu{h'}

19: M < Du{my | my e m-supp (k' —1t(h'))}

200 M« Mu{lm(h') | h' € H}
21 Sort M wir.t. <, elements decreasing.
22: return (H, M)

(2) Even though the matrices A are mostly of a smaller size, the memory consumption
of the algorithm can increase: Now we need to store all the data of the old matrices
in B. There is alot of data in B that is possibly never used during the computations of
F4. This can even result in the incomputability of examples due to memory overflow,
whereas these examples can be worked out by the basic F4 Algorithm.

(3) Sometimes the replacement chosen by SIMPLIFY is not the best one (w.r.t. sparsity,
coeflicient growth, etc.). The problem is that the improved F4 Algorithm is not able
to dynamically choose another reducer depending on the actual data it is just com-
puting.

In [30}31] Brickenstein discovered some improved version of the selection method,
which reducers to be used, during a deeper inspection of F4. His ideas are implemented as
the algorithm SLIMGB in SINGULAR ([49]]) and PoryBoRt1 ([32]).

The intention is to check more properties, or different properties being related to the actual
problem (characteristic of the underlying field, sparsity of polynomials, degree, etc.), of the
possible reducers to decide which one is the best. Let us describe SLIMGB in more detail,

2.6 Picking a good reducer 67

Algorithm 13 Reduction process in the improved F4 (F4REDUCTION)

Input: GandH = {h,, ..., h,} sets of polynomials, M = {my,, ..., m,} asetof monomials,
B a set of sets of polynomial tuples

Output: G’ a set of polynomials, B a set of sets of polynomial tuples

1 FF@,K«@

2 A<« Orxs

3: for(izl,...,r) do

4 for(jzl,...,s)do

5 if (Im(h;) = m;) then

6: Ai,j <—1C(h,)
7: h,‘ <~ h,‘ - lt(hl)
8
9

cH<« g, M<«g
. A" < Gauss(A)
10: for(izl,...,r) do
11: gi < O
12: for(jzl,...,s)do
13: if (A;; # o) then
14: gi < gi +A,~)jmj
. F' < Fu{g}
w6 if (Im(g;) ¢ L(G)) then
17: G,<—G'U{gi}

18 else
19: my « 11’:]((‘3;)) where g€ G
20: BgeBgU{mg,gi}

21 return (G', B)

giving its pseudo code and explaining the replacement strategies of polynomials.

Remark 2.6.1. We use the pseudo code of F4 as basis for SLiMGB. On the one hand, this is
due to the fact that SL1MGB also reduces multiple s—polynomials at the same time. On the
other hand, SLIMGB does not use linear algebra for the reduction, but an updated version
of the normal form algorithms presented in Section 7] We give the pseudo code of this
variant, called SLIMNF based on the code of GNF. Of course, one can use the ideas given
here also updating GNF,.q or LNF, but for the purpose of this section we want to keep no-
tation as easy as possible and focus on the choice of polynomials in the normal form. Again
we highlight the lines which are newly inserted or updated w.r.t. the Algorithmm SLIMNF
itself is completely new based on the fact that we do not only reduce several polynomials
at the same time, but also check for replacements.

We see the main change in SLIMGB starting in Line @t Besides using Algorithm
for the normal form computations of the set H of selected s—polynomials, it returns two
different values:

(1) A set G’ of polynomials reduced w.r.t. G: Those elements generate new critical pairs
and are added to G afterwards.

68 2 Ways to improve standard basis computations

Algorithm 14 Simplifying the reduction process in F4 (SIMPLIFY)

Input: m a monomial in P, f a polynomial in P, B a set of sets of polynomial tuples
Output: h a polynomial in P
r D « {divisors of m}
2. while (u € D) do
32 D« D\{u}
4 if os(u) # o then
5 if (u + m) then
6 return SIMPLIFY (%, gof(u), B)
7: else
8 return ¢¢(u)
9: return m- f

(2) AsetE of polynomial tuples for exchanging polynomials by better ones found during
the computations of SLIMNF: For all these tuples (%, p) it holds that # € G U R and
Im(h) | Im(p). Two different situations can happen:

a) If deg(h) = deg(p), then Im(h) = Im(p). This means that we exchange the
element i € GUR, since p has better properties than h (Line[16lof Algorithm(Tz).

b) If deg(h) < deg(p), then we add p to the list of reducers R (Line [i[§ of Algo-
rithm 3).

Remark 2.6.2.

(1) The set R is only used for reduction purposes in SLIMNF, we do not build any new

critical pairs with an element from R. For any r € R there exists a g € G such that
_ Im(r)

A= Im(g)”

Im(h) = A1m(g) one should try to use r as a reducer instead of 1g.

Assuming the situation of reducing an element 4 in SLIMNF such that

(2) Again, note that the presented pseudo code does not focus on efficiency, but on ed-
ucational aspects. Of course, the way r is chosen in Line[5|of Algorithm félshould be
implemented in the vein of Algorithm [i7}

The three main differences between the ideas of the improved version of F4 and SLIMGB
are:

(1) Not only the already computed s—polynomials are checked for replacements, even
the generators of the corresponding critical pairs are replaced. In later steps, critical
pairs generated by new polynomials use the replaced element, not the old one. This
sometimes leads to a better performance of the algorithm.

(2) Algorithm [f7} used in Line @ of SLIMNF, does not just compare r and h depending
on when they are computed, but on more properties, even fitted to the requirements
of the given input the standard basis should be computed of. See Example [2.6:3] for
more details.

2.6 Picking a good reducer 69

Algorithm 15 SlimGB Algorithm computing a standard basis w.r.t. < (SLIMGB)

Input: F={f,,..., f} asubsetof P w.r.t. <
Output: G a standard basis for (F) w.r.t. <
1 E<3,G' <@, P+~ @, R 3
2 G« f1
3 for (i=2,...,7)do
4 P < Uprpati(P,G, fi)
G« Gu{f}
sl
while (P #+ @) do
P’ < SeLecT(P)
P« P\P'
He (S(f,9)| (f.g) € P'}
(G',E) « SLIMNF(H, G, R)
while (E + @) do
(h,p) < First element of E
E< E\{(h,p)}
if (deg(h) = deg(p)) then
h<p
else
R<Ru{p}
while (G" # @) do
h < First element of G’
210 P < UppatE(P, G, h)
22: G+ Gu {h}
23: G' < G'\{h}
24: return G

e *® N aw

[J—— - - -
S8 49 an k£ & B8 EQ

(3) Moreover, SLIMGB only stores new reducers, if they are really better and necessary.
F4 on the contrary stores all data not having new leading monomials. Thus a huge
amount of memory has to be allocated, whereas only a small part of it is really useful.

As we see in Algorithm [r7]the whole check whether to replace an element resp. to add a
new reducer depends on the comparison of some property of the polynomials. This prop-
erty can be determined problem-oriented. Let us give some possible and useful examples.

Example 2.6.3. Assume the polynomial p € P. The following properties can be of interest
when computing standard bases:

(1) Length strategy: PRoPERTY(p) = #(supp(p)),
(2) Coefficient-length strategy: PRoPERTY(p) = lc(p) - #(supp(p)),

(3) Elimination strategy:
PROPERTY(p) = > (1+max{deg(m) —deg(lm(p)),o}).

mem-supp (p)

70 2 Ways to improve standard basis computations

Algorithm 16 Normal form w.r.t. G of SLIMGB (SLIMNF)
Input: H c P a finite sequence, G c P a finite sequence, R c P a finite sequence
Output: G’ c P a finite sequence, E a set of polynomial tuples
1 E<2,G «g
2. while (H # @) do
3 h < First element of H
while (h # 0and D, < {re GURUH |Im(r) |Im(h)} # &) do
Choose any r € Dy,.
if (r € GU R and RepLacE?(r, h)) then
7 E<« Eu{(r,h)}
8 heh-1Hr
o: if (h # o) then
10: G < G u{h}
u: return (G',E)

AN

Algorithm 17 Replacement check for SLIMGB (REPLACE?)

Input: f, g polynomials in P

Output: TRUE if a replacement should happen, FALSE otherwise
1 if (PROPERTY(f) > PROPERTY (%g)) then
22 return TRUE
3. return FALSE

(4) Coefficient-elimination strategy:

ProPERTY(p) = lc(p) - > (1+max{deg(m) —deg(lm(p)),o}).

mem-supp (p)

Of course, other strategies are possible, but these are useful for a wide range of examples,
for example, the Coeflicient-length strategy gives a huge speed-up for computations over
function fields and the Elimination strategy improves computations w.r.t. lexicographical
orders up to a factor of 1000 compared to the usage of the Length-strategy.

Let us give a last example, which tries to convince the reader, that the replacement of
polynomials in SLIMGB really is advanced to the usage of SIMPLIFY in F4.

Example 2.6.4. Let us give a short comparison on the behaviour of the two replacement
strategies presented in this section: Assume the point of the computations at which we
want to reduce an element h. We see that Im(h) = 1,1, Im(g) for some monomials A,, A,
and a possible reducer gi. In F4, it could be possible that SiMpLIFY changes A, A, gk to A, g;,
where Im(g;) = A,1m(g), although g; is not sparser or better reduced than 1,g;. On
top of that, there can exist a much better element g,, with Im(g,,) = A, 1Im(gx), which is
blocked by g;. This situation is nearly impossible to achieve in SLIMGB, whereas it is rather
possible in F4.

Remark 2.6.5.

2.7 Using the Hilbert-Poincaré series 71

(1) Of course, one can combine both attempts of optimizing polynomial data in the
reduction process. This should be done to get highly optimized standard basis algo-
rithms. In the end, the level of optimization mostly depends on the input data, i.e.
the ideal, the order, etc. Based on this one has to decide which is the best strategy
to be used and which reducers are replaced. As the behaviour of a standard basis
computation is highly not predictable, heuristics must be implemented.

(2) One must be aware that the check and possible storage of a new element in Line[Min
SLIMNF together with the whole bookkeeping done in the lines 12 - 18 in SLIMGB
produces an overhead in memory and timings. Based on the input, this can lead to a
decline instead of an improvement. Thus a good heuristic is needed to decide, when
to use which replacement and how strong the criteria for choosing the right reducer
should be.

One last note on optimizing the choice of a possible reducer in the case of using LNF:
In Algorithm [§]the ecart is used to ensure termination of the normal form computations,
even if < is a local order. In [92] it is mentioned that using a weighted ecart to choose the
next reducer can speed up the computations for some good choice of the weight. As this
section is restricted to the polynomial case, we also give the following definition in this
setting. It should be clear how to generalize the definition to the more arbitrary situation
of modules.

Definition 2.6.6. Let w € (R*)"where m < n. Let p = ¥, c,x* € P be a polynomial.
(1) We define the weighted degree of p w.r.t. w by
n
deg,(p) = maX{Zwi o | ey # o}.
i=1
(2) Moreover, we define the weighted ecart of p w.r.t. w by

ecart,, (p) = deg, (p) — deg,, (lm(p)).

This finishes our discussion of improving the usage of reducers during a standard basis
computation. The research in this field is of high importance for signature-based standard
basis algorithms, since we see in Chapter [g]that there the freedom of choice is restricted.

2.7 USING THE HILBERT-POINCARE SERIES

In this section we present the idea of how to use the Hilbert polynomial to improve
standard basis computations. In Section[L.6lwe have introduced the notions of the Hilbert-
Poincaré series and shown its connection to the Hilbert polynomial. Here we discuss the

72 2 Ways to improve standard basis computations

so-called Hilbert-driven standard basis algorithm, which was presented first by Traverso
in [154]. Note that the ideas discussed in Sections 2.8l and 9] are also influenced by the
Hilbert-Poincaré series. All of these attempts have in common that one needs to know the
Hilbert-Poincaré series beforehand to take advantage of it in an upcoming computation.
For example, some work of how to achieve it can be found in [zo-22].

Again, we restrict ourselves to the situation of computing a standard basis for an ideal
IinP.

In some special situations, we even know the Hilbert-Poincaré series without any fur-
ther computations:

Theorem 2.7.1. Let < be an order on P, I c P a homogeneous ideal. Then

HPp (1) = HPpyr(y (1).
Proof. See for example Section 5.2 in [97]. O
Using the above theorem one can conclude the following nice statement.

Corollary 2.7.2. Let I € P be an ideal, let < a global order, and let G = {g,,..., g} c L
Then the following properties for the corresponding Hilbert functions hold:

(1) Hp/pn(d) <Hpjr)(d) forall d.

(2) IfHp;r1)(d) = Hp (6 (d) for all d, then G is a Grobner basis for 1.
Proof.

(1) This follows from the fact that L(G) c L(I).

(2) Having L(G) c L(I) the equality of the Hilbert functions follows from the equality
of the leading ideals, i.e. L(G) = L(I). But this is just the definition of G being a
Grobner basis for I.

O
Corollary 2.7.3. Let <, and <, be two global orders on P, I c P an ideal.
(1) If I is homogeneous, then Hp_ (1y(d) = Hp;i(d) = Hp;r_ (1)(d) for all d.

(2) If I is inhomogeneous, then Hpr_ (1y(d) = Hp;(d) —Hp(d —1) = Hp/_ (1y(d)
foralld.

Proof. See for example [154]. O

Another very nice corollary from [154]] gives us the possibility to use the Hilbert-Poincaré
series even for improving the computations of Grobner bases for inhomogenous input ide-
als. Whenever we have already computed a Grobner basis G, for I for an order <,, we can
compute a Grébner basis G, for I w.r.t. <, without caring for any degree drop during the
computations.

2.7 Using the Hilbert-Poincaré series 73

Corollary2.7.4. Let I c P be anideal, <, and <, global orders on P, and let G, be a Grébner
basis for I w.r.t. <,. Starting the computation of a Grobner basis G, for I w.r.t. <, with G, as
input, we can use the following variant of a standard basis algorithm:

(1) Consider critical pairs by increasing degree.

(2) During a reduction step: Whenever the degree is decreased, the reduced element can
be deleted and the next pair can be computed.

This is useful, considering that the computation of a Grébner basis w.r.t. <, could be
much easier than the computation w.r.t. <,. Thus using the easier computation as basis
for the harder computation enables us to improve the hard computation by applying the
variant described in Corollary Z77}

Remark 2.7.5. The usage of the equality of the Hilbert function in different global orders is a
narrowed variant of the basic ideas behind the improvements of standard basis algorithms
presented in Section 2.8 Compute the standard basis w.r.t. to an easier order and try to
transform it into a standard basis w.r.t. the requested order without doing the complete
standard basis computation again. This is just a combination of corollaries 73] and z-7.4}

Using the notations from Section [L.6] we can present the crucial statement from [154].

Theorem 2.7.6. Let I and] be two homogeneous ideals in P such that] c 1. By Theorem[1.6.4]
there exist polynomials p(t) = Yi_, pit', q(t) = X, q;t’ such that the corresponding
Hilbert-Poincaré series are

and HSp(t) = a(t) .

(-t

p(t)
(1-t)"

Then the following conditions are equivalent:

HSp /(1) =

(1) Hp/[(t) = Hp/](t)fOT’ alli<t<d-1and H'p/](d) < Hp/](d)
(2) p(i)=q(i)fori1<i<d-1andp(d) <q(d).
Definition 2.7.7.

(1) The height of a prime ideal Q in P is defined by

ht(Q) = sup{length(C) | C are chains of prime ideals contained in Q}.
(2) The height of an ideal I in P is defined by
ht(I) = inf{ht(Q) | Q o I, Q prime}.

(3) LetI=(f,...,f:)in P such that r < n and all f; are homogeneous of degree d;. If
the ideal has height r, then the so-called vanishing set

V(I)={aeK"| fi(a)=oforall i}

of I is called a complete intersection.

74 2 Ways to improve standard basis computations

(4) Let(py,...,pr) beasquence in P, F afinitely generated module in M. We say that
the sequence (ps, ..., p,) is regular (for M) if for each 1 < i < r it holds that

pi is not a zerodivisor in F/{p,, ..., pi—,}F.

Example 2.7.8. Geometrically one can think of a complete intersection in the following
way: Let I = (fi,..., f;) be an homogeneous ideal in P. V(I) := {a € P" | fi(a) =
oforall1 < i< r} where P"™* denotes the (n —1)-dimensional projective space. Similarly
one can define V(f;) := {a € P"™" | fi(a) = o} forall 1 < i < r. Now we say that V(I) is
a complete intersection if and only if V/(I) = n}_ V(f;). Thus the intersection of all those
hypersurfaces V(f;) in P"*™* contains V (I) and nothing else.

Remark 2.7.9. In it is shown that if V/(I) is a complete intersection for I = (f;, ..., f+),
then (fi,..., fr) is a regular sequence. We see in the following chapters that signature-
based standard basis algorithms are in a strong connection to regular sequences. Further-
more, if the input of such an algorithm is a regular sequence, it is ensured that no zero
reduction takes place.

The nice property of a complete intersection V(I) is that we know the corresponding
Hilbert-Poincaré series of I without the need of computing a standard basis for I before-
hand:

Lemma 2.7.10. If V(I) is a complete intersection for I = (f,,.. ., f,) where f; is homogeneous
of degree deg(f;) = d; for all1 < i <r, then the Hilbert-Poincaré series is

]-—I?:l(l B td‘)
(-nm

Next we describe the Hilbert-driven standard basis algorithm. Using Theorem[2.7.6]one
can improve standard basis computations. For this, we give the pseudo code based on the
one of the Gebauer-Moller implementation (see Section Z7): It is restricted to homoge-
neous input with the ideas presented here incorporated. Those new parts of Algorithm [i8]
are again highlighted.

Let <, be an order on P, and let I be the ideal we want to compute the standard basis
for. Assume furthermore that we already know the Hilbert function Hp;(¢). This could
be achieved by

HSp/i(t) =

(1) aprevious Grobner basis computation for I w.r.t. some other global order <,,
(2) the fact that I corresponds to a complete intersection (see Lemma[.710), or

(3) the fact that I = (f,,..., f;), where r < n. Then we can use the Hilbert-Poincaré

r d;
series HSp () = % as an upper bound?.

If at some degree step in the Grobner basis computation the bound does not hold any longer, the Grébner basis
computation goes on without any additional checks of the Hilbert function.

2.7 Using the Hilbert-Poincaré series 75

Algorithm 18 Hilbert-driven variant of GM w.r.t. a global order < (HGM)

Input: F = {f;,..., f,} a subset of P of homogeneous elements, NF a normal form,
H(t) := Hp,(ry(t) the Hilbert function of (F)

Output: G a standard basis for (F) w.r.t. <

1: kZZOO

2! G<—f1

32 P«

4: d’<—0

s: for (i=2,...,r)do

6: P« Uppatie(P,G, f;)
7 G« Gu{fi}

8 I« r

o: while (P + @) do

w: d<min{d|d=deg(S(f.g)).(f.g) € P}
w Pl {(f,g) e P|deg(S(f.9))=d'}

1: P+« P\P'
132 while (P’ # @and k > 0) do
14: (f,g) < First element of P’

15: P < P\{(f,8)}
16: h<S(f.g)

17: h < NF(h,G)
18: if (h # 0) then

19: f1+1 ~h

20: P < UppatTE(P, G, fi1,)

21: G+« Gu {flﬂ}

22: I<1+1

23: k< k-1

24: if (HP/L(G)(t) = H(t) for all t) then

25: return G

26: else

27: d'<—min{t€N|Hp/L(G)(t)>H(t)}
28: k < H’P/L(G)(d’) - H(d’)

w P {(fg) < Pldeg(S(fg)) < d')
30: P« P\P"

3i: return G

Let us denote H(t) = Hp/;(t) the known Hilbert function of I. In the following situa-
tions one can use the information stored in HSp;(¢).

(1) If I is homogeneous and <, is a global order on P, then we can assume that we
compute the Grobner basis G for I by increasing degree (see Section 2:2)). Thus, let
us assume that we have already computed an intermediate Grobner basis G, a d-
Grobner basis for I for some degree d > o. At this point we compute the Hilbert

76

(2)

(3)

2 Ways to improve standard basis computations

function Hpp(g)(t). It holds that
Hp)6y (t) = H(t) forall t < d.
Furthermore, we have the correspondence that
Hpp6)(t) = H(t) + m, forall t,m; > o.

In the pseudo code the variable k is equivalent to m1,. In the beginning it is set to
infinity as we do not have any information about G (Line[). After the first degree
step of reductions is done, the Hilbert function Hp /(g (t) is computed and k is
possibly adjusted (Line[28).

a) If m, = o for all ¢, then G is a Grébner basis for I (Line[z3).

b) Otherwise we know from Theorem that there exists some d’ > d such
that m, = o for all t < d’ and my # o. This means that in order to become
a d’-Grobner basis for I G needs m, more elements in degree d’. Thus we
know that exactly my critical pairs are useful. If we have added m, elements
of degree d’ to G, we can stop treating any more critical pairs of degree d’. In
Algorithm[18] k is checked whenever a new critical pair is treated for reduction
purpose from P’ (Line[r3). As long as k > o the computations go on, otherwise
enough critical pairs of degree d’ are found and we can finish this degree step
reduction.

After adding those m, elements to G we recompute Hp/()(t) and go on
with the next higher degree.

If I is inhomogeneous and <, is a global order on P, we cannot really use the ideas
presented in Situation [(1)} If one has already computed a Grébner basis G, of I w.r.t.
another global order <, on P, then the ideas of CorollaryZ-77] can be used.
Another idea would be to homogenize the generators of I, compute the Grébner
basis G"of the homogenized input according to Situation[(1)} and dehomogenize G"
in the end in order to receive the requested Grébner basis (G")4¢h,

If I is inhomogeneous and <, is a local order on P, one can again homogenize the
generators of I and go on as in Situation Other ideas, again using the Hilbert-
Poincaré series, can be found in Chapter 5 of [154].

Remark 2.7.11.

)

(2)

Note that in Situation [(1)b]from above the improvements highly depends on the or-
der, in which the critical pairs are computed: If the first critical pairs are the useful
ones, the optimization is best. If those are at the end of the list of pairs to be reduced
we still compute the zero reductions of the useless pairs investigated before them.

One can think of the Hilbert-driven standard basis algorithm in the homogeneous
case as a wrapper around any standard basis algorithm we already know: We select
a bunch of critical pairs of lowest degree, compute all the normal forms of their cor-
responding s—polynomials as usual. Afterwards we compare the Hilbert functions.
From this we get to know how many new elements of the next degree step we need
to compute.

2.8 Going the indirect way 77

Using the presented ideas to switch from the computations over the rationals to com-
putations over fields of finite characteristic p is postponed to Section[z:9] There we give an
in—depth introduction to that topic.

2.8 GOING THE INDIRECT WAY

In Section Z7]we have seen that sometimes it has some benefits to compute a standard
basis G, w.r.t. an order <, different from the one the origin problem is based on, say <;.
There we have used the Hilbert function to improve the computations w.r.t. the initial
order. Moreover, we have seen in Corollary =77 that for computing G, w.r.t. <, starting
from G, we can leave out some steps of the standard basis algorithm.

Moreover, recall the crucial differences in the complexity of the algorithms when com-
puting w.r.t. lexicographical order resp. graded reverse lexicographical order we have seen
in Section .9}

In this section we present more general attempts of this idea: In [133,143] the notion
of a Grobner fan is introduced. All algorithms discussed here have one base frame: They
compute a Grobner basis G, w.r.t. a given order <, by computing a Grobner basis G, w.r.t.
another order <, first and transform G, to G,.

Remark 2.8.1. We have noted in Section[L.8|that for some orders the computation of a stan-
dard basis can be done much faster and easier than for others. On the one hand, the order
<gp is much better for standard basis computation than <Jp- On the other hand, a standard
basis w.r.t. <j, can be used way better in further applications than the one computed w.r.t.
<gp- Thus the usage of the following algorithms is quite clear: We want to compute a stan-
dard basis w.r.t. an order for which the computation itself is pretty hard. Instead of going
the direct way, we calculate the basis w.r.t. a much easier order and then transforming the
result to a basis w.r.t. the requested order.

Thus the transformation at the end should not cost too much, otherwise the benefit of
the computation w.r.t. the better order is lost.

Convention. Although there are attempts defining Grébner fans for modules ([13]), we
just want to explain the basic ideas behind the presented algorithms, which can be done
much easier in the polynomial case with a well-order on P, thus we restrict ourselves to
this situation.

In [38] Caboara introduced a first attempt changing the examined order dynamically
during ongoing Grobner basis computations. We state the pseudo code of this algorithm
based on the Gebauer-Moller implementation, called DGM, which stands for dynamic
Gebauer-Moller implementation.

We see that Caboara’s idea is plainly to dynamically adjust the order w.r.t. which the
normal form of the next considered s—polynomial is computed. This adjustment is done in
the very beginning (Line[) and after each addition of a new element to G (Line 2g)). Both

78 2 Ways to improve standard basis computations

Algorithm 19 Dynamic variant of GM w.r.t. a global order < (DGM)

Input: F = {f,,..., f,} a subset of P of homogeneous elements, NF a normal form,
H(t) := Hp,(ry(t) the Hilbert function of (F)
Output: G a standard basis for (F) w.r.t. o,
1 0 < INITIALORDER(f,, .. ., f;)
2 G« f1
33 P«
4 for(i=2,...,r) do
5. P < UppaTE(P, G, f;)
6: G+~ Gu {f,}
7: [« 7r
8: while (P + @) do
o: P < SeLecT(P)
10: P+« P\P
1 while (P’ # @) do
12: (f,g) < First element of P’
s P e P\{(f.0)}
14: h<S(f.g)
15: h < NF(h, G)
16: if (h # o) then

o

17: f1+1 ~h

18: P < UppatTE(P, G, fi1,)
19: G+« Gu {flﬂ}

20 0 < NEwWORDER(0, G)
21: l<1+1

22: G < REDUCE(G, 0,)
23: return G

of these algorithms, INITIALORDER and NEWORDER, try to keep the expected values of the
Hilbert function Hp/; ()(t) as small as possible. Let us discuss this for a moment:

Let I := (F). Italways hold that Hp /1 (6)(t) > Hp/;(t). So theidea s to keep the values
of Hp/,(6)(t) as low as possible by choosing a good order ¢. Thus for an input order
o for INITIALORDER resp. NEWORDER a new order, say 7, is returned, with the relation
L.;(G) = L,(G). For the idea of keeping the Hilbert function minimal we note two things:

(1) What is meant by minimal? One can think of minimal in terms of lexicographically
minimal when considering Hp/; (g () as a function. Another way would be to
think about the Hilbert polynomial, demanding it to have minimal degree.
Caboara suggests a mix of these possibilities using heuristics, but is not giving a clear
implementation of that.

(2) Note that whenever we change o, not only Hp/; (6)(t) changes, but clearly also
Hp;(t) changes. Thus the behaviour of algorithm NEWORDER selecting o to always
minimize Hp /1, (g)(t) in the above mentioned sense is not predictable, and can be

2.8 Going the indirect way 79

even worse than the behaviour of the basic Gebauer-Moller algorithm.

Considering the second remark above, one needs to find a good heuristic for the choice
of 0. With the presented one we could at least hope for a better detection of useless critical
pairs by UPDATE, which should lead to less zero reductions.

In the end, we compute the reduced Grobner basis G w.r.t. g,. As all changes between
different orders o used during the computations preserve the leading ideal, it is enough to
just reduce all elements g € G w.r.t. G\{g}, throw away multiples and normalize all leading
coeflicients. This is done in REDUCE in Line[z2 With this the Grébner basis computation
of G w.r.t. 0, finishes.

As mentioned, DGM’s performance does highly depend on the choice of the next order,
whose impact on the subsequent computations cannot be predicted besides some, rather
naive, heuristics on the Hilbert function. A much more generalized variant of Grobner
basis computations using different orders is presented in the so-called Grobner walk, first
mentioned in [44]]. For this we need some more notation, largely of plain combinatorial
character:

Definition 2.8.2.

(1) Let V:={wv,...,v,} c R" be a finite set of vectors. The set

C(V):={> awvi|a;eR",v;eV}

is called a (convex polyhedral) cone in R”".
(2) The dimension dim(C) of a cone C is the dimension of the linear space C spans.
(3) The dual of a cone C is defined by

C:={weR"|(w,v) >0, forallveC}

where (-, -) denotes the dual pairing.

(4) A face T of a cone C is defined by
7:={veC|(u,v) =0}
for some u € C. A face 7 of C with dimension dim(7) = dim(C) - 11is called facet.

(5) A fan A is a finite collection of (convex polyhedral) cones such that the following
properties hold:
a) If C € Aand 7isaface of C, then 7 € A.

b) If C,, C, € A, then C, n C, is a face of C, and of C,.

8o 2 Ways to improve standard basis computations

v
T1,2

Trn

wo <

Ti1 T3,1

Figure 2.8.1: An example of fans, cones and faces

-1
illustrated in Figure[2.8.11 We have the fan A consisting of the cones C,, C,, and C,, where

Example 2.8.3. We give an easy example in R*. Let v, = ((1)), vy = ((1)), and v, = (_1),

C,:={av, +bv, | a,beR"},
C,:={av,+bvy|a,beR"},
Cy:={av,+bvy|a,beR"}.

Moreover, we have the following faces:

7, := {0},

7,:={av,|a e R"},
7,:={av,|aeR"},
7,:={av;|a e R"}.

Clearly, the faces t,, 7, resp. 7, are facets of the corresponding cones C,, C, resp. C,
including them, whereas dim(7,) = dim(C;) — 2 for i € {1, 2, 3}. However, treating 7, as a
face of the other 7; it is a facet of each ;.

. 1
On the right side of the picture we see the dual structures. Having the vectors w, = (o) ,

2.8 Going the indirect way 81

_[o 1 [[o d 1 that
Wy = 1 » Wi = 1 Wy = o > Ws = - ,and wg = . we see tha

L= {aw, +bw, | a,be R},
C,:={aw,+bw, | a,beR"},
C,:={aw, + bws | a,beR"},
Ty, = {aws | a e R*},
T, = {aw, |aeR"},
T,,:={aw, | aecR"},

T,, = {aw, | a e R"},

[@X

7,,:={aws|a e R"},

T,, = {aw; | a e R"}.
All in all, we can build the corresponding dual faces for 7,, 7,, and 73, and get

Ty = T, YTy
Ty =T UT,,,

Tyi= Ty, U Ty,
Proposition 2.8.4. The following statements hold:
(1) Any face is a convex polyhedral cone.
(2) Any intersection of faces is a face.
(3) Any face of a face is a face.
(4) Any proper face is contained in a facet.

There is a wide range of good literature covering these structures, namely in the field
of toric geometry, for example, see [75,145}[147]. We refer to these for the reader interested
in more details about those geometric structures and focus on our purpose of improving
Grobner basis computations using the above definitions.

Definition 2.8.5. Letv,w € R", <awell-order on P, p = 3, cox* a polynomial in P and

F={f.,..., fr} ¢ P finite.
(1) The initial monomial of p w.r.t. v is defined by in, (p) = max{deg, (x*) | ¢, # 0}.
(2) pis called v-homogeneous if p = in, (p).
(3) The initial ideal of F is given by in, (F) := < in,(f,),...,in, (f,))

(4) vw:= {(1 -A)v+ Aw} denotes the line segment between v and w.

82 2 Ways to improve standard basis computations

(5) The order (v, <) on P defined by
x%(v, <)xP = deg, (x*) <pa deg, (x") or
deg, (x) =pat deg, (xP) and x* < x#

is a refinement of v by <. (v,<) refines v in the sense that whenever deg (x%) <
deg, (x*), then x*(v, <)xP.

Remark 2.8.6.
(1) Note that a v—~homogeneous polynomial p is homogeneous for v = (1,...,1).

(2) There is a strong connection between L.(F) and in, (F) as we have already noted a
strong connection between vectors in R” resp. matrices in GL(#, R) and monomial
orders in Lemma[:3:9} Note that whereas every element in L. (F) is a monomial this
need not be true for the elements in in, (F). For example, let F = {z* — xy +1} €
K[x,y,z,]and v = (2,2,1), then in, (F) = (z* — xy).

With this we are able to define the cones resp. fans we are interested in.

Definition 2.8.7. Let < be a well-orderon P, F = {f,,..., f,} c P finite, I = (F), and let
G ={g...., g} c P be the reduced Grébner basis for I w.r.t. <.

(1) For F we define the cone

C<(F):={we (R")"| Lc(iny(f)) = L<(f) forall f € F}.
The Grobner cone of G w.r.t. < is defined by C(G).

(2) The Grobner fan is the fan Ag consisting of a collection of C.(F) where < runs over
all well-orders on P.

Remark 2.8.8. Note that there are only finitely many well-orders not equivalent to each
other, see [133]. Thus the above definition of a Grobner fan is well-defined.

The following lemma enables us to do a walk in the Grébner fan without losing previ-
ously computed data.

Lemma 2.8.9. Let I be an ideal in P.

(1) Let <,,<, be two well-orders on P, G, the reduced Grobner basis for I w.r.t. <,. Then
C.,(I)=C.(I) ifand only ifIm. (g) = Im,(g) forall g € G.,.

(2) Letu,v e R" such that the well-order < refines v. Then there exists a w € uv such that
uw c C(v,<) (I)

In particular, Statement [(2)| of Lemma [2.8.9] enables us to walk around in the different
cones of the Grobner fan A, and in the special situation of w being on a facet of two cones,
we can move into an adjacent cone.

2.8 Going the indirect way 83

Lemma 2.8.10. Let <, <, be two different well-orders on P, let I = (f,,..., f;) be an ideal
in P, and let w € R" such that w € C. (I) n C.,(I). Then in,, (1) is not a monomial ideal.

Proof. On the one hand, there must exist at least one generator f; of I such that Im. (f;) #
Im., (f;). On the other hand, Im., (inW (f1)) = Im. (f;) as well as Im., (in,(f;)) =
Im., (f;). It follows that in,, (f;) must consist of at least two monomials, namely Im. (f;)
and Im._ (f;). O

Convention. In the following RSTD denotes any of the Grobner basis algorithms we have
already discovered with the condition that it returns the unique, reduced Grébner basis at
the end.

Algorithm 20 Grobner walk to compute a reduced Grébner basis (GBWALK)

Input: G, = {g,,..., g} areduced Grobner basis (for some ideal I) w.r.t. <;,, u € C. (I)
current weight vector, v € C (1)

Output: G, a reduced Grobner basis (for the ideal I) w.r.t. <,

: Compute A, € R such that (1 A,)u + A,v € C. (I) n C, (I).

cwe (1= Ao)u+ Ay

Refine w by <, = (w,<,)

M,, < rStD (in, (G<,), (w,<,)) such that m; = ¥_, h;;in,,(g;) for all m; € M,,

pj < Xi, hijgi such thatin,, (p;) = m; forall j

G A{pu- s Pr)

G(w,<,) < ReDUCE (G, (W, <,))

8: Convert G(,, .,) to a reduced Grobner basis G, .

9: return G,

AN S -

N

We assume that we have already computed a reduced Grobner basis G, for some ideal
I'w.rt. <. Thus we have a weight vector u € C., (I) given and want to enter the adjacent
cone C, (I). There we have a weight vector v, already precomputed. Doing this we need to
cross the border of the two cones: We compute a weight vector w € C., (I) n C,(I) which
is in both cones, as illustrated in Figure 282 It follows by Lemma 2810l that in,, (G<,)
is not a monomial ideal. At this point we compute the reduced Grébner basis M,, for
in, (G,) w.r.t. (w, <,) in Line[g} Note that all elements in in,, (G<,) are w-homogeneous,
thus all generated s—polynomials and all computed normal forms are so, too. Thus we find
w-homogeneous elements h;; which fulfill that

.
mj = Zhij in,, (g;) forall m; € M,,.

i=1

After that we can easily get a Grébner basis for I w.r.t. (w, <,) out of M,, by replacing all
in,, (gi) by gi (Linep). This has to be reduced to G, .,y and then further transformed to
receive the reduced Grobner basis G, for I w.r.t. <,.

Remark 2.8.11.

84

)

(2)

(3)

(4)

2 Ways to improve standard basis computations

Figure 2.8.2: Crossing the border of two Grébner cones

The crucial point of GBWALK is the Grobner basis computation for in,, (G<,) in
Line[@ The assumption is that in,, (G<,) surely is not a monomial ideal, but quite
near to it, this means that most of the generators should have very few monomials.
Thus the computation of M,, should be quite fast and lightweight. If this is not the
case, then we have a bottleneck. The idea is that if one chooses w rather generic, then
it is quite possible that we get a “good” initial ideal in,, (G,). There are attempts im-
proving this step by Fukuda et al. ([73]). Other improvements of dynamic Grobner
basis algorithms are ongoing, see, for example, [89].

Note that Algorithm Balis just a part of the computations that have to be done for
computing the requested, reduced Grobner basis with a Grobner walk algorithm.
WEe just present how to come from one cone C, (I) to the adjacent cone C. (I). In
a real computation, one has to make several crossings, depending on the starting
order <, and the target order <,. As this is the most difficult part of the algorithm
and the other Grobner basis computations before and after the crossing are clear, we
focus on this.

Moreover, Figures 2.81and 2.8.2] should be understood as the easiest possible geo-
metric interpretation of the problem. In general, having more than two variables in
your polynomial ring the search for a good path from one order to another can be
quite hard. As this not in the focus of this thesis, we remain with the presentation
of the basic idea and keep the problems being not directly linked to Grobner basis
computations out of our way.

In [167] Kalkbrener shows that for the conversion of a Grébner basis G« to an adja-
cent (w.r.t. the Grobner fan) Grébner basis G, the maximal degree of elements in

G, is bounded by

D(G.) <2-D(G.)*+ (n+1)-D(G.)).

2.8 Going the indirect way 85

This is a huge improvement to the possible doubly-exponential growth of degree
when transforming between two non-adjacent Grobner bases.

(5) A complete software package dealing with Grébner cones and Gébner fans is GEAN
by Anders Jensen ([f05]). The area of fans and cones also has a strong connection
to toric and tropical geometry, for example, they are used for the computation of
tropical varieties ([27]).

Another method for computing a Grébner basis G, for an ideal I w.r.t. a well-order
<, and transform it to a Grobner basis G., for the same ideal w.r.t. a well-order <, is the
FGLM Algorithm by Faugere, Gianni, Lazard and Mora ([[67]). Instead of the attempt of
GBWALK, FGLM does not need to pass each adjacent cone C.(I), but it gives us a direct
transformation of G, to G._, regardless whether C. (1) n C.,(I) = @ or not.

The main idea of FGLM is to define 3 different sets w.r.t. a leading ideal L(I):

Definition 2.8.12. Let I be an ideal I in P. Then we can define the following sets:

(1) N(I) := {m € Mon(xy,...,x,) | m¢ L(I)}, the set of all monomials, which are not
reducible by L(I).

(2) E(I):= {m € L(I) | for all x; such that x; | m, ¢ L(I)}, the set of edges of L(I).
(3) S(I) := {m € L(I) | 3x;, xj such that x; | m,x; | m, = ¢ L(I), % € L(I)}, the set
i j
of sides of L(I).
(4) The disjoint union B(I) = E(I) U S(I) is called the boundary of L(I).

Having a Grobner basis G for I, the sets N(I), E(I) and S(I) can be computed easily.
Let us give an example for this.

Example 2.8.13. Assume the ideal I = (x*y> — x>, x* — y3) c K[x, y]. A Grobner basis for
ITwrt. <gpis

G={x*y*-xx*-y*y —x*}.
Then we can illustrate N(G), E(G), and S(G) easily in Figure[2.83:13]

Remark 2.8.14. The nice fact is that N(G) n E(G) n S(G) = @ and any monomial m «
Mon(x;, ..., X,), which is not a propen*] mulitple of an element of L(G), is in exactly one
of those three sets. In the following we also talk about elements outside these three sets,
thus we introduce the following notation:

O(G) = Mon(x,,...,x,)\(N(G) UE(G) uS(G)).

The idea of FGLM is to compute the three sets N, E, and S to receive the corresponding
reduced Grobner basis.

Proposition 2.8.15. Let I be an ideal in P, G a Grobner basis for I w.r.t. <. If G is reduced,
then (E(G)) = L(G).

'°In the sense that 2 ¢ L(G) for all variables x;.

86 2 Ways to improve standard basis computations

Figure 2.8.3: The classification of C[x, y] by N, E and S

Proof. This is clear by the definition of E(G). O

For the algorithm presented in the following it is of great importance that the sets N(G)
and E(G) are finite. This has consequences on the ideals, for which the reduced Grébner
basis can be computed by FGLM.

Definition 2.8.16. Let I be an ideal in P. We say that I is zero-dimensional if and only if
the vector space dimension dimy:(P/I) < oo.

Proposition 2.8.17. Let I = (f,,..., f;) be an ideal generated by polynomials in P. The
following statements are equivalent:

(1) I is zero-dimensional.

(2) #({a eC"| fi(a)=ofor1<i< r}) < oo.

(3) Foreachie{y,...,n} there exists an element k; € N\{o} such that xf" e L(I).
(1) dimic(P/I) = #(N(G)) for a Grobner basis G for I w.r.t. <.

Proof. For example, see Theorem 15 of [159]. O

Proposition states one big drawback of FGLM, whose pseudo code is presented
in Algorithm 2% Since FGLM is constructing the sets N and E successively its termination
is based on the fact that #(N) < co. Thus it follows that the basic version of the algorithm
presented in [[67] (and also given in AlgorithmZ1) can only be applied to zero—dimensional
ideals.

Let us describe the functioning of FGLM: Assume an already computed Grobner basis
G, for an ideal I w.r.t. <,. Now we switch all computations to be done w.r.t. the desired
order <,. We begin to check all possible monomials m € Mon(x;, ...,x,). If m | m" and

2.8 Going the indirect way 87

m + m’ for some m’ € E(G.,), then m > m’ and m € S(G.,) U O(G.,). Those m are not
interesting for us (Line[). Thus, in Line[5} we can decide whether they are part of N(G.,)
or E(G.,). Whenever we find an element for E(G.,) we also compute the corresponding
polynomial 4, which fulfills Im(%) = m, and add & to G.,. After adding all multiples x;m
to M, we choose the minimal element of M w.r.t. <, for the next iteration round. In the
end, G, is the reduced Grobner basis for I w.rt. <,, and E(G.,) = L, (I).

Let us have a closer look at how we decide whether m is in N(G.,) or E(G.,): How do
we know where to put m by just checking the linear independency in Line[5f

Assume there exist such constants ¢, such that not all ¢, = o and

NFea(m, G,) + Y. ¢y NFea(p, Gs,) = o. (2.8.1)
AeN

Clearly, h = m + Y.y 1A is an element of I, thus in this situation we also know that
there exists an element g € G, with Im(g) | Im(h), this means that Im(h) € L(I). As we
compute the monomials m by increasing order, Im(4) = m and m is added to the set E,
which is equal to L(I), when FGLM terminates. On the other hand, if Equation 2:8alholds
onlyif ¢; = oforall A € N, then clearly m ¢ L(I) and thus m is added to N.

Algorithm 21 Grobner basis conversion algorithm (FGLM)

Input: G a Grobner basis for an ideal I in P w.r.t. <,
Output: G, the reduced Grébner basis for I in P w.r.t. <,
v G, « B, E« B, N o, M<o
2 M« Mu{1}
3. while M # @ do
4 if (3m’ € E such that m’ | m and m’ < m) then

5: if (3cy € K@ NFrea(m, Go)) + Yien €2 NFrea (4, Go,) = oand notall ¢, = o)
then

6: he—m+Y,ny0A

7: Ge, < G, u{h}

8 E< Eu{m}

9 else

10 N < Nu{m}

1 M+« Mu{xm|1<i<n}

;. m< ming {m' e M}
13: return G,

All in all, any monomial neither in E nor in N is a proper multiple of an element of E.
Thus,

(1) the normal form of an element w.r.t. G, is a linear combination of elements of N;
(2) the normal form of an element from (G,) is zero.

It follows that G, is a Grdbner basis for I w.r.t. <,. Since no multiple of elements of E
are considered, it is even the corresponding, reduced Grobner basis.

88 2 Ways to improve standard basis computations

Besides the above discussion, we do not give a proof of correctness and termination of
FGLM as this is not in focus of this thesis and can be found in [[67]. From the pseudo code
presented it should be clear that termination strongly depends on the fact that N is a finite
set. As mentioned before, this restricts the class of considered ideals to zero-dimensional
ones.

The transformation process presented in Algorithm E1is pretty fast, which means that
computing a Grobner basis for I in a “good” well-order <, and then using FGLM can be
much faster and less memory consuming than a direct computation of the Grébner basis
w.r.t. <,.

Some last remarks on FGLM and its impact on the field of computer algebra in the last
years.

Remark 2.8.18.

(1) In [67] it is shown that due to the low complexity of the conversion algorithm FGLM
the complexity of the computation of a Grobner basis w.r.t. <j, can be lowered from
d®() 10 4O,

(2) In [159] Wichmann generalized the FGLM Algorithm to be useable also if the ideals
are not zero—dimensional. For this he uses Hilbert functions to determine various
bounds for the computation. The problem with this attempt is that one needs to
check the Buchberger Criterion (Theorem [.8.3) manually to get a criterion for ter-
mination. It is clear that this testing leads to a way worse performance than the initial
FGLM Algorithm.

(3) In [67] they did not just present the above algorithm, but showed how to reduce
the check of linear dependency of polynomials to just linear algebra with vector and
matrix computation. Another improvement, which can be understood as an impact
for the ideas incorporated in F4 by Faugeére (see Section [Z3).

(4) Recently, Faugere and Mou presented new ideas for order-changing Grobner basis
algorithms (again restricted to the zero-dimenstional case) with sparse multiplica-
tion matrices in [70].

With this we finish our discussion on order-changing, dynamic, and indirect Grébner
basis algorithms. We have seen that using these attempts one has to deal with the drawback
of some restrictions (well-order, zero—dimensional ideals), but one can get a performance-
improved way of computing Grébner bases, where these restrictions are fulfilled anyway.
Which approach to be used is highly depending on the initial data, using these techniques
without good heuristics can lead to bad results, hence they should be used with care.

2.9 MODULAR STANDARD BASIS COMPUTATIONS

Coefficient growth during the computation of standard bases over a field of characteristic

2.9 Modular standard basis computations 89

zero has a very strong influence on the overall computation. In each single reduction step,
the leading coefficient ¢, of the reducer p, must be adjusted to match the leading coefficient
¢, of the element to be reduced. For this not only the fraction i— must be computed, but
also every coefficient in p, must be multiplied by this fraction. This can lead to enormous
numbers, whose calculations slow down the standard basis computation tremendously. In
this section we discuss modular standard basis computations, influenced by [28,54] and
initially presented 1988 by Traverso in [153] and Winkler in [160].

The idea is to not compute one standard basis over a field of characteristic zero, but
to compute many standard bases over fields of prime characteristic p < co. In the end,
combined with algorithms for the reconstruction of rational numbers ([45} 110} [136}[157}
[158]), we merge these modular standard bases together and lift the coefficients using the
Chinese Remainder Theorem (Theorem [1.1.26).

Also the ideas are rather old, these days the method becomes the fashion again due to
the development of multicore resp. multiprocessor computers, on which the independent
modular computations can be done in parallel ([5,/6}[t03]). Even in the area of algebraic
cryptanalysis modular Grébner basis computations are on vogue these days ([106]).

Convention. We are working over the rationals, thus let us assume P = Q[x,, ..., x,] for
the whole of this section. As in the previous sections we restrict ourselves to the polynomial
case. Moreover, let < be local or global, but not mixed.

For our task to give a description of a modular standard basis algorithm we need to
define some more tools in the following.

Definition 2.9.1. Let N > o be an integer.

(1) The set of m-Farey fractions F,, is defined by

Fm::{g|gcd(a,b):1,o£a£m,o<|b|§m}.

(2) The m-Farey rational map ¢,, is defined by

Om: Fp — ZP
g s (a+mZ)(b+mZ)™

for some prime number p.

Proposition 2.9.2. Assuming the same notation as in Definition2.9.1 the m-Farey rational
P

PR

map @« Fyy — 7y, is bijective if and only if m is the largest integer satisfying m <
Proof. See [110]. O

Definition 2.9.3. Let I = (f,..., f;) ¢ P be an ideal, G a standard basis of I w.r.t. <.
Moreover, let p be any prime number in N such that p does not divide the denominator of
any coefficient of f; forie {1,...,7}.

90 2 Ways to improve standard basis computations

(1) Theideal I, = (f, + pZ,..., f; + pZ) ¢ Zy[x,,...,X,] is the ideal] corresponding
to I modulo p.

(2) GpcZy[x,,...,x,] denotes the standard basis for I,.
(3) A prime number p is called lucky for I if and only if L(G,) = L(G).
(4) A prime number p is called Hilbert-lucky for I if and only if H; = Hy, .

Lemma 2.9.4. For any prime p, any ideal I in P and any degree d it holds that
H;(d) <Hjy,(d).
Proof. See Theorem 5.3 in [6]. O

Now we are ready to describe the workings of MODSTD (AlgorithmpZ]) in detail. Assume
in the following the task to compute a standard basis G for I = (f,,..., f;) in P:

(1) First of all we generate a set Q of prime numbers p which do not divde the denomi-
nator of any coefficient of the elements f; (Line[).

(2) For each p € Q we compute the modular standard basis G, for I, in Z,[x,, . .., x,]

(Line[g).

(3) After these modular standard bases are computed and stored in G, we search in algo-
rithm REmoveENoTLUcKY for those G, whose p are clearly not lucky for I (Line[).
As we do not know G at this point, we cannot use the definition of “luckiness”
from z:9:31 Thus we have to choose the lucky ones with a high probability out of
G. For this we build sets S, in the following way:

Take the first element p of Q. Then we define

Sp={q€Q|L(G,) = L(Gy)}.

Next we choose the first element p’ € Q which is not in S,. We build the set S,/
analogously to S,,. This process goes on until all elements of Q are added to exactly
one set S,. Let S be the set containing all these S,. Then we keep in G only those
standard bases G, whose index prime is in the set S, € S where

#(Sp,) 2 #(Sp) forall S, € S.

With this we get the standard bases corresponding to lucky primes for I with a high
probability. A wrong decision here is trapped in the tests in Step[(5)]

Assume G = {G,,, ..., G),} after this step.

(4) Then we lift the results in two steps:

a) Using the Chinese Remainder Theorem we get a standard basis Gy in the po-
lynomial ring Zy/[x,, . .., x, | where N = TT;_, p::

""Possibly the f; are previously multiplied by the least common multiple of all denominators of all coefficients.

2.9 Modular standard basis computations 91

Lip (%05 5%n] % oo X Zp[Xisoosxy] — Zn[X15...5X0]
Gy, X L.00X Gy, — GN.

b) From Zy[x,,. .., x,] we get back to P using the Farey rational map ¢y, where

k< /R

These computations are done in the algorithm LirT (Line[0) which returns the set
G.

(5) Next we need to check if G really is a standard basis of I w.r.t. <. This has to be done,
since we do not know whether we have computed enough modular standard bases
G, or not.

Of course, there exists an upper bound for the number of primes to be considered:
Assume that the Grobner basis G for I w.r.t. < would have been already computed
beforehand. Then the primes p € Q would be enough if

[]p>max {2. | ¢ |* | ¢ any coefficient of an element g € G}.
peQ

Sadly we do not know G beforehand, as our task plainly is to compute G. Thus we
do not know, at which point of the computations we have enough modular standard
bases computed and lifted. Thus we need to test if the set G constructed in Step[(4)]is
the requested standard basis or not. For this, G = {g,, ..., g;} must pass 3 different
tests in the algorithm TesT (LinemI):

a) We choose some prime g randomly such that g does not divide the numerator
or denominator of any coefficient of the generating polynomials f; for I such
that g ¢ Q. The test is passed if { g, + gZ, .. ., g; + g7} is a standard basis for I,.
Note that this test is not sufficient for checking if G is a standard basis of I, but
it is very fast compared to the following two necessary tests. If G does not pass
this test, we can go on with more modular computations, without the need of
losing too much time doing the next two, very expensive tests.

b) Next we checkif I c (G).

c) Last we check if G is a standard basis for (G). Note that this test is done in
P and it can be very expensive to test this if we have not considered enough
modular standard bases G,.

(6) If G passes TEsT, then G is the standard basis for I w.r.t. < and MODSTD terminates.

Otherwise, we need to consider more primes and compute more modular standard
bases. We are back at Step[(2)]

Remark 2.9.5.

(1) Of course, the pseudo code presented in Algorithm EZlis not optimized, but focusses
on the general idea of MODSTD. In a real implementation one re-uses the already
computed standard bases G, and the standard basis Gy, already lifted by the Chinese
Remainder Theorem. Thus, if TEST does not return a positive answer, in the next
round of modular computations we do compute only those G, where g € R.

92

2 Ways to improve standard basis computations

Algorithm 22 Modular standard basis computation (MoODSTD)

Input: Ian ideal in P, < an order on P

Output: G a standard basis for I in P w.r.t. <
1 G« @, b1
2 Q « {p prime numbers | p chosen heuristically }
3. while (b =1) do

4 while (Q # @) do

50 Choose p from Q.

6: Q< Q\{p}

7 G, < Sto(I,,NF)

8: G<Gu{G,}

9: RemoveNorLucky(G)
10: G < Lirr(G)

uif (TEST(G,I, Q)) then
12: return G

132 R« {p prime numbers | p ¢ Q and p chosen heuristically }
140 Q<+« QUR

(2) A highly optimized version of the presented variant of MODSTD is implemented in
SINGULAR by Hashemi, Pfister, Schonemann and Steidel in the library modstd. 1ib.
This implementation provides also the possibility to do computations in parallel. See
below for more information on this.

(3) Not so long ago MODSTD was restricted to either homogeneous input or to a local
order on P. Recently Idrees, Pfister, and Steidel have proven in [103] the correctness
and termination of MoDSTD for the inhomogeneous case also for global orders.

(4) Note that if one does not test the computed set G to be a standard basis for (G)
over the rationals, G must not be a standard basis for I w.r.t. <, but it is with a high
probability. In some applications this probabilistic answer is sufficient, but a modular
standard basis computation without tests at the end cannot guarantee that its result
is the requested standard basis.

(5) Iftheinital problem is given in P equipped with a mixed order < one could homoge-

nize the ideal and compute the homogenized standard basis G" in U™ K[x,, ..., X,]
w.r.t. <p (see Section 3] for more information about the connection between < and
the homogenized order <y,). Afterwards, a dehomogenization of G" results in the re-
quested standard basis G. But note that the computation of G can be much harder
than the one in the inhomogeneous case.

Having understood the modular computations the idea of parallelizing MODSTD is quite
easy.
The following steps of MODSTD can be parallelized easily:

(1)

the modular standard basis computations, and

2.9 Modular standard basis computations 93

‘ Generate Q ‘

,//\

‘ Gy, ‘ ‘ Gp, ‘ ‘GP#(@—‘ ‘ GP#(Q)‘

T

‘ Chin. Rem. Theorem ‘

i

‘ Farey Rational Map ‘

i

‘ Test in parallel ‘

Figure 2.9.1: Parallelized MmopSTD

(2) the tests:
a) Test whether G, := {g + gZ | g € G} is a standard basis for I, for some prime
q ¢ Q: For this, show that
fi+qZ € (Gy) and G, € StD(I,, NF),
b) Test whether I € (G) or not:

1< (G) < f; € (G) for all f; generating I,

c) Test whether G is a standard basis for (G) or not: Check, if all s—polynomials,
not detected by the Buchberger criteria (see Section 23), reduce to zero w.r.t.
G.

Of course, this parallelization pattern is based on the fact that all parallelized compu-
tations are done in a similar timespan, e.g. the timings of the computations of G, and G,
should not differ widely. The very same holds for the inclusion checks for the generators
of I and the s—polynomials.

Remark 2.9.6.

(1) To keep Figurezgqreadable, we abandon to illustrate the parallelization of the tests
in detail.

94 2 Ways to improve standard basis computations

(2) The process of parallelizing the test should be clear, but from the implementational
point of view, a significant distinction has to be done: Whereas the modular stan-
dard basis computations of the G, can be parallelized easily using one process per
computation, one needs to use multiple threads doing the parallelized tests. Other-
wise the overhead of sending and receiving data from one process to the other takes
longer than the complete reduction itself.

(3) Let us clarify that the above presented attempt to parallelize MODSTD is just a first
approach, but it is still too static and based on the ideas of sequential computations.
The SINGULAR team is recently optimizing the implementation of MoDSTD, includ-
ing many ideas to make the distributed computations more dynamic, even on dif-
ferent computers in connected networks. For example, depending on the relation
between the still-to-be—computed modular standard bases and the number of cpu
cores resp. processors available the Chinese Remainder Theorem can be used to lift
already computed modular bases meanwhile others are still computed concurrently.
It is nearly not possible to utilize multicore resp. multiprocessor computers to the
tull by just parallelizing parts of known sequential algorithms. New ideas leading to
new concepts of algorithms must be developed and implemented for this task.

In 1988, Traverso presented the so—called Grobner trace algorithm ([153]). On the one
hand, his algorithm is in some sense the origin of the already presented MODSTD, as there
the idea of lucky prime numbers and modular attempts are noted first in a connection with
Grobner basis computations. On the other hand, the Grébner trace algorithm is a much
more aggressive realization of those ideas.

Whereas MODSTD uses only the idea of finding lucky primes p modulo whose the stan-
dard basis computations are done independently, the Grébner trace algorithm enforces
upon all modular computations the same setting, the trace, and worms them in a tight
corset.

Definition 2.9.7. LetI = (f;,..., f;) beanideal in P, < a monomial order on P. When we
are computing a Grobner basis G = {g,,..., g} for wr.t. <with f; = g; fori e {1,...,r},
we define the Grobner trace T(t, S, n, 1) where

(1) m is a finite sequence of the leading monomials of G: m = (m;, ..., my),

(2) S isa finite sequence of all generated critical pairs: S = (Sy41, ..., Ss),

(3) nisafinite sequence of finite sequences of integers #; x: # = (#1,44, . .., ;) such that
nj=(nj,...,njx) wheren; < jforall je{r+1,...,s},and
(4) Ais a finite sequence of finite sequences of terms A; x: A = (A,4; ..., A) such that

Aj= A Ajy,) forall je {r+1,...,s}.

So what is the deal? During the computation of the Grobner basis G we store all essential
information in the Grobner trace:

(1) We store for each element in G its leading monomial in m.

(2) Each computed s-polynomial is stored in S.

2.9 Modular standard basis computations 95

(3) Every reduction step is uniquely determined by each entry in n and A: n; s is the
index of the reducer in G for the k-th reduction of the the j-th element. A; ; is the
corresponding multiplier for this reduction step.

So in the end we know each reduction step of each s—polynomial.

With this we are ready to present the Grobner trace reconstruction algorithm: Assume
that we want to compute a Grobner basis G for an ideal I w.r.t. <. Moreover, assume that we
have already given a Grébner trace T', for example by another Grébner basis computation
for 1. Then we can use Algorithm [z3)for the computation of G:

Algorithm 23 Grobner trace reconstruction algorithm (GBTRACE)

Input: I=(f,,...,f;)anideal in P, T = (m, S, n, 1) a Grobner trace for I

Output: G a set of polynomials including { fi, ..., f;}, R, E integer values
1 R<o0,E«o

2 G {fi,.... fr}

3: for(i=r+1,...,s) do

4: h < S,’

5. for(j=1,...,j;) do

6: if (Im(f) = A, lm(gn‘,j)) then
7 f < lc(g”z,j)f_lc(f)/linigni,j
8: else if (Im(f) < A;; lm(gnw.)) then
9: R<«1

10: else

11: E <1

12: return (G,R,E)

13 if (Im(f) = m;) then

14 gi<f

15: G<—Gu{g,~}
16: else if (lm(f) > m,») then

17: E<«1

18: else

19: E <2

20: return (G,R,E)

21 return (G,R,E)

Let us have a closer look at the pseudo code:
A set G is computed using the Grobner trace T. The important point is that we do not
really compute anything besides some reduction steps, everything else is predefined by the
Grobner trace:

(1) In Line@we choose the s—polynomials from T.

(2) In Line[glwe choose the corresponding reducers already stored in T by n; ; and A, ;.

*For example, think of different modular computations as in MODSTD.

96 2 Ways to improve standard basis computations

(3) InLinegwe do not compute new critical pairs, since the whole set of s—polynomials
to be investigated is already given by T'in S.

This has several advantages to a usual Grobner basis computation: We do not need to search
for any element, we do not need to generate for the multipliers of the reducers, and we do
not need to check new critical pairs by criteria. One of the most important optimizations
is that, besides some coefficient size and polynomial length differences, we know quite
accurately the memory consumption of the computation.

Of course, Algorithmz|pays dearly for this simplification with a static behaviour, which
cannot react on changes resp. unforeseen steps as dynamically as STD can do. Thus we need
to add two boolean variables R and E, which keep track of problems happening during the
computations of GBTRACE:

(1) Ris setto1if aredundancy has happened. This means that at some reduction step
the leading term of f is lower than expected (Line[8). At this point we do not need
to interrupt the computations, it is possible that 1t(f) is equal to the leading term
of the next reducer/multiplier pair stored in T. So even if a redundancy takes place,
1t(g;) = t; can still be fulfilled in Line[3}

(2) Eisset to1or 2 if an error has happened. This can happen at exactly two points of
Algorithm

a) IfIm(f) > A;jlm(gy,), then the computation cannot go on from this point
(Linema)). All following reducers, generated by the lists n; and A; in the Grébner
trace T, have a leading monomial smaller than A, jlm(gy,), thus no further
reduction for f takes place. At this point the algorithm returns the already
computed set G and marks the error with E = 1.

b) If in Line 8 1m(f) # t;, then the last reduction step went wrong. In this sit-
uation the algorithm must terminate with an error, too, as the following s—
polynomials in S € T would be no longer valid. Here we distinguish between
two possible errors: If Im(f) > m; then E = 1, otherwise E = 2. The reason
why we need to distinguish these situations is explained in the discussion for
TRACEMODSTD below.

Remark 2.9.8.

(1) How to handle errors in Algorithm[z3]is not obvious. Thinking about using GBTRACE
during a modular Grobner basis computation the effects of one such error on the
other computations must be handled with great care: Shall all computations stop?
Shall we just kill this one computation and go on with the next prime number? Here
we need again a good heuristic, but mostly one would perhaps decide to just kill the
defective computation and to go on, awaiting not so many errors to follow.

(2) Be cautious that GBTRACE does not claim to return a Grobner basis for I. If the
algorithm terminates without an error it is highly probable that G is a Grobner basis
for I wrt. <, but it is not ensured. Thus, whenever using GBTRACE in a Grébner
basis computation we need to add tests at the end, similar to those in MODSTD.

2.9 Modular standard basis computations 97

Traverso gives different approaches of how to use GBTRACE in Grobner basis compu-

tations in [[i53], we restrict ourselves to the one most obvious, the modular Grobner trace
computation.

Algorithm 24 Modular Grébner trace algorithm (TRACEMoODSTD)

Input: I anideal in P, < an order on P
Output: G a Grobner basis for I w.rt. <
1 G« @ R<0,E«<o0,b<+1
2 Q « {p prime numbers | p chosen heuristically }
3: Choose p, from Q.
¢ Q< Q\{po)
50 (Gp,» T) < 1STD(I},, NF)
6 G Gu{Gy}
7: while (b =1) do

8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:

22:

while (Q # @) do
Choose p from Q.
Q < Q\{p}
(Gp»R,E) < GBTRACE(I), T)
if (E = 0) then
G<Gu{G,}
else if (E = 1) then
G«
(Gp, T) < 1STD(I),, NF)
RemoveNoTLucky(G)
G < Lirr(G)
if (TEST(G, I, Q)) then
return G
R < {p prime numbers | p ¢ Q and p chosen heuristically }
Q <« Q UR

The whole “modular wrapper” in Algorithm [24] should be clear, it is very similar to
MoDSTD. The main differences are:

(1) InLine[]a first modular Grobner basis is done modulo the prime number p,. There,
TSTD denotes any standard basis algorithm equipped with the feature that it also
stores all neccessary data for the corresponding Grébner trace T

(2) Next the other modular computations are performed (Line[), but this time no stan-
dard basis computation is done. We use GBTRACE to compute the corresponding
sets G,. This speeds—up the computations tremendously.

(3) Ifan error is reported from GBTRACE we must have a closer look:

a) If E = 1 (Line [[4), then at some point the leading monomial of an element
computed for G, is greater than the corresponding one stored in T. At this
point we must assume that p is lucky and all beforehand used primes were not

98

2 Ways to improve standard basis computations

lucky. Thus we delete all previously computed Grobner basis from G (Line[13)
and compute a new Grobner trace using the (hopefully lucky prime number
P

b) If E = 2 we just discard the computed modular Grobner basis G, and go on
with the computations. We can hope that the previous prime numbers are
lucky and p is not lucky.

This is exactly the reason, why we have to distinguish the different types of errors in
GBTRACE.
Clearly, ifno error is reported, weadd G » to G and go on with the next prime number.

Let us close this topic with two remarks on implementational aspects considering the
Grobner trace.

Remark 2.9.9.

()

(2)

As already noted in Remarkzg5]the pseudo code of Algorithm Z4)is given focussing
on comprehension, not on efficiency. It is clear that one has to think about how to
recover T in Line[16lpossibly without a complete Grobner basis computation. More-
over, Traverso gives other possible implementations using different computation-
test-balances and error handling.

An attempt of using the ideas of tracing together with the improved reduction pro-
cess of F4 are given in [106]. There it is used for algebraic attacks on cryptosystems.
In this setting one needs to compute Grébner bases of polynomial systems having
the same shape, differing only in coefficients which are either random or depend on
a small number of parameters.

This finishes our discussion about modular standard basis algorithms. One should keep
in mind that there is a lot of space optimizing the parallel attempt, explicitly the balance
between computing and testing shall be investigated in more detail to receive a better per-
formance.

2.10 INVOLUTIVE BASES

As alast, but quite different attempt to improve standard basis computations, we give a
short overview of involutive methods. The main idea is to define an involutive monomial
division and to show the correspondences to the usual division. Using this fact, involu-
tive normal forms can be defined. With these so-called involutive bases can be computed,
which fulfill the Buchberger Criterion (Theorem[1.8:3). Thus any such involutive basis is a
standard basis, too.

Note that we introduce the notion of involutive bases only over the polynomial ring P
equipped with a well-order <. This is, again, due to the fact that the involutive approach is
not in the focus of this thesis and we want to keep notation as simple as possible.

2.10 Involutive bases 99

This topic is discussed in depth in various publications, for example, [11}24}2540}82]

Definition 2.10.1. Let u,v,w € P be monomials. We define the involutive (monomial)
division by the relation |;, which has the following properties:

W uljv=>ulw

(2) u|; u for all monomials u € P.

(3) ulruvand u | uw < u | uvw.

(4) ful;wandv | w,thenu|;vorv| u.
(5) Iful|;vandv|; w,then u|; w.

Remark 2.10.2. Note that the usual monomial division satisfies Property[(3)] only in the
univariate case, i.e. if P = K[x]. For example, assume P = KC[x, y]. Then

x|xyand y|xybutx + yand y + x.

Important examples of involutive divisions are the Janet division (), the Pommaret
division ([139]), and the Thomas division ([i51]).

Definition 2.10.3.

(1) A subset M of the set of all monomials in P is called involutive if for any element
u € M it holds that

\UJ {um | m any monomial in P} = | J {veM|ul;v}.
ueM ueM

(2) A subset M of the set of all monomials in P is called involutively autoreduced if for
any two elements u, v € M it holds that

utrvandv +7 u.

(3) A finite set F in P is called involutively autoreduced if 1t(F), the set of the leading
terms of elements in F, is involutively autoreduced and no f =), c,x® € F hasa
term co, x% = cq u # 1t(f) where

ue |J {veP monomial |¢];v}.
telt(F)

Using the relation |; one can introduce the notion of an involutive normal form y,(p, G)
which corresponds to the usual normal form (see Definition [Z717). Altogether, the main
object to study in this area can be defined:

Definition 2.10.4. A finite set G = {g,,..., g} in P is called an involutive basis for the
ideal (g,..., &), r <5, if

100 2 Ways to improve standard basis computations

(1) G isan involutively autorreduced set, and
(2) forall g; € G and all monomials u € P it holds that #,(ug;, G) = o.

Theorem 2.10.5. If G is an involute set, then for all p € P it holds that

n(p,G) = n,(p,G).

Using this equivalence we can easily follow:

Corollary 2.10.6. Let G be a finite set in P. If G is an involutive basis for (G), then G is a
standard basis for (G).

The proof of Theorem and a more extensive introduction on this topic can be
found in [24].

Over the last couple of years, the ideas of how to parallelize the computation of invo-
lutive bases are developed (see [[84]), a variant of FGLM has been implemented (see [83]]),
and lots of other improvements in this area of computational algebra have been made.

2.11 CONCLUDING REMARKS

In this chapter we have presented a wide range of improvements or variants of STD, us-
ing classical methods. Some of them use the Hilbert-Poincaré series, others different orders
on the sets of critical pairs, still others transform the normal form computations to matrix
operations. For most of these approaches we have seen lots of benefits, but often draw-
backs, too. For example, one has to consider restrictions on the input and the efficiency
of the methods is highly dependent of the behaviour of the data during the computations,
which cannot be known beforehand. Thus there is not the one and only best way to com-
pute standard bases. To get a standard basis in an efficient way, one needs to implement
and combine most of the presented ideas, bind together by well-elaborated heuristics.

In the same way the signature-based computations we present in the following are not
the utility knife of standard basis algorithms. On the one hand we see that in most situa-
tions they find more useless critical pairs than Buchberger’s Criteria. In some situations,
examples beforehand intractable, even with the improvements of this chapter, can be solved
using the signature-based approach. On the other hand we get some restrictions on the
reduction process and overhead is generated due to how aggressive the signature-based
criteria are chosen. Thus it is not the question of getting the one best algorithm, but even
more about how to combine the signature-based world with already highly efficient im-
provements of the classic world.

Clearly, ideas like the Grobner walk, the FGLM transformation or modular approaches
can be used straightforwardly with signature-based algorithms. Those improvements can
be understood as wrappers around random standard basis algorithms, thus we only have

2.11 Concluding remarks 101

to guarantee that the result is a standard basis with the requested properties, for exam-
ple, being reduced. Other improvements are not as easy to apply to signature-based algo-
rithms, some of them even cannot be combined or harm performance by interfering with
signature-based criteria.

With these considerations in mind the motivation for our research on signature—based
ideas is clear:

(1) Improve timings, memory usage, and performance of already efficient and improved
computations.

(2) Combine new ideas with as many as possible improvements presented in this chap-
ter.

(3) Try to merge ideas of both worlds to gain an even better insight into the underlying
theory, which could lead to more improvements in the future.

3 SYZYGY MODULES AND STANDARD
BASES

This chapter can be somewhat understood as connecting link between everything al-
ready stated in chaptersmand () and the signature-based attempt, whose introduction fol-
lows in Chapter @

Facing all the discussions and problems understanding signature-based standard basis
algorithms, in particular Faugere’s F5 Algorithm, which started this field of research, this
chapter can be also seen as a missing link. Starting the discussion of signature-based algo-
rithms with this interlude makes it a lot easier for us to understand the way things work
there. Moreover, some disparities to ideas presented in Chapter @lappear here for the first
time, e. g. the restriction of reducers in Algorithm [§o, which uses so—called syzygies to
improve the computation of standard bases.

So what are these syzygies? Loosely speaking they can be understood as relations be-
tween elements. Having given a finite set F = {f,, ..., f,} € P¥ the question arises if there
are any dependencies and connections between the different f;s. Moreover, the nice fact is
that these syzygies again build a module in some P'. A generalization of a syzygy module

104 3 Syzygy modules and standard bases

is the so—called free resolution. It stores a lot of data about the structure of F and is useful,
and even essential, for lots of applications in algebraic geometry. Furthermore, syzygies are
very useful in theory, for example one can give quite a nice proof of Buchberger’s Criterion
(Theorem[1.8.3) using them.

Clearly, computing these patterns is a lot more difficult than to compute a standard basis
of F. Otherwise, computing a standard basis of F can help to compute the syzygy module
of F. Even more astonishing is the fact that intermediately computed syzygies can improve
the performance of standard basis algorithms deeply.

In SectiongIwe introduce the notion of a staggered linear basis, which can be also used
to improve standard basis computations. We see that this points directly to syzygies and
their computations, which are covered in Section[3-2} In Section 53 we show how syzygies
can be exploited to give new criteria for the detection of useless data in a standard basis
computation. This is exactly the point at which the signature-based world in computer
algebra starts.

3.1 STAGGERED LINEAR BASES

In 1986 Gebauer and Moller presented a new idea for detecting useless critical pairs in
a Grobner basis computation ([80]). For this they introduced a new kind of basis, the
so—called staggered linear basis. Later on, due to some problems with the initial attempt,
Mora has presented a revised version of their idea in [131]. In 2009, based on the previous
work, Dellaca has outlined both attempts, has revised them, and has shown their respective
advantages / problems ([52]).

We see in the following that the idea of staggered linear bases can be seen as an initial
spark for the development of signature-based standard basis algorithms.

In this chapter we again restrict ourselves to the polynomial case, and always assume P
to be equipped with a well-order <.

Definition 3.1.1. Let I be an ideal in P. A Gauss generating set B for I is defined by the
following properties:

(1) Bel,

(2) B=span,(I).
Moreover, if B also fulfills

(3) Im(f) =Im(g) = f = gforall f,g € B,
then B is called a Gauss basis for I.

In the following we characterize Gauss bases, and derive from this discussion easily the
connection between Gauss bases and Grébner bases.

3.1 Staggered linear bases 105

Lemma 3.1.2. Let I be an ideal in P, and let B = {g,,..., &} c I finite such that B =
span%(l) . Then B is a Gauss basis for I if and only if for each f € I there exists a represen-
tatio

f =Y cigi such that c; € K,Im(f) > Im(g;) for all i.

i=1

Proof. See Proposition 3.4 in [52]. O

Corollary 3.1.3 (Lemma 22.2.2 in [131]). Let I be an ideal in P, and let G be a finite subset
of I. Then the following conditions are equivalent:

(1) G is a Grobner basis for 1.
(2) B:= {mg,» | gi € G, m e Mon(x,, . ..,xn)} is a Gauss basis for 1.

Proof. This follows easily from the fact that L(B) = L(G). O

As a consequence of Corollary 313 one can easily construct a Gauss basis, whenever a
corresponding Grobner basis is already given. The other way around is more interesting
for us: When we have computed a Gauss basis for an ideal I, can we construct a Grébner
basis for I out of it? The answer to this question lies in the process of “staggering” the Gauss
basis.

Definition 3.1.4. Let I be an ideal in P. Then the set
S:= O {(g,»,M,») | M; c Mon(x,, ... ,x,,)}
in1
is called a staggered linear basis for I if
Bg := Lijl {mgi | m € Mon(x,, . ..,xn)\(Mi)}
is a Gauss basis for I.

The idea is to have a Gauss basis with different levels at which the monomials multiplied
to the generating polynomials are restricted. These restrictions, represented by M;, are
local to every generator g;.

With this definition we get a practical solution for constructing Grébner bases out of
staggered linear bases.

Theorem 3.1.5. With the staggered linear basis S for I as in Definition BT and the corre-
sponding Gauss basis

Bg = L:J {mgi | meMon(x,...,x,)\(M;)}

'Such a representation is sometimes called a Gauss representation.

106 3 Syzygy modules and standard bases

the set G c I defined by

G:= L;{g,» |Im(g;) + Im(g;) forall j < i}

is a Grobner basis G for I.
Proof. See Lemma 25.4.4 of [131]. O

Let us give a small example showing how all this different kinds of bases are related
to each other. Moreover, this example outlines the ideas behind the staggered linear basis
algorithms presented in the following.

Example 3.1.6. LetI = (f,, f,) c K[x, y,z], using <4p, where f, = x>y - 2*, f, = yz* - x3.
We can easily define a Gauss generating set, namely

B:= {mf1 | m e Mon(xl,...,x,,)} U {mf2 | m e Mon(xl,...,x,,)}.
Clearly, B is not a Gauss basis for not fulfilling the third property of Definition -1,
z'lm(f) = x*Im(f,), butz*f; # x* f,.

Next one could think about including the idea of staggered linear bases, i.e. restricting the
possible multiples of Im(f,). Thus we would set M, = {x*} since this is the first multi-
plier for which the multiplied leading monomials of f; and f, interfere. Hence we could
construct the set

B = {mf1 | me Mon(xl,...,x,,)} u {mf2 | me Mon(xl,...,xn)\(Mz)}.

The problem with this approach is that B’ is no longer a Gauss generating set since B #
span(I): For example, there is no representation for x* f, with elements in B’. Accord-
ingly we need to add some element to B’. Since y*1m(f,) is already represented by y*f,,
the element f; we need to add must fulfill Im(f;) < Im(f;). In particular, f; must fulfill the
following equation:

X f, Yh+mfi+myf, + fy

xlfz—y‘*fl—gmifi y
S(fz,fl)—imifi - 5

In other words, we need to compute the s—polynomial of f, and f, and compute its normal
form w.r.t. {f,, f,}. It follows that S(f,, f,) does not reduce to zero, but results in a new
polynomial f; which must be added to B’. Performing the computations we end up with
f, = 2z% — x°. Adding f, to B’ we receive a Gauss generating set

B':={mf, | meMon(x,,...,x,)} U{mf,|meMon(x,...,x,)\(M,)}
U{mfy | meMon(x,,...,x,)}.

3.1 Staggered linear bases 107

We are still not finished, since one sees easily that

Z2%1m(f) = x*yIm(f,) as well as z° Im(f,) = yz*Im(f,).

To get a Gauss basis B” for I we need to restrict some of these polynomial multiples to
ensure uniqueness of leading monomial and corresponding polynomial in B”. Here we
have a choice: On the one hand we can restrict M, and M,, and on the other hand we can
restrict M;. We decide us to go the easier way, namely restricting only the multiples of f;:

My = {Im(f,),Im(£,)},
B := {mﬁ | me Mon(xl,...,xn)} U {mf2 | me Mon(xl,...,xn)\(Mz)}

U {mf3 | m € Mon(x,, . ..,x,,)\(M3)}.

With this B” is a staggered linear basis for I, since one clearly sees that G = { f,, f,, f;} isa
Grobner basis for I (from the above discussion it follows that S(f;, f;) as well as S(f;, f>)
are detected by Buchberger’s 1st Criterion).

Accordingly, we need an algorithm to compute a staggered linear basis in the vein of
the construction presented in Example[3.1.6] This algorithm was given initially by Gebauer
and Moller in [80].

Let us discuss the corresponding pseudo code given in Algorithm Z5]in more detail:

The first main difference to already known standard basis algorithms, for example use
GM for comparisons, can be found in the linesm—[3} There the initial values of the sets M;
for each f; of the input F are computed:

Ml :Qi

M, ={Im(f,)},

M, = {Im(f,),...,Im(f,)}.

After the reduction has taken place, the set M; is extended by % (Linez7) and the

set M., for the newly generated element f;,, is constructed (Lines[gHza) by
o(fi-)
Im(f;)

Based on the above constructions of the M; we see a completely new criterion for the
detection of useless critical pairs in Line[2 A pair (f;, f;) is deleted whenever

| T)
Tim(s)

12 =)+ (LN

for some m; € M;.

Let us discuss this:

108 3 Syzygy modules and standard bases

Algorithm 25 Initial staggered linear basis algorithm (STAGGB1)

Input: F={f,,..., f,} aset of polynomials in P
Output: G a Grébner basis for (F), B a Gauss basis for (F)

P« M, <o

2: for(izz,...,r)do

3: M,' <—Ml‘_1U{1m(fi_1)}

4: G« f1

5: for (i=2,...,7)do

6 P<Pu{(fuf))|fieG. j<i}

7: | <r

8: while (P + @) do

9: P’ < SeLecT(P)

0 P« P\P'
u: while (P' + @) do
12: (fi» fj) < First element of P’

13: P' < P"\{(fi, fi)}
e f (B ¢ (M) then

1m(fz)
15: h <—S(f,,f])
16: h < NE(h,G)
17: if (h # o) then
18: fl+1 <~ h
(Q) < (M) : {75)
20: My, < {Im(£),....Im(f,)} uQ
21: P<PU{(fis-fi) | fieG j<l+1}
22: G <—Gu{fl+1}
23: <~ 1+1
24: M; <~ M;u {—Tlff(;?))

250 B« U?Zl{mfi €G|Im(f;) | mlm(f;) = j>i,m eMon(xl,...,x,,)}
26: return (G, B)

(1) The initial construction of the M; adds the leading monomials of all previous el-
ements, i.e. elements of index < i. Assume we build an s-polynomial S(f;, f;)
such that 7(f;, f;) = Im(f;)Im(f;). Then we know by Buchberger’s 1st Criterion

that we can discard this s—polynomial. Clearly, in this situation % € (M;) as

lm(f]) € M,‘.
(2) IfS(fi, fj) is rejected by Buchberger’s 2nd Criterion, then there exists some S(f;, fx)
such that 7(fi, fx) | 7(fi, fj), which is computed before S(f;, f;) in Algorithm

But then % € M;, and thus S(f;, fj) can be rejected here, too.

The main idea of STAGGBA1 is to enhance the criteria checks of critical pairs, i.e. to find
more useless critical pairs than GM. As seen in the short discussion above, whenever a

3.1 Staggered linear bases 109

critical pair is detected by one of Buchberger’s criteria, STAGGB1 also detects it.
Two main problems occur investigating Algorithm [z5]a bit more closely:

Remark 3.1.7. As a matter of fact, STAGGB1 has two drawbacks:

(1) The checks for useless criteria are not efficient enough. With an easy optimization
we can fix this (as shown in Algorithm 24]).

(2) The algorithm does not always return a Grobner basis G for its input. Dellaca has
shown in [52] that using the Noon-3 example from [93] as input, STAGGB1 returns
the seﬂ G ={g.-., g0} which is not a Grobner basis. This is due to the fact that
S(g4>go) does not reduce to zero w.r.t. G. This error is inherited from the fact that
during the computations of the algorithm the critical pair (g,, g,) is detected being
useless, and thus the corresponding s—polynomial, which would not reduce to zero,
is not added to G.

Clearly, part[(2)] of Remark gT7) must be solved, otherwise the idea of computing stag-
gered linear bases to receive corresponding Grobner bases is obsolete.

Mora resp. Dellaca gave a revised version of the algorithm including minor changes
on the detection of useless critical pairs, which improves the first drawback mentioned in
Remark[FI-7} Moreover, a small restriction for the reducers computing the normal forms

is introduced, which is the key point to ensure correctness of Algorithm 26

In Linerg]we see the easy improvement of checking both multipliers of S f;, f;), Tlngj))

t(fi.fj)
w.r.t. M; as well as lm(f") w.r.t. M.

The change having a larger impact on the computations is the new algorithm called
STAGNF used in Line[16] Let us have a closer look at the corresponding pseudo code given
in Algorithm g7

In Line[5|we see the difference to other normal form algorithms: Not all possible reduc-
ers gy € G are allowed to reduce h, but only those for which the multiple m ¢ (Mj).

Using this revised version of the algorithm one can prove the following:

Theorem 3.1.8. If Algorithm 6l terminates, then the result is correct.

Proof. See Theorem 3.9 in [52]. O

Sadly, the proof for termination of STAGGB2 cannot be given, as it is not ensured any-
more due to the restriction of the possible reducers in STAGNF. A non-terminating exam-
ple can be found in Chapter 3 of [52].

Remark 3.1.9.

(1) One should also be very careful on how to choose the next pair to be computed.
In the normal selection strategy is used. Mora, on the contrary, sorts the crit-
ical pairs by increasing degrees of the least common multiples of the pairs. In the
following the idea behind this attempt, influenced by Faugere, becomes clearer.

*We use the corresponding notation from [52].

110

3 Syzygy modules and standard bases

Algorithm 26 Revised staggered linear basis algorithm (STAGGB2)

Input: F={f,,..., f,} aset of polynomials in P

Output: G a Grébner basis for (F), B a staggered linear basis for (F)
L P<g M, <o
2: for(izz,...,r)do

2 2N 2V Ao

10:
11
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22!
23:
24:

M,' <~ Mi—l U {lm(fl—l)}

: G<—f1
. for (i=2,...,r)do

PPu{(fuf)|fieG j<i}

sl
while (P # @) do

P’ « SeLect(P)

P<P\P'

while (P’ + @) do
(fi> fj) < First element of P’
P' < P\{(fi- f;)}

if (222 ¢ (M;) and S ¢ (M) then

h<S(fi, f;)

h < StaGNF(h, G)

if (h # o) then
fl+1 <~h
(Q) < (M) ()
My, < {Im(£),....Im(f,)} uQ
P« PU{(fis-fi) | fieG j<l+1}
G+« GuU{fi.}
[« 1+1

M; < M;u {SLL)

250 B« U?Zl{mfi €G|Im(f;) | mlm(f;) = j>i,m eMon(xl,...,x,,)}
26: return (G, B)

(2)

(3)

An in-depth discussion on the problem of the dependencies of termination and cor-
rectness of the algorithms STAGGB1 and STAGGB2 is given in [57]. There the problem
of termination of Faugere’s F5 Algorithm is brought to light and different attempts
to ensure termination are presented. See Section [6.5]for more details on this topic.

Note that in [51] a quite similar attempt of computing a Grobner basis is given. There

itis proven that, if we have just added a new element f; to G, it is enough to consider

only those s—polynomials S(fi, f;), j < i, such that Tlf]ﬁf])) involves some element

of M; := <lm(f1), . ,lm(f,»,l)> :Im(f;). All other s-polynomials are useless and
need not be computed.

All in all, the following roundup can be done according to staggered linear bases and

3.2 Syzygies and free resolutions 111

Algorithm 27 Normal form computation for staggered linear bases (STAGNF)

Input: f a polynomial in P, G = {g,..., g} aset of polynomials in P
Output: h the staggered normal form of f wrt. G
r h<~ f
2 while (h # o) do
if (D), := {(m,gk) € Mon(xy,...,x,)\(My) x G | mlm(gg) = lm(h)} # &) then
Choose any (m, g) € Dy,

le(h)
h< h- @ M8

return h

3
4
5
6: else
7
8: return h

how to compute them:
(1) A new criterion to detect useless critical pairs is introduced.

(2) Correctness of the computation using this new criterion is based on a restriction of
possible reducers.

(3) This restriction as well as the sorting of the critical pairs influence if the algorithm
terminates or not.

It is quite amazing that all these facts, which are the hard parts understanding Faugere’s
F5 Algorithm and related signature-bases algorithms, pop up already at this point. Clearly,
staggered linear bases have kicked off the ideas behind the algorithms in focus of this thesis.

Note that we do not try to give any proof of the above presented facts. This is based
on the problem that understanding the ideas in full can be done much nicer with another
structure we need to introduce, namely syzygies. Using syzygies our view on the ideas
presented in this section changes dramatically and enables us to get a deeper insight.

3.2 SYZYGIES AND FREE RESOLUTIONS

A syzygy is a very important structure in commutative algebra storing the relationships
between elements. Having some elements f;, ..., f, € M the question how independent
they are from each other arises quite naturally. The syzygy module stores exactly these infor-
mation. This procedure can be repeated by searching for relations between the generators
of the syzygy module, which leads to a so—called free resolution, another very important
concept in commutative algebra.

In this section we introduce the notions of syzygies and free resolutions. We see that
whenever we want to compute the generators of the syzygy module of some module M,
the standard basis for M is used for this attempt.

112 3 Syzygy modules and standard bases

As we have already noted in Section [5-]we are interested in the other way around: How
can we use information about the (partially computed) syzygy module to improve standard
basis computations?

Definition 3.2.1. A complex C of P-modules M; is a (in-)finite sequence

..—>Mk+1¢£‘>Mkﬂ>Mk_l—>...

where ¢ o ¢y, = o forall k.
(1) Cis called exact at My if ker(¢y)/im(dg,) = 0.
(2) Cis called an exact sequence if it is exact at every M.

Let us see how we get a free presentation of an arbitrary P-module M. We choose
generators { f;} of M, as well as generators {e;} of a free P-module F,. Next we consider
the module homomorphism 7 defined by

n: F, — M
e,»'—>f,~.

We can reproduce this step again exchanging M by ker(7) and F, by another free P-
module F,. Rewriting
F, — ker(n) — F,

by o we get an exact sequence
F,—> Fo —> M —> o.
Repeating this process, one receives a possibly infinite exact sequence

.7 [

e P S E SR RS E S Mo (3.2.1)

Definition 3.2.2. With the notations as above we define the following:
(1) Every such exact sequence as in[3:2.1is called a free resolution of M.

(2) If there exists an integer [such that F; = o for all i > [, then the free resolution is
called to be finite of length .

(3) The images im(¢y) are called the k-th syzygy module of M. We denote them by
Syzi (M) = Syzi (fos ..o fr)-
(4) IfM = (fi,..., f;) isanideal in P, then any element fje; - f;e;, where j < i, is called
a principal syzygy of M.
Convention. We are mostly interested in the first syzygy module of some module M. Thus

let us agree on the shorthand notation Syz(M) = Syz (M) for the rest of this thesis. More-
over, “syzygy module” always means “first syzygy module”

3.2 Syzygies and free resolutions 113

Remark 3.2.3. Besides this a bit abstract definition one can think of syzygies in a rather
vivid way:

(1) One can think of a syzygy of M as a relation (g,, ..., gx) € P* of elements f,, ..., fx
such that

k
Z gifi=o.
=1
Thus the first syzygy module defined above can be understood as Syz(M) = ker (7).

(2) Note that, defining Syz (M) = M, we can also define the k—th syzygy module of M
recursively by
Syz, (M) := Syz (Syz,_,(M)), k > o.

In the following, let us sum up some of the main properties of syzygies resp. free reso-
lutions of a finitely generated module M over P. You can find proofs of these statements
in any introductory book on commutative algebra or computer algebra, e.g. [51,[07,112].

One remarkable theorem proved by Hilbert in 1890 is stated in the following. It can be
seen as the initial point of homological algebra.

Theorem 3.2.4 (Hilbert’s Syzygy Theorem). Every finitely generated P-module M has a
finite free resolution of finitely generated, free P—modules, which has length at most n.

Example 3.2.5. Let P = K[x, y, z] with <g,. Consider the polynomials

fi=xy* —xz,
f=3x"-yz,
fy =224 —xy*

On the one hand it is easy to give some syzygies of F = { f,, f,, f;}. For example, one could
only consider two out of the three elements by multiplying the third by o:

gfi+tefi+of;=o.

One solution for the above equation is to set g, = f, and g, = —fi, as f, f, — f. f; = o. This
process can be done for all (i) combinations:

Lfi-fifi-ofs=o0,
fifi-ofi-fifi=o0
oh-fifhi-ffi=o.

Even if it is easy to state the principal syzygies of { f,, fa, f; }, the real problem lies in finding
the generators of a basis for Syz(f;, f3, f;)-

We already know that the kernel of a module homomorphism is again a module. Thus
searching a set of generators of Syz(M) is nothing else but the question about the com-
putation of a standard basis for Syz(M). For this, different algorithms are known. Let us
assume in the following that F = {f;,..., f,} ¢ P¥, M = (F).

114 3 Syzygy modules and standard bases

(1) One method is presented in Algorithm 28 First a standard basis G’ for the module
(F') is computed (Line[g), where

F'i={fi+erirs-..» fi + eper} © PHE.

The elements e, . . ., e, are the canonical generators of Pk, From this computa-
tion we can extract three different, but related elements:

a) The syzygy module Syz(M) is constructed by taking all elements g’ from G’
for which the first k entries are zero and extract the last r entries (Line[):

/ r+k
g =(0,...,0,hy,....,h)eP
k-times r-times

= h=(h,,...,h) e Syz(M).

b) We also get the standard basis G = {g,, ..., g} of M w.r.t. < (Line[): Here we
take all elements g’ € G such that the first k entries are not zero.
g = (g skl ., hy) e Pk
= g = (g-.-.8)€G.
c) Moreover, we also get a third important structure, the transformation matrix
T, which fulfills the equation

(8-->8) =T (fis-o s fi)".

We do not give a proof of this concept, you can find a discussion on this algorithm
and its theoretical basics in Section 2.5 of [g7].

Algorithm 28 Standard basis algorithm for the first module of syzygies (Syz1)

Input: F = {f,,..., f,} a finite subset of P¥, {e,,..., e, 1} a set of canonical generators
of Pk, < a module order on P*

Output: G a standard basis for F w.r.t. <, S a finite subset of P* such that (S) = Syz(F)
w.r.t. <, T a matrix in P**" where s = #(G)

: for(izl,...,s)do
row T; of T < h; where (g;, h;) € G’
: return (G, S, T)

1 F' < {fl s fr erik)

2. <« generalization of < to P"**

3 G' < StD(F',1,<")

4 S« {h|heP (o,h)eG"}

s G<{glgePr (g.h)eG g+0}
6: S < #(G)

70 T < 1t

8

9:

—
o

(2) The second approach we want to mention in this thesis is a bit more straightforward
and can be found in several publications (e.g. [112[135}[155]).

3.2 Syzygies and free resolutions 115

The main idea of Syz2, presented in Algorithm 29} is to compute the standard ba-
sis for F and the standard basis for Syz(F) at the same time. It computes the the
standard basis for F directly and not with some detour over a higher dimensional
computation as presented in Algorithm 28 For an easier notation, we restrict our-
selves to the case F = {f,,..., f;} ¢ P in the following. Whereas the standard basis
for F is stored in G, the standard basis for Syz(F) is stored in S. So, in some sense
we just use the Gebauer—-Moller implementation GM and add some overhead to it:
Whenever we compute the normal form of an s—vector S(f;, f;) we need to do some
bookkeeping and store all reducers resp. corresponding multipliers A, needed to get
from S(f;, f;) to h (see Linei8). In the end two situations are possible:

a) If h # o, then we need to add & to G in order to compute a standard basis for
F.

b) If h = o, then we do not need to add anything to G, but we need to add the
syzygy corresponding to this zero reduction to S. For this we need to store
the bookkept data from the normal form computation in some elemente e,, .,
(Line[g) and add it to S (Line[z7). Note that we have to rewrite any element ey
corresponding to a reducer fj in e,,+, where k > r by its corresponding relation
such that in the end all K’ < 7.

It was firstly proved by Wall in [55] that one can use the Buchberger criteria, which
detect useless critical pairs, also for computing syzygies. In particular one can im-
plement the algorithm in exactly the same way we have presented Algorithm gt A
Gebauer-Moller implementation with some overhead for the storage of the syzy-
gies. Note that whereas it is shown in [155] that the 2nd Buchberger Criterion does
not influence the computation of Syz(F), the 1st Buchberger Criterion does. For this
matter of fact we need to add all syzygies fje; — f;e; for j < i in lines[5]-[6l Every s-
vector that fulfills Buchberger’s 1st Criterion (and thus reduces to zero) corresponds
to a multiple of such a syzygy. It follows that we can add these elements to S.

Remark 3.2.6. Let us have a closer look at the computational aspects of the different, above
presented algorithms constructing a standard basis for Syz(M).

@)

(2)

(3)

Syz1 goes the indirect way, i.e. it does not compute a standard basis of M or Syz(M),
but extracts them from a related computation: On the one hand, we need to compute
a standard basis in P"** which can be much harder than a corresponding computa-
tion in ¥, On the other hand, this is the only “real” computation that needs to be
done. All other results can be obtained from G’ by extracting special elements.

Syz2 has the advantage to not compute a standard basis for a module of higher rank,
but it has the drawback of storing and remembering all the different reducers and
their multiples during a normal form computation of some s—vector. This overhead
can be the determining part of running time and memory consumption; it can even
render the computation of a basis for the syzygy module of an ideal, for which the
standard basis computation is straightforward, impossible.

In [1o] Ars and Hashemi give an attempt of using the matrix version of the F5 Al-
gorithm to compute a basis for the module of syzygies of F in the vein of Syz2. This

116 3 Syzygy modules and standard bases

matrix version does not use the full strengths of F5. We see in Section [7.6] that one
can do even better, using some improved variant of Fs to compute Syz(M).

Algorithm 29 Standard basis algorithm for the first module of syzygies (Syz2)

Input: F={f,..., f,} afinite subset of P, < a module order over P
Output: G a standard basis for F w.r.t. <, S a finite subset of P° such that (S) = Syz(G)
1 S<g
2 P«
3 for (i=2,...,r) do
4 P < Uppate(P,G, f;)
52 forj=1,...,i—1do
6: S<—SU{fj6i—fi6j}
7: G+~ Gu {f,}
8
9

e

T m <« #(S)
10: while (P # @) do
1: P’ « SELECT(P)

12: P« P\P,
132 while (P’ * @) do
14: (fi» fj) < First element of P’

15: P’<—P'\{(]§;,f]2} ()
o he L) 1) B
v emn < () Tl e —1e(fi) e

18: h < NE(h, G) such that h = S(fi, f;) — iy Ak fi

19: Cm+1 < €m1 — 22’:1 /lk’ek’
20: if (h # o) then

21: f1+1 ~h

22: P < UppatTE(P, G, fi1,)
23: G< Gu{fi.}

24: I« 1+1

25: m-<—m-+1

26: else

27: S<—SU{em+1}

28: m<m+1

20: return (G, S)

Example 3.2.7 (Example revisited). Let us reconsider the previous example, let us
assume <; on P3. We have already given some syzygies of F = {f,, f,, f;}, namely the
principal ones. We try to compute a basis for Syz(F) using Syz2 in the following. Clearly,
S(f;, f1) aswellas S(f;, f,) reduce to zero due to Buchberger’s 1st Criterion. Let us reduce

3.2 Syzygies and free resolutions 117

S(for f1):
fai=—yz+yz? =3x7y* — Y’z —3x7y* +3x’z - (3x°z — yZ°),
S(f: 1) zf

e,:=(y*—2)e, —3xe,.
Next we need to compute S(f,, f,) and S(f,, f;):

o=—xyz+xyz® +xyz - xyz’,

S(faf)
est=xe, + yze,

= (xy* -xz)e, - (3x* — yz)e,.

0=—222 +2y2° +2)°2* —xy’ +xy° - xy’z— (2y2° — x)*2),

S(farfs) »h ¥z fs
22%, + (¥ — yz)e; + yle,
(P - yz)e; + (2y°2° —22%) e, + (—6x2° — y*)e,.

€6 -

At this point the standard basis computation stops and we have G = {f,, f>, f;, f4}- More-
over, we can state a basis S for Syz(F): This is done in the easiest way using a so—called
syzygy matrix, in which the ith row can be understood as the ith computed syzygy and
the jth column represents the jth canonical module generator e;. With this the following
notation is quite clear:

-3x*+yz xy’-xz o o
—2z%+xy? o xXy*—xz 5 _|o

o —2z% +xy* 3x>+yz £)= 0
-6x23+y> 2y’ -2zt Y -yz h o

Note that e, computed above coincides with the principal syzygy fie, — f,e,, thus we
only have 4 generators of the basis S of Syz(F).

Remark 3.2.8.

(1) In the following we see that the principal syzygies correspond exactly to one of the
criteria used in signature-based standard basis algorithms. From this it follows that
standard bases for ideals having only these relations of their generators can be com-
puted without any zero reduction.

(2) Using the above methods recursively to compute syzygies of syzygies one can com-
pute free resolutions of a free module M € M to a given length /.

This finishes our introduction to syzygies and their computations. We have seen that,
given a module M, the computation of a standard basis for M is used to improve the cal-
culations for a standard basis for Syz(M).

The other way around is just the starting point for signature-based standard basis at-
tempts: How can we use simultaneously computed syzygies of M (or parts of them) to improve
the computation of a standard basis for M?

18 3 Syzygy modules and standard bases
3.3 COMPUTING STANDARD BASES USING SYZYGIES

Until now we have a one-way connection between standard bases and syzygies: Use the
standard basis computation to obtain a basis for the syzygy module from it. This attempt
is presented in Section[3-2]and pretty well known over the last couple of years.

In this section we try to go the other way around: How to use information from syzygies
to make standard basis computations more efficient?

Again we restrict the discussion to the polynomial situation, i.e. F = {f;,..., f,} isa
finite subset of polynomials in P.

Algorithm 30 Standard basis algorithm using syzygies to improve computations (SYzSTD)

Input: F={f,,..., f,} afinite subset of P, < a module order over P
Output: G a standard basis for F w.r.t. <
1t G« P« SO
2 fori=1,...,rdo
G Gu{f}
4 P<—Pu{ue, | 3k <iand u :min{u ePlulm(f;) = T(f,,fk)}}
5: t< 71
6: while (P # @) do
7. P" < SELECT(P)
8
9

> W

P« P\P'
while (P’ + @) do
10: me; < First element of P’
1 REDUCE(S)
12: P« P’\{me]}
13: if ((#s e S such that Im(s) | me;) or (some other criterion for me;)) then
14: h < mf]
15: €41 < mej
16: (h, er41) < SYzZNF(h, e;, G)
17: if (h # o) then
18: t<—t+1
19: ft <~ h
20 P<Pu {uet | 3k < tand u = min{u eP|ulm(fy) = T(f,,fk)}}
21: G« Gu {ft}
22: Add to S further known syzygies if possible.
23: else
24: S < €t
25: S« Su{s}

26: return (G, S)

The initial idea was given in 1992 by Méller, Mora, and Traverso in [126]. Based on the
discussions of Section [33 currently computed syzygies are used to detect useless critical
pairs in the standard basis computation.

3.3 Computing standard bases using syzygies 119

We present the algorithm given in [126] in a slightly different notation, which fits better
to the further discussions on signature-based algorithms. The pseudo code of it is divided
into two parts: The main part is Algorithm [3o} which represents the overall computations.
In there SyzNF is called (Algorithm [3I), which is a special version of already presented
normal form algorithms (see Sections7jand 2.6).

Remark 3.3.1.

(1) Note that in [126] different versions of SyzSTD are given. We concentrate on the
standard version, as we discuss the other variants described there in the signature—
based setting later on. Moreover, we focus on the explanation why the algorithm
works and what are the crucial improvements that can be done.

(2) The algorithm presented here also differs from the presentation in [126]. In our dis-
cussion we focus on the connection to signature-based standard basis algorithms.
Thus we have adjusted some small pieces to fit better in that picture. Nevertheless,
the changes are minor and do not influence the behaviour of the algorithm funda-
mentally.

Algorithm 31 Normal form w.r.t. G of SyzSTDp (SYzNF)

Input: f; a polynomial in P, ¢; a module element in P™, G c P a finite sequence
Output: h the normal form of f; w.r.t. SyzSTD, e in P

1. €< €]

2 h o« fz

3 while (h # oand D, « {fj € G |Im(f;) |Im(h) and (j # ioreqte,)} +7)do
4. Choose any f; € Dy,

1t(h)

5: h<h- llt((}{g)fj
t

6: eee—mej

7: return (h,e)

Algorithm [3o]looks quite similar to Algorithm 29} but differs in some crucial points:

(1) First of all, SyzSTD does not handle s—vectors, but only multiples of elements m f; in
G. Those can be understood to be one of the generators of an s—vector, whereas the
and generator is dynamically chosen by SyzZNF as the first allowed reducer (Line[).

(2) SyzSTD does not use algorithm UpPDATE (introduced in the Gebauer-Moller imple-
mentation in Section [Z4), which detects useless critical pairs and generates useful
ones in Syzz. Instead, new criteria are used, which are in some sense quite similar
to the ideas presented in Section -} We see in Line[r3 that only those elements 1 f;
are considered, if there exists no syzygy s € S already such that Im(s) | me;. More-
over, other possible variants of this syzygy criterion can be used, for more details on
this see [126]. We consider such more sophisticated criteria in the follwing chapters,
when we are discussing signature—based attempts.

120

(3)

(4)

(5)

3 Syzygy modules and standard bases

We see in lines] and zal that only those new multiples ue; are added to P and are
then further reduced, which are minimal in the sense that there exists an element
fr € G, k < jsuch that

ulm(f;) = 7(fj, fx) where u is minimal with this property.

This is essentially the same idea as given in the staggered linear basis setting. All
other possible multiples of 7 f; are useless and would be rejected by the criterion in
Line[rjeither way.

In Line [a procedure REDUCE is called with S as a parameter. We do not define
REDUCE, but we just explain a way how this can be implemented. The main idea is the
following: Assume that there are two syzygies s, and s, in S, added during previous
computations, which leading monomials are multiples of each other, that means that
there exists m € Mon(x,, ..., x,) such that mIm(s,) = Im(s,). In SyzStD those
syzygies are only used to detect useless elements in Line[[3 This detection is only
based on the leading monomial of the syzygies, thus it is useful to compute

Sy =8, — ms;.

After this computation, Im(s,) < m1m(s,) and thus possibly more useless elements
are detected. In other words, REDUCE could be implemented as an interreduction of
S such that as a result all elements remaining in S have different leading monomials.

In a very similar manner LinezZlcan be understood: Sometimes one has some more
data about the module by some background information which can lead to new syzy-
gies that can be added during the computations. Of course, more syzygies in S cause
more possible detections of useless elements in Line[T3}

In Line [16] the new normal form SyzNF is called. Its pseudo code is described in
Algorithm Bt The main difference between a usual normal form computation and
this one is that in SyzZNF only some elements of G are allowed to reduce. Other
elements are not allowed because they do not only come from the same e;, but also
have the very same me; as leading monomial. If such reductions would be allowed
one could for example reduce m f; by mf;, which is something we clearly do not
want. Thus for the allowed reducer of an element & = m - 7(e;) the following hold:

a) Either the reducer r comes from another e; than h,

b) orthereducer r comes from the same e;, but m,e; + me; for m,lm(r) = Im(h).

With the above discussion, termination and correctness of SyzSTD follow easily, thus
the following theorem holds:

Theorem 3.3.2. Let F c P be the input of SyzSTp. Then SyzSTD is an algorithm computing
a standard basis G for (F) w.r.t. <.

Proof. See the above discussion and [126]]. O

3.3 Computing standard bases using syzygies 121

Remark 3.3.3.

()

(2)

(3)

(4)

(5)

See Section 5 of [126] for more information on possible implementations of further
criteria indicated in Line[r3|of SyZSTD. Moreover, more variants of the algorithm are
given there, too.

Note that the selection of which new elements have to be added to P in Line g of
Algorithm [30]is also known from other settings than the staggered linear basis one,
for example see [51].

Also the choice of the order of elements in P’ must be done with lots of care: One
no longer orders the elements m f; by increasing leading monomials, but the corre-
sponding elements me;. Since the syzygy module is the kernel of the map 7 : P* —
Pk the module order on P! is decisive. Clearly, the me; are just the leading mono-
mials of the possibly later on added syzygies s € S. Thus it is senseless to compute an
element ue; before an element ve; with ue; > vej, since ue; cannot add some new
information for a possible rejection of ve; in the following, whereas this can happen
the other way around.

In [126] the authors suggest quite a lot of optimizations, for example different im-
plementations of the more vaguely described subalgorithms like REDUCE or other
criteria to be used. Other ideas cover computations of the syzygies modulo a prime
p or even storing only parts of the syzygy. This speeds up the computations quite a
lot.

Note that REDUCE(S) in Line [could not only add new criteria for rejection of
useless elements when computing s, := s, — s, for two elements s,,s, € S with the
same leading monomial, but it also makes the criteria check more efficient: Thinking
about having multiple elements with the same leading monomial ve; in S and an
element ue; to be checked, but which is not detected to be useless, one would do
these checks several times, whereas we know already after the first check that it is
not detected by this leading monomial. Thus REDUCE(S) does also make the criteria
checks more efficient, even if s, — s, leads to no new leading monomial in S (and
reduces to zero in further iterations of the reduction step).

As we have already noted in Remark33:3](3)} one must be careful with the choice of the
module order on P, in which P, P/, and § live. Also we have already given some module
orders in Example namely <, and <;, those lack a connection between the module
and the ring world. Considering syzygies, we have a connection via the map 7 : P! — Pk
such that 7(e;) = f; for all elements f; € G. This is achieved in the following way: In the
beginning, assuming F = {f,, ..., f,} it holds for all elements f; € F where 7 : P" — P,
Adding a new element f,, to G, we generalize 7 to 7 : P™' — P* by

fr+1 else.

(o) = {n(ei) ifi<i<r,

Doing this iteratively we get a connection between the e;s and the f;s for all elements in G.
Thus it makes sense to define a new module order, which incorporates these relations:

122 3 Syzygy modules and standard bases

Example 3.3.4 (Schreyer order). Let G = {f,..., f;} be a subset of P. Moreover, let
7 : P° — P be a map between finitely generated, free P-modules such that {e,,..., e} is
a basis of P*, and 7(e;) = f; for all f; € G. Then we can define a module order <),;, on P*
by
mie; <im mje;j = m;lm(f;) < m;lm(f;) or,
milm(f;) = m;lm(f;) and i < j.

This order prefers the leading monomial of the image under 7 to the index of the element.
Clearly, as we want to use this order in SyzStD for a standard basis computation in P such
a privilege makes absolutely sense.

The main improvement of SyzSTD is that it finds more useless elements during the stan-
dard basis computation than GM does. This is achieved by using the criterion in Line[f3]of
Algorithm [go)instead of Buchberger’s criteria. Let us illustrate this in an example:

Example 3.3.5. Let us give an example computation of a Grobner basis for some ideal.
Assume that P = K[x, y, z] is equipped with <4y, and let F = { f,, f,, f;} where

f=xy-2,
fo=xz" =y,
fy=yz> —x*.

Moreover, let us use the module order <, defined in Example 534 on P? (and on each
intermediate P° during the Grébner basis computation, defined as explained in Exam-
ple[3-34). For the selection strategy in P we always choose the smallest element w.r.t. <.
Furthermore note that we compute a normal form as reduced as possible with the restric-
tions given in SYzNF.

In the beginning we start with P = {e,, e,, e;}, S = @. Clearly, e, <1y €, <im €5, thus f; is
the first element added to G. As there are no other elements in G to generate critical pairs
with at this moment, we go on with adding f, to G, but at this point we add xye, to P.
Next f, is added to G and the elements xe; and z>e; are possible new elements for P. We
see in Linezglthat only the smaller one of these two, xe; needs to be added to P. Note that
at this point we already have some elements in S, namely the principal syzygies

S21 = f162 _fzen
30 = fies — frens
S30 = fr5 — fr€5.
Right now P = {xe;, xye,} and we go on with x f;. It reduces to an element
fo=ye-x,
e, = Xe; — yze,.
Using s, , and e, together we can get another syzygy representation for S:
Sy, =XZ7e;— yzie, — yie; + x’e,

2 2 2
=s,=2Ze,—ye+txe,.

3.3 Computing standard bases using syzygies 123

So f, is added to G and P = {xye,,z%e,,xze,, x¢e,} after constructing new elements.
Moreover, clearly we have s, ,, s,,, and s, ; in S, too. xy f, reduces to an element
fs=—xy* + 2%,
es=xye, —ze,.
Similarly to above we add a syzygy s; = xes + y*e, — z%e, (computed out of s, ;) and the
principal syzygies ss ;, ..., S5 4 to S. Two new elements are added to P,
P ={ze;, xes5,2%¢,, xze,, x7e,}.
Reducing z f; we receive a sixth element for G and new representation for s, (plus the
principal syzygies) for S:
f6 = Zs - x4)
€6 = Z€5 — Xe,,
S6=yes—z e +x’e,.
Now P = {xes, yes, xes, 2e,, xze,, x*e, ; and when we check xes by the criteria we see
that Im(s,) | xe; and because of this, we can reject this element and go on with yeg. This
element is also divisible by Im(s¢) and deleted. Fortunately, xe4 gives rise to a new element:
fr=-x>+2°,
e, =Xes— 2, — ye; — e,
s, =2%e; + x*e, + x*ye, + 2°¢,(from s¢.,).
Two new elements are added to P = {z%e,, xze,, x*¢e,, yes, 2> es }, 27¢, is detected to be
useless by Im(s,) = z*e,. So the computations for xz f, follow:
fs =y +x'z,
es = xze, — ye,,
sg = zeg — y'e, + x’e,(froms, ,).
This adds the elements zeg and xes to P, but the next element in the row is x,e,. For

detecting its uselessness some further known syzygy can be used: Combining s, and the
the syzygy es — zes — xe, we get

s'=x(es —zes + xe,) —z(xes + y'e, — Z%¢,)

Ss

2 2
=x"e,+y’ze, +e, +ye; +e,.

Whereas zeg is also detected by sg, xeg is not detected at all and reduces to zero. The
remaining two elements in P, ye, and z”e, are discarded by syzygies in S and thus the
computations stops with the Grobner basis

G=A{x*y-z*,x2> - y*, y22 = x*, ¥’z - x*,xy* -z, 22 —x*, x° - 2%, y° — x*z}.

During this computation only 1 zero reduction has happened (xf;). As noted in [126], a
Gebauer—Moller implementation would compute 7 zero reductions for this example.

124 3 Syzygy modules and standard bases

Remark 3.3.6. Let us comment shortly on the fact why Example[3:3:3]is exactly the same as
the one given in [126] and [[62]: First of all the example is well-suited for showing the main
ideas, both for the syzygy and for the signature-based attempt. Moreover, Faugére used
this example in to show the different behaviour of the F5 Algorithm in comparison to
SyzStp. In an even more important situation, namely the discussion of termination of the
Fs Algorithm, we can use this example to show the differences between several signature-
based standard basis algorithms. Thus deciding to state exactly this example again is justi-
fied and reasonable.

At this point we are ready to enter the world of signature-based algorithms. It will turn
out that the main step from the syzygy-based attempt to the signature-based one has been
already mentioned in Remark333](4)} On the one hand, try to keep the overhead caused
by the lengthy computations of the syzygies as small as possible, and, on the other hand,
keep the range of the criteria to detect useless elements as big as possible.

4 AN INTRODUCTION TO
SIGNATURE—BASED STANDARD BASIS
ALGORITHMS

Although the starting point of signature-based standard basis algorithms can be found
in [126], as already mentioned in Chapter[3} the first “real” algorithm based thoroughly on
signatures is Faugere’s F5 Algorithm presented in [[62].

Also this is the source of nearly everything presented in the following of this thesis, it is
not the best point to start with: The F5 Algorithm is a rather “aggressive” implementation
of the main ideas behind signature-based computations.

On the other hand, the G2V Algorithm by Gao, Guan, and Volny, see [76]], has a straight-
forward implementation, but it lacks performance. Note that there are some rumours
about G2V being multiple times faster than F5. We have an in-depth discussion on this
topic, in which we do not only compare both algorithms with each other, but also show
comparable implementations of both.

The main new idea behind the usage of signatures is to introduce new criteria to detect

126 4 An introduction to signature-based standard basis algorithms

useless critical pairs during a standard basis computation. Instead of using Buchberger’s
criteria by checking the leading monomials of critical pairs, we take the signature of an
element into account. In some sense, defined in detail in Section =1} one can ask for the
minimal signature of an element. Keeping only those elements, whose corresponding sig-
natures are minimal, leads to a high-performance standard basis algorithm, which in some
specialized, but still rather usual setting does not compute any zero reduction at all.

Note that until now the signature-based world of standard basis computations is limited
to the computation of bases for ideals in P. This is due to the fact that one does not have
essential structures like principal syzygies in the world of modules (since P is an C-algebra,
whereas P, for s > 1, is not). Thus in the following when speaking about computations
and algorithms, we always work in the polynomial setting.

This chapter has to be understood as an introduction to the topic, presenting the foun-
dations for more efficient implementations discussed in detail in the following chapters. It
is structured in the following way:

(1) In Section 1 we give the definition of signatures. Instead of copying the already
known, but also sometimes differing definitions, we give a more general one, which
give us more flexibility. It turns out that the usual signature, as defined in [62], is just
a special case of our definition.

(2) Having some knowledge about signatures we give a generic signature-based stan-
dard basis algorithm in Section @2} This algorithm is the counterpart to STD given
in Section L8 as it gives just the general structure, but does not deliver an efficient
algorithm. Using it to explain the basic ideas of the signature-based criteria to reject
useless critical pairs builds a ground for understanding highly optimized implemen-
tations as F5 or G2V in the following.

(3) We finish this chapter with an in-depth discussion on various restrictions of the
reduction process in signature-based algorithms. Based on this an example compu-
tation of the generic algorithm is given.

With the ideas of this chapter in mind signature-based criteria to detect useless critical
pairs can be understood much easier.

4.1 BASIC IDEAS BEHIND SIGNATURES AND LABELED
POLYNOMIALS

In this section we give the definition of a signature of a polynomial g € I = (f,,..., fx),
an ideal in P. Doing this we point out the connections to syzygies (see Chapter[). It turns
out that a signature is nothing else but a part of a module element & € P¥ corresponding
tog.

4.1 Basic ideas behind signatures and labeled polynomials 127

Besides defining signatures for the initial generators f;, ..., fx, we also show how s-
vectors, generated during the standard basis computation, are equipped with signatures.

Note that this is the first time signatures are defined in such a general way. The benefits
and drawbacks of using different variants of signatures are explained in more detail in the
following.

Definition 4.1.1. LetF = {f,,..., f | beafinite subsetin P, I = (F) be a finitiely generated
ideal in P, and let e,, .. ., ey be the canonical generators of Pk such that

T P T

e +— f;foralli<i<k

is a surjective module homomorphism. Let < be a well-order on Pk and let gelLhe Pk,
We define the set of all labels of g by

labels(g) = {h e P* | n(h) = g}

It is clear that, by construction, for any element g € I = (f,,..., f) there exists an
element h € P* such that 7(h) = g. The crucial point is that there exist infinitely many
such elements h.

Example 4.1.2. Let I = (f;, f,) be an ideal in K[x, y, z] with <g, where
fi=xy+x,
L=y -1

Moreover, let e, and e, be the canonical generators of P> equipped with <;. In this set-
ting we easily construct the labels:e, for f, and e, for f,. Besides them we can construct
infinitely many different labels, for example by adding the principal syzygy fie, — f,e, to
the corresponding labels:

p(fies — frey) + e, € labels(f,),
q(fies — frey) + e, € labels(f,).

where p,q € P are some polynomials. Even other, not so obvious, labels can be easily
constructed:

xe, — ye, €labels(fy) as fi = yfi —xf,.

We conclude that for any element f € I there exist infinitely many different i € P* such
that 7(h) = f.

Most of the time, we are only interested in some special part of the labels, namely the
so—called signatures:

Definition 4.1.3. Let the setting be the same as in Definition .3} Furthermore, let <be a
well-order on P, and let gel,he Pk,

(1) The signature of h is defined by sig(h) = 1t<(h).

128

(2)

(3)

4 An introduction to signature-based standard basis algorithms

The set of all signatures of g is given by
signatures(g) := { sig(h) | h € labels(g)}.
The (minimal) signature of g is denoted

sig(g) = sig (minlabels(g)).

Definition 4.1.4. We call an element r = (I,g) € P* x P a labeled polynomial of g iff
sig(1) € signatures(g). Moreover, we define

(1)
(2)
(3)

the polynomial part of r, poly(r) = g,
the label of r, label(r) = I, and

the signature of r, sig(r) = sig(1).

We define the relation between two labeled polynomials f and g in P* x P by

f =g <= label(f) =label(g) and poly(f) = poly(g).

Remark 4.1.5.

(1)

(2)

(3)

Our definition of a labeled polynomial has the key advantage to previously given
definitions: We only assume sig (1) € signatures(g). Thus I can be anything between
a complete label & of g, i.e. from 7(Il) = g, to I = sig(h). This allows much more
flexibility and is pretty useful when distinguishing between theoretical and practical
aspects as well as generalizing ideas. See Section 73 for more information on this
topic.

Note that whereas we have seen in Example that there exist infinitely many
different elements /1 € P¥ such that () = g for g € I, sig(r) is uniquely defined for
a labeled polynomial r. Assume h, # h, € Pk such that

n(hy) = g=mn(h,).
This defines two different labeled polynomials:
r= (hl,g), and
= (hz,g).

From the point of view of labeled polynomials it is clear that if 1t(h,) # 1t(h,), then
sig(r;) =1t(h;) ifand only if i = jfor1<i,j<a.

The reader should be careful with our definition of a labeled polynomial, which is
also a generalization of other definitions in the literature. For a labeled polynomial
r = (1, p) we only assume that

sig(1) € signatures(p),

(4)

4.1 Basic ideas behind signatures and labeled polynomials 129

whereas a labeled polynomial as defined in [57H59,[144] fulfills the inclusion

I € signatures(p).

In some situations it is quite useful to have more data stored in / besides the signature
of r in theoretical considerations. But also in practice this can have a positive effect
on the efficiency of the implementation. We give a deeper insight in this topic in

Section

Our definition of a signature is more general than the ones given in any publication
about signature-based algorithms, e.g. [62}[76]:

a)

b)

In Section [73)we generalize our definition of signatures, giving them different
lengths. The signatures presented in Definitions [f:I:3) and [f:1.4] are a special
case, namely a signature of length 1. No longer consisting of a module leading
term only, one can try to reduce two signatures for a length j > 1. This idea is

first mentioned in [126]], see also Remark333](4)}

Secondly, we define sig(r) to be a leading term of an element in P, i.e. we
allow coefficients in our signatures. This is different to the signatures intro-
duced in [62], but fits to the corresponding definition in [76]. So the leading
monomial of sig(r) corresponds to Faugére’s signature. We see in the follow-
ing, when comparing G2V and Fs, that this distinction need not been made
when using only signatures of level 1. Using more general signatures of length
j > 1 we need to take care of the coeflicients.

From Remark[Z:T:5]one could conclude that Definitions @1 and [f:1.4) are quite useless
and that the notion of a labeled polynomial is more or less a tautological expression. The
real idea behind a labeled polynomial r = (I, p) gets clear with Definition 13} We have
infinitely many different labeled polynomials r of a polynomial p, but we are searching for
those with sig(1) = sig(p).

Example 4.1.6. Reconsidering Example {12 we can easily construct the labeled polyno-
mials , = (e,, f;) and r, = (e,, f,). Besides them we can construct infinitely many dif-
ferent labeled polynomials, for example by adding the principal syzygy fie, — f,e, to the
corresponding labels:

Tup = (P(flez _flel) + enf1):
Tag = (q(fle2 - fe) + ez,fz).

where p, g € P are some polynomials. Defining

= (xe,— yey, f)as fr =y fr — xfo,

as already seen above, 7/ is again a different labeled polynomial of f,

Reviewing Example [F:1.2]we see that sig(f;) = sig(r;) = e; for1 < i < 2. Having a closer
look at sig(f,) = e,, on the one hand, we get that sig(r,) = sig(r,,,) if and only if p = o.
Whenever p # osig(r,,,) > sig(r,). On the other hand, comparing r, and r/ it clearly holds
that sig(r,) < sig(r]). Certainly, all of these signatures are elements of signatures(f,)

130 4 An introduction to signature-based standard basis algorithms
Remark 4.1.7.

(1) By ensuring < to be a well-order on P* the minimal signature of a polynomial p is
uniquely defined. Thus we can find a labeled polynomial r = (I, p) with sig(l) =
sig(p)-

(2) Let us give a short outlook on why we are doing this: In the following we show that
whenever a signature-based algorithm wants to find out if a critical pair is useful or
not, it just checks the corresponding signatures. In the algorithm we always consider
labeled polynomials, not the polynomials itself. Thus the question if the label of r is
also the label of poly(r) arises. If this is not the case, then such an element need not
be computed at all.

(3) The labels of those labeled polynomials we construct in our algorithms are strongly

related to the reduction process during a standard basis computation. Moreover,
the initial labels are predefined by the input of our algorithms. This prevents an
ambiguity of different labels with equal leading terms for one polynomial to appear
and it enables a strong criterion for detecting useless critical pairs.

As we want to consider labeled polynomials in our algorithms we need to define some
notions, important when computing standard bases, also for labeled polynomials.
First of all let us make notation easier with the following:

Definition 4.1.8. LetI = (fi,..., fy) beanideal in P, p € I, let f = (I, p) be a labeled
polynomial in Pk x I, and let 7 as defined before.

)

(2)

We extend the following operators:
a) le(f) =1e(p),
b) Im(f) = Im(p),
) It(f) =1lt(p), and
d) deg(f) = deg(p).
Moreover, assuming a second labeled polynomial g = (¢, q) we define
e) 7(f.8) =7(p.9)-
Some special parts of the label of f are of interest for us:
a) The index of f is denoted index(f) = index (1t(1)).
Moreover, assuming 1t(1) = ale;, a € K, A a monomial in PP we can define
b) the leading monomial of the label of f, siglm(f) = Ae;,
c) the monomial part of the signature of f, slm(f) = A,
d) the coefficient of the signature of f, slc(f) = a,
e) the term of the signature of f, slt(f) = al, and
f) the degree of the signature of f sig-deg(f) = deg(1) + deg (n(e;)).

4.1 Basic ideas behind signatures and labeled polynomials 131

(3) Last we define multiplications with labeled polynomials. Let m € Mon(x,, ..., X,),
b € K, then

a) br=(bl,bp),
b) mr = (ml, mp).
In Definition [712][(3)] we have defined the standard representation of a polynomial f
w.r.t. some finite set of polynomials G. This definition is crucial for the notion of a normal

form, which is the main tool computing standard bases. As a matter of fact, we need to
introduce such a representation also for labeled polynomials.

Definition 4.1.9. Let I = (f;,..., f;) be an ideal in P equipped with <, let r,r,,...,7; €
Pk x T be labeled polynomials, and let G = {r,,...,r;}. Moreover, let < be a well-order
on Pk. We say that r has a standard representation w.r.t. G if there exist polynomials
Pise-os pr € K[x4,...,x,] and a unit u € P such that

I
upoly(r) = Y. pi poly(r.),
where

Im(r), and
siglm(r).

max. {lm(Pi) lm(”i)}
max. {lm(Pi) siglm(ri)}

IA N

Remark 4.1.10. The standard representation of a labeled polynomial r has two properties:
(1) poly(r) has a standard representation w.r.t. {poly(r,),...,poly(r;)}.
(2) The signatures of the multiples of the r; are not greater than the signature of r.

This second property makes the standard representation of a labeled polynomial more re-
strictive than that of a polynomial.

For the rest of this section we always assume the following setting: Let I = (fi, ..., fx)
be an ideal in P, and let p, g € I be two polynomials such that ale; € signatures(p) and
boe; € signatures(q).

The following properties of signatures are straightforward by their definition.

Proposition 4.1.11. Let ¢ € K, and let m € Mon(x,, . .., x,). Then the following hold:
(1) ale; € signatures(p + q), if Ae; > oe;.
(2) (a+b)Ne; esignatures(p + q), if ke; = oejand a+ b # o.
(3) camle; e signatures(cmp).

These properties we want to use for defining a reduction process for labeled polynomials
similar to the one for usual polynomials defined in Section 7}

132 4 An introduction to signature-based standard basis algorithms

Corollary 4.1.12. Suppose that there exist ¢ € K and m € Mon(x,, .. ., x,,) such that lt(p) =
cmlt(q). Then the following hold:

Ifmae;j < Ae;, then ale; € signatures(p — cmq). (4.1.1)

If moej = Ae; and a # be, then (a — bc)Ae; € signatures(p — cmq). (41.2)

This in mind one can define a reduction process for labeled polynomials in a quite
natural manner:

Definition 4.1.13. Let f = (s,p) and g = (¢,g) be two labeled polynomials such that
sig(f) = ale;resp. sig(g) = boe;. Suppose that there exist c € and m € Mon(x,, ..., x,)
such that cm1t(f) = 1t(g). Then the following hold:

(1) We say that p — cmgq is a sig-safe reduction of p w.r.t. qiff (ale;, p) and (boej, q)
satisfy either (T1) or F@T.2). Otherwise, the reduction p — cmq is called sig-unsafe.

(2) Let G = {r,,...,r;} be a finite set of labeled polynomials in Pk x I, and let r be
another labeled polynomial. We say that the reduction of r w.r.t. G is sig-safe iff
for each j € {1,...,1} the reduction of r (possibly already by other elements of G
sig-safe reduced) by r; is sig-safe.

(3) A sig-safe reduction is called complete if reductions satisfying (F1) and (F1:2) are
allowed.

(4) A sig-safe reduction is called semi-complete if only reductions satistying ([@I1), but
not those satisfying ([#FI2) are allowed.

Note that in Definition [£-I.13) we have made use of our more general definition of la-
beled polynomials. We have defined two labeled polynomials, whose labels are just the
signatures.

The intention of defining such a sig-safe reduction is to keep the main values of the
signature of a labeled polynomial r, namely the index index(r) and the monomial part
slm(r) constant. This means that we allow no reduction with an element 7’ of a “really”
higher signature, i.e. where siglm(r’) > siglm(r). This sounds strange thinking about
termination and correctness for a standard basis algorithm, but in Section[Z2Z]we see that a
signature-based algorithm has some fallback functionality to cope with these not allowed
reduction steps.

As alast step in preparation of a first generic framework of a signature-based standard
basis algorithm we need to define critical pairs resp. s—vectors of labeled polynomials.

Definition 4.1.14. Let f and g in P* x P be two labeled polynomials. Let

k@0

(1) Assume that Im (u label(f)) # Im (vlabel(g)).
a) We define the s-vector of f and g by

S(f.9) = (ulabel(f) —vlabel(g), upoly(f) - vpoly(g)).

4.1 Basic ideas behind signatures and labeled polynomials 133

b) We call the tuple (uf,vg) a critical pair of the labeled polynomials f and g. The
degree of the critical pair (uf,vg) is defined to be deg (7(f, g)).

(2) Conversely, iflm (u label(f)) =1m (vlabel(g)) wesaythat (uf, vg) is sig-equivalent.

(3) In more general, for any two terms A, 0 € P we define the notation
Af —og:= (Alabel(f) — olabel(g), A poly(f) — o poly(g)).

Remark 4.1.15.

(1) We use the shorthand notation of Part[(3)| of Definition F-T.14 to generalize our def-
inition of a sig—(un-)safe reduction, speaking now of f — cmg instead of p — cmq

where poly(f) = p and poly(g) = g.

(2) The definition of a critical pair of two labeled polynomials differs slightly from those
of usual polynomials given in Definition Here we explicitly store the multipli-
ers for the s-vector computation, too. This is due to the fact that those multipliers are
also used to get the signature of the corresponding s—vector. Moreover, signature—
based algorithms are depending on a special order, in which the critical pairs have to
be handled, namely by increasing signatures (see Algorithm 33} Line[z). This selec-
tion is done before the s—vector itself is constructed, thus the data of the multipliers
are important to be stored in the critical pair.

In the signature-based world we work with labeled polynomials, but in the end our
single interest is the standard basis G of some polynomial ideal. Thus it makes sense, in
terms of presenting pseudo codes, for example in Algorithms 37], 33} and 34} to define a
shorthand notation for the polynomial part of a set of labeled polynomials.

Definition 4.1.16. Let G = {r,,...,r;} be a set of labeled polynomials. We denote the
polynomial ideal of G by

poly(G) = {poly(rl), e poly(r;)}.

We can easily adopt Buchberger’s Criterion from the classical, polynomial situation to
the labeled polynomial one here.

Proposition 4.1.17. Let < be a monomial order on P, and let G = {g,..., g} be a set of
labeled polynomials. Moreover, let I = (f,,. .., fi) be an ideal in P such that {f,,..., fi} ©
poly(G). If for each pair (gi, g;) € G x G with i > j S(gi, ;) has a standard representation
w.r.t. G, then poly(G) is a standard basis of I.

Proof. For each S(g;, gj) having a standard representaion w.r.t. G S (poly(g:), poly(g;))
has a standard representation w.r.t. poly(G). As poly(G) c I the statement follows by
Theorem[1.823 O

In first place this does not make sense at all: Why do we require a stronger variant
of standard representation on the s-vectors than we even need to? Quite similar to our
discussions in Chapter Zlwe show that based on the statement of Proposition @-T171we find
criteria to narrow down the number of labeled s—vectors really that need to be verified
having a standard representation.

134 4 An introduction to signature-based standard basis algorithms

Corollary 4.1.18. Let < be a monomial order on'P, andlet G = {g,, ..., g} beaset of labeled
polynomials. Moreover, let] = (f,, ..., fi) beanidealin'P such that { f,,..., fi} ¢ poly(G).
For each pair (gi, gj) € G x G with i > j let

(8> &))

fk = IC(gl)W

for k e {i, j}, 1€ {i, j}\{k}. If for each such pair (g;, g;) either
(1) Im(t;) siglm(g;) = Im(¢;) siglm(g;), or

(2) 1=t;label(g;) - t;label(g;) and (I, t; poly(g;) — t; poly(g;)) has a standard repre-
sentation w.r.t. G,

then poly(G) is a standard basis of 1.

Proof. By Definition all pairs (g;, g;) fulfilling [(2)] of the above statement, generate
labeled polynomials r = (I, t; poly(g;) — t; poly(g;)) such that poly(r) has a standard rep-
resentation w.r.t. poly(G). Thus it remains to show that all pairs (g;, g;) that meet[(1)]lead
to s—vectors, which have a standard represenation, at least of their polynomial part w.r.t.
poly(G).

For this, let P be the set of all pairs (g;, g;) and delete all those fulfilling[(2)] Now order
the remaining pairs by increasing Im (#; label(g;)) = Im (¢;label(g;)). Let (£, g) be the
pair minimal by this order, let u, v be the corresponding terms such that u1t(f) = v1t(g),
andleta =1c (label(£)),b =lc (label(g)). Assume the labeled polynomial

7= (wlabel() - 3 viabel(g), upoly(f) - 3 vpoly())

By construction it holds that siglm(r) < Im (u label(f)), thus 7 has a standard representa-
tion w.r.t. G. If a = b then r is just the s-vector of f and g and we are done. Otherwise we
have a closer look at the standard representation of r:

poly(r) = > prpoly(gk), pxeP
k=1

where Im (pr label(gk)) < Im (u label(f)) for all k. From this we can conclude that any
two summands of the same leading term correspond to an s—vector which has a standard
representation. Exchanging all those matching leading terms by the corresponding stan-
dard representation w.r.t. G we find some element 4 € G and some term w € P such that

ult (poly(f)) =vlt (poly(g)) = wlt (poly(h)).
This means that we can find A,, A, € P such that
upoly(f) - vpoly(g) = 1, S (poly(f),poly(h)) - A, S (poly(h), poly(g)).

By construction, S(f, h) as well as S(h, g) have a standard representation w.r.t. G. From
this the statement follows. O

4.2 A generic signature-based standard basis algorithm 135

Remark 4.1.19.

)

(2)

Whereas during the reduction of a labeled polynomial we do not allow sig—unsafe
reductions, the construction of the s—vector itself seems to contradict this idea look-
ing at Definition [f-T.14t Assume that sig(r,) > sig(r,). It is possible that ¢, sig(r,) <
to sig(ro). Whereas a signature-based algorithm can handle the suppressed reduc-
tions quite nicely, there is no real alternative in the s—vector situation: We have
to build S(ry,7,) to ensure the correctness of the standard basis in the end. One
could cope with this situation by discarding S(r,,7,) and generating the new s-
vector S(ro,1,). Clearly, S(r,, 1) gets the correct signature, but those two labeled
s—vectors differ only by a multiplication with the unit —1. Thus, in an implemen-
tation a benefit from keeping even the s—vector generation sig-safe is missing, and
much less problematic compared to the computational overhead of discarding one
s—vector and generating another one.

Note that we have not defined an s-vector of two labeled polynomials g, / if the mul-
tiplied signatures coincide. To understand this, we need to think in a more general
setting: Generating the s—vector u poly(g) — vpoly(h) on the polynomial part, this
would also mean to subtract the corresponding multiplied labels of the two polyno-
mials. From this point of view, at least when usig(g) = vsig(h) it is clear that the
computation on the labels would cancel out the leading terms u sig(g) resp. vsig(h),
and end up with a completely new leading term. Clearly, this cannot be handled
on the level of labeled polynomials, having only the signatures stored in such an s-
vector. If Im(u) siglm(g) = Im(v) siglm (/) on the one hand, but u sig(g) # v sig(h)
on the other hand, this means that the multiplied signatures differ only by some con-
stant. In this situation the signature of the corresponding s—vector can be defined.
Certainly, we see in Section[fz]that those sig-equivalent critical pairs are not needed
if we want to compute standard bases.

Moreover, this problem of vanishing signatures when building s-vectors is one of
the main tasks we want to handle a bit more dynamically generalizing signatures in
Section

4.2 A GENERIC SIGNATURE-BASED STANDARD BASIS
ALGORITHM

This section can be understood as the signature-based counterpart to Section[1.8] Here
we present a generic standard basis algorithm based on signatures to detect useless critical

pairs.

()

The key points are:

Use labeled polynomials instead of usual ones.

136 4 An introduction to signature-based standard basis algorithms

(2) Use the signatures of these elements to reject useless computations.

(3) Use a sig-safe reduction process to keep the signatures and regardlessly manage to
retain the correctness of the algorithm computing a standard basis.

The idea is to give an easy introduction to the behaviour of signature-based algorithms
with a framework, which does not focus on efficiency, but comprehensibility. Moreover, the
structure of the algorithm is kept generic enough such that all later on presented efficient
implementations, e.g. F5 or G2V, can be easily derived from it.

Nearly all of the ideas presented in this section are already published in [59]], which is a
collaboration with John Perry.

We need some notion for a situation occurring in signature-based algorithms, which
seems to be very strange in the first place, as they cannot occur in the usual polynomial
setting. It can happen that some labeled s—vector reduces to a labeled polynomial r such
that poly(r) # o, but r is useless.

Definition 4.2.1. LetI = (f,,..., fx) be an ideal in P, let r be a labeled polynomial, and
let G be a finite set of labeled polynomials in 7% x I. If there exists some g € G such that

siglm(g) | siglm(r) and Im(g) | Im(r),

then r is called to be sig-redundant (w.r.t. G).

Algorithm 32 Generic signature-based standard basis computation w.r.t. < (S1GSTD)

Input: F={f,..., f,} afinite subset of P
Output: G a standard basis for (F) w.r.t. <
v G {f}
2 for (i=2,...,r)do
3 fi < REDUCE(fi, Gi-y)

4 if (fi # 0) then

5 G; < IncS1G(fi, Gi-y)
6: else

7 G < G,

8: G« G,

o: return G

As one can see we have split up the generic signature-based standard basis algorithm
into 3 parts:

(1) Algorithm [32]is nothing else but the main loop, which goes over all elements f; in
the generating set F of the ideal I. The only computation done is the reduction of
fi wr.t. already known standard basis G;_, of (f,, ..., fi-.). Clearly, if the reduced
fi = o, then we go on with the next element.

(2) S1GSTD calls Algorithm [83} in which the computation of a standard basis G; for the
ideal generated by f;, ..., f; is done.

4.2 A generic signature-based standard basis algorithm 137

(3) The reduction process itself is out-sourced in Algorithm 341 For every previously
constructed s—vector it computes a semi—complete sig—safe reduced labeled polyno-
mial.

Looking at this description, even without thinking about labeled polynomials, a rather
obvious difference to STD can be seen: The standard basis G is computed incrementally. Let
us give a short explanation of this:

Instead of computing a standard basis G for (f,, ..., f;) at once, it is computed piece-
wise: We know that G, = {f, } is a standard basis for { f,). With this information stored we
can compute the standard basis G; for (f,, ..., f;) for 2 < i < r recursively:

> Weknow that (f,,..., fi) = (fi.g| g € Gi_y).

> We can start with G; = G;—, U {f;}, building only those critical pairs of f; with the
other g € Gj; any critical pair (t;g;,t;g;) leads to an s-vector that reduces to zero
w.r.t. G; due to the fact that G,_, is already a standard basis for itself.

> Doing the usual computation steps known from STb we end up with G; being the
standard basis for (fi, ..., fi).

At the end of the above described process, we compute G,, which is the standard basis for
I=(fi,..s fr)

Remark 4.2.2. It is important to note that signature-based algorithms do not necessarily
need an incremental framework as given by Algorithm 32 The reasons why we present our
first, introductory signature-based algorithm in this fashion are:

(1) The two most famous and widest spread implementations of algorithms using sig-
natures, namely F5 and G2V, are based on an incremental frame. As the focus of
this thesis is to explain and to compare those two algorithms in detail, it is, in an
educational manner, best to explain both as optimizations of the generic algorithm
presented in this section. This makes it easier for the reader to understand their
peculiarities.

(2) The reason why Fs and G2V are given in an incremental fashion is that both are
based on the order <; on the set of signatures. This means that the index has a higher
priority than the monomial. From this point of view it makes sense to compute
G incrementally, as in Line [[2] we see that the order in which the critical pairs are
handled is by increasing signature. Thinking about any critical pair being generated
by elements out of (f,, f,) the index of corresponding signature is 2. Any pair built
with f; must have a signature of at least index 3, and is thus always stored, but never
processed further until all critical pairs of index 2 have been computed.

Clearly, thinking geometrically about ideals of intersections being not complete, i.e. ideals
generated by more polynomials than the number of variables in the corresponding polyno-
mial ring, the behaviour of an incremental standard basis algorithm can be quite bad and
preformance can suffer a lot from computing step by step and not using all data at once. In
the signature-based world this means that other monomial orders on the signatures must
be taken into account. First steps in this direction are already taken, see [9}[77,[148}[149].
We give a more general attempt on this topic in Section [74}

138 4 An introduction to signature-based standard basis algorithms

Algorithm 33 Incremental signature-based standard basis computation w.r.t. < (INCSIG)

Input: f; a polynomial, G;_, = {p,, ..., ps—. } a standard basis for (f,, ..., fi-,)
Output: B a standard basis for (f;, ..., fi) wrt. <

1 B+~ 3,G+< g, P+ J

2 ps < fi

3 < S

4 for (k=1,...,s)do

s gk < (e pr)

6: G« {gl,...,gs}

7 for (k=1,...,s—1) do
8 u<lc(gk)—flg‘(fg"))

o v<Ic(gs)—flifsz"))

10: P« Pu{(ug,vgr)}

: while (P # @) do

12: Choose (uf,vg) from P with max. {usig(f),vsig(g)} minimal w.r.t. <.
w PP\ {(uf,vg)}

140 1 < ulabel(f) — vlabel(g)

s 1 (Lupoly(f) - vpoly(g))

16: 1< SIGRED(r, G)

17 if (poly(r) # 0 and r not sig-redundant w.r.t. G) then

18: for (k=1,...,t)do

—
=

19: u < le(gr) Tl(n:’(gf))

20: v < lc(r) ITIE:((‘ZZ))

21 if (Im(u) siglm(r) # Im(v) sigim(gy)) then
22: P<—Pu{(ur,vgy)}

23: t<—t+1

24: gr <1

25: G+« Gu{g}
26: B < poly(G)
27: return B

Let us have a closer look at Algorithm 33 INcSig computes the standard basis B for
(fi>..., fi). The starting point is the idea to use the previously computed standard basis
Gi—y = {p1>-->Ppsa} € Pfor (fi,..., fi—1) to compute a standard basis B for the ideal

(p1>-- > Ps—1> fi) whichis equal to (fi, ..., fi).

(1) Asafirst point we start with the construction of our initial set of labeled polynomials,
taking the element f;, previously reduced w.r.t. G;_,, and store it in p, (LineR). Note
that we assume p,, . .., ps to be our initial generators of the ideal we want to compute
a standard basis for, thus our labeled polynomials are elements of P* x P, where
m:P* = (py,...,ps) maps ey to ppfor1<k<s.

(2) In the for-loop we build the first batch of critical pairs. Here we note that we do

4.2 A generic signature-based standard basis algorithm 139

Algorithm 34 Semi-complete sig—safe reduction algorithm (SIGRED)

Input: f alabeled polynomial, G = {g,..., g} a finite set of labeled polynomials
Output: h alabeled polynomial sig-safe reduced w.r.t. G

1 s < siglm(f)

2 | < label(f)

3 p < poly(f)

4 while (p #oand D, « {g € G |Im (poly(g)) | lm(p)} + @) do

s Choose any g € D,,.

lte(p)
" Tt(poly(g))

7 if (Im(u)siglm(g) < s) then
8: p < p—upoly(g)

9 I < I-ulabel(g)

10: h < (l,p)

1: return h

6: u

not need to consider any critical pair generated by gy, g; such that k, [< s as G;_, is
already a standard basis for itself.

(3) The next point is very important as correctness as well as termination of SIGSTD are
based on it: The order in which critical pairs are handled: Having a pair (uf,vg) the
corresponding s—vector gets the signature

m(ax{u sig(f),vsig(g)}-

The choice we make is to get exactly those pair, whose maximum of its two signatures
is minimal for all pairs in P (Line[z). In more detail, we choose the pair (uf,vg)
from P such that

m(ax{u sig(f),vsig(g)} = min {m(ax{u'sig(f’),v’sig(g')} | (W' f'v'g') e P}.

If there are several critical pairs of the same signature we take the one, which was
added to P first.

(4) After the computation of the s-vector r we handle its reduction w.r.t. G in Algo-
rithm 34 The crucial point is that SIGRED fulfills only semi-complete reductions
with 7. This has some impact on the algorithm:

> The signature of r remains unchanged during the reduction steps.

> Im(r) canstillbe A1lm(g;) for some A € Mon(x;,, .. .,x,), g € G. This happens
if A siglm(g;) > siglm(r). This can lead to sig-redundant labeled polynomials,
which explains why one needs to test this in Line[[7}

(5) Ifris not sig-redundant and poly(r) # o, then we go on with the following steps:

> Generate new critical pairs with r and elements of G as long as the pair is not
sig—equivalent. We show in Lemma 24] that those elements are not needed
to be investigated by the algorithm.

140 4 An introduction to signature-based standard basis algorithms

> AddrtoG.

(6) Then we go on with the next element in P, again choosing the one of minimal sig-
nature. When P is empty we are done and take the polynomial part of G, which is a
standard basis for (f;, ..., fi).

Obviously, we need to clarify some points and decisions described above:
> Why is it enough to do semi-complete reductions and not complete ones?

> Why do we not need to care about sig-equivalent critical pairs? Are they not impor-
tant for the correctness of the algorithm?

We prove correctness and termination of SIGSTD in several steps, giving answers to the
above questions.

Lemma 4.2.3. Let (uf,vg) be a critical pair generated in INCSIG, and let h = S(f, g). Then
it holds that sig(h) € signatures (poly(h)).

Proof. This is clear by the fact that the signatures of the initial elements g,...,g; of G
are correct: For all g; with i < s this is clear by definition. For g this is clear as we have
reduced f; beforehand by G;_, in Line[g|of Algorithm 37} Thus e; is the minimal signature
for p;. O

Lemma 4.2.4. Suppose f = (1, p) is a sig-redundant labeled polynomial in INCSIG as re-
turn value of SIGRED (Line[16) with poly(f) # o. Then there exists some g € G such that
any s-vector being generated by f has a standard representation w.r.t. G, when all s-vectors
generated by ¢ have been considered.

Proof. By Definition 21 there exists ¢ = (¢,q) € G such that Im(#) | Im(I) and Im(q) |
Im(p). Letv € Mon(x;,, ..., x,) such that vIm(q) = Im(p). Looking at the signatures two
cases can happen:

(1) If vim(t) < Im(1), then reducing f by g is sig—safe and semi-complete. This is a
contradiction to our assumption that f is the return value of SIGRED, since then this
reduction must have already taken place.

(2) Ifvim(¢t) > lm(1), then there exists w € Mon(x,, . .., x,) such that w < v, wlm(¢) =
Im(1), and wlm(q) < Im(p). Let ¢ € K such that It(I) = cwt. As we compute new
s-vectors in INCSIG by increasing signature, h := (u,r) with r := p — cwq has a
standard representation w.r.t. G, as Im(u) < Im(#). Any s-vector S(f, g’) for some
g’ =(t',q") € G can be rewritten by h and a corresponding multiple of S(g, g’), i.e.
there exist terms A, o € P such that

Ap—oq =Ar+cwq)-o0q.

Whenever S(g, g') has been considered by INcS1G, S(f, ¢) has a standard repre-
sentation w.r.t. G.

O

4.2 A generic signature-based standard basis algorithm 141

Lemma 4.2.5. In SIGRED there cannot be a complete sig—safe reduction without a semi-
complete sig-safe reduction.

Proof. Assume two labeled polynomials f, g, and let ¢ € K and A € Mon(x;, ..., x,) such
that

Im(f) = Alm(g),
le(f) = cle(g),
siglm(f) = Asiglm(g), but
sig(f) # cAsig(g).

Clearly, there exists ¢ # d € IC such that Ic (sig(f)) = dlc(sig(g)). As siglm(f - dAg) <
siglm(f), and since INCSIG proceeds by increasing signatures, f — dAg has a standard
representation w.r.t. G. Thus there exist some h € G and some monomial ¢ € P fulfilling
osiglm(h) < siglm(f) and olm(h) = Im(f). But then there exists a semi-complete,
sig-safe reduction of f by h. O

Remark 4.2.6. The question arises why we have considered complete sig-safe reductions
atall in Section[Z-1f The point is that G2V is defined by using complete sig-safe reductions
in [76]. It is first shown in [59] that it is enough to consider semi-complete reductions.
So it is important to mention this fact when talking about signature-based standard basis
algorithms.

On the other hand, current research of signature-based algorithms tries to generalize
the signatures to include more than the leading term of the label for detecting useless crit-
ical pairs (see Section 73 resp. [Z3). There it is essential to include the coefficients in the
computations as otherwise the data is corrupted.

Now we are ready to prove correctness and termination of SIGSTD.

Theorem 4.2.7. Let F c P be the input of SIGSTD. Then SIGSTD is an algorithm computing
a standard basis G for (F) w.r.t. the underlying monomial order < on P.

Proof. We need to prove correctness and termination of SIGSTD.

(1) The proof of correctness of SIGSTD is based on Corollary [4.1.18] All s-vectors are
considered besides

> those generated by sig-redundant elements (Line[I7]of Algorithm [33), and

> those, whose corresponding critical pair is sig—equivalent. (Line 1 of Algo-
rithm 33).
By Lemma[fz7]the s—vectors generated by sig-redundant elements can be assumed
to have standard representations.

Moreover, we need to investigate the fact that only sig-safe reductions are taken
into account. On the one hand, a sig—unsafe reduction of an element r by some
element f in G, which is possibly needed for the correctness of the S1GSTD, is not
computed in place. On the other hand, if this sig-unsafe reduction is necessary for

142 4 An introduction to signature-based standard basis algorithms

poly(G) being a standard basis in the end, it will be considered in the following way:
In LineZZwe generate new critical pairs with r. Here clearly the critical pair of r and
f is considered, if this pair is needed at all. Thus the sig—unsafe reduction of r by f
rejected beforehand leads to a new s—vector of higher signature (those of the multiple
of the signature of f), which is reduced in the following to ensure the correctness of
poly(G) (see Remarkg3-3 for more details).

With this S1Stp fulfills the hypothesis of Corollary[4.1.18]

(2) The monoid Mon(x,, ..., X,,) can be considered, similar to Mon(x;, ..., X,), as an
Noetherian Mon(x,, ..., x,,)-monomodule. Moreover, assume the initial setting
of INCSIG, and let f = (alej, p) € P° x (py,..., ps) be alabeled polynomial. From
this we can extract the following, monomial data: A and Im(p). Now, consider the
map

v: Mon(x,,...,x,) xMon(x,,...,x,) —> Mon(x,,...,%,,)
(ALIm(p)) = (T x T) — T el

Let N be the Mon(x,, ..., X,,)-submodule generated by the labeled elements in G
during the computations of INCSIG.

Assume that INCS1G adds an element (boej, q) to G and N does not expand. This
implies that there exists some (c7ej,r) € G such that 7 | 0 and Im(r) | Im(g). As
it follows then that (boe;j, q) is sig-redundant, INcS1G does not add (boej, q) to G.
Thus we have a contradiction. So it follows that whenever INcS1G adds a new element
to G N expands. By Lemma T35, N, as a submodule of a Noetherian monomod-
ule, can expand only finitely many times, so INCSIG can only compute finitely many
critical pairs. As the input of SIGSTD is finite, the number of iteration steps, i.e. calls
of INCSIG, is finite, too. All in all, SIGSTD terminates.

O

Lemma 4.2.8. Let f be a recently reduced labeled polynomial such that poly(f) # o in
Line[7 of Algorithm g3} If there exist A € Mon(x,, ..., x,), g € G such that

Asiglm(g) = siglm(f) and Alm(g) =1m(f),

then f is sig-redundant w.r.t. G.

Proof. Assume there exists g € G such that siglm(g) | sigm(f) and Im(g) | Im(f), and
wlo.g. le(f) = lc(g) = 1. Let A,0 € Mon(x,,...,x,) be two monomials, and let ¢ € K
such that

cAsig(g) =sig(f) and olm(g) =1Im(f).

We need to consider the following situations:

(1) If 0 < A, then the sig-safe reduction of f with ¢ would not have taken place in
S1GRED. This is a contradiction.

4.3 Some remarks on sig-safeness 143

(2) Ifo > A, thenlm(f) = 01lm(g) > A1lm(g). By assumption, sig(f—cAg) < sig(f), but
Im(f - cAg) =1m(f). Due to the smaller signature, f — cAg already has a standard
representation w.r.t. G. By definition, there exist 1 € G, y € Mon(x,, ..., x,) such
that ylm(h) = Im(f) = Im(f — cAg) and sig(h) < sig(f — cAg) < sig(f). But then
S1GRED should have computed the reduction of f by A, as it is semi-complete. This
is, again, a contradiction.

O

We finish our introduction to signature-based algorithms with some essential remarks
on the sig-safeness in the next section. Due to this, we postpone an example computation
of SIGSTD to Section 73

4.3 SOME REMARKS ON SIG-SAFENESS

Having presented a basic framework for signature-based standard basis computations
in Section 7] based on the introduction of labeled polynomials in Section [£:1, we should
draw the reader’s attention to some apparent peculiarities:

At this point it is not really clear, why we force reductions in SIGRED to be sig-safe.
Reducing a labeled polynomial f by another onei, g, the information of a sig—unsafe re-
duction still seems to be valid, since we compute

label(f) = label(f) — ulabel(g) for u = (1)
lt(g)
in Lineg]of SIGRED. Thus assuming label (f) and label(g) being complete labels for poly(f)
resp. poly(g) in any possible configuration sig() and u sig(g) are related to each other,
no data corruption could happen. Reconsidering Méller, Mora, and Traversos attempt
using syzygies to compute Grobner bases presented in Section 53] their key problem reap-
pears: Storing the whole label for a labeled polynomial is too much data. Keeping track
and adjusting the label in each sig-safe reduction step in SIGRED generates an undeniable
overhead in the computations of SIGSTD.

The most efficient signature-based standard basis algorithms right now thus limit the
data stored in the labeled polynomial: Instead of storing the whole label they only keep the
signature of the labeled polynomial. Note that we only enforce sig(!) € signatures(p) for
any labeled polynomial r = (I, p) in Definition -4} Because of this we can align the data
stored in [from a whole label of p to only a signature of p. As this last variant of labeled
polynomials is essential in the following discussion, let us define some notation for it.

Definition 4.3.1. Letr = (I, p) be alabeled polynomial. ris called slim iff | € signatures(p).
Moreover, when constructing s-vectors of two slim labeled polynomials f = (s, p) and
g = (t,q) we get
S(f.8) = (w,up-vq),

144 4 An introduction to signature-based standard basis algorithms

where
(1) u,v are the corresponding multipliers for the s-vector S(p,), and
(2) w = max.{us,vt}.

Clearly, the above definition coincides with Definition gzTag)w.r.t. the restriction on the
labels of slim labeled polynomials.

Using this slim version of a labeled polynomial, Definition [f-.13)becomes clearer: Hav-
ing only the signature to be stored in our labeled polynomial, a sig-safe reduction can be
done much faster than one that is not sig—safe. This is due to the fact that no computation
on the label of the labeled polynomial must be done at all. In fact, we can completely delete
Line]in SIGRED. This has several advantages:

> One stores less data in memory,
> does less computations in SIGRED, but
> still has information about the signature due to sig-safe reductions.

Clearly, on the one hand, having more data stored in the label of the labeled polynomial
enables us to be less restrictive on the reduction process. On the other hand, the compu-
tational costs we inherit by doing this could decrease performance. Thus a more in-depth
discussion on this topic can be found in Chapter [

In the meantime we concentrate on available implementations of signature-based al-
gorithms and tempt to understand the main ideas behind them. For this, the following
convention is quite useful.

Convention. Whenever we are looking at the theory behind signature-based algorithms
we assume labeled polynomials with the complete corresponding label, i.e. n(label(f)) =
poly(f). In terms of implementation the reader can always assume slim labeled polyno-
mials besides other noted.

Remark 4.3.2. Let us give some evident reason, why it is useful to consider the non-slim
variant of labeled polynomials in theoretical considerations: Assume two labeled poly-
nomials f and g such that sig(f) = tsig(g) for some term t € P. Whereas from the
implementational point of view it is enough for us to know the relation sig(f — tg) <
sig(f), tsig(g), it is useful in theory to know the exact value of sig(f — tg). Note that it is
only useful, but not required to prove statements in the following. It just shortens notation
and makes results clearer.

Moreover, it simplifies the transition to the more general case presented in Section [73}

In this sense the stated pseudo code is given for slim labeled polynomials, which can
differ slightly from the one for arbitrary ones, for example see the following “slim version”
of SIGRED given in Algorithm [35] Note that due to our above convention we also call this
algorithm SIGRED.

One clearly sees that the computation of the label reduction is absent. The reason is that
in Line[8lthe returned labeled polynomial still has the same label resp. signature as in the
beginning of the computation.

4.3 Some remarks on sig-safeness 145

Algorithm 35 Slim semi-complete sig—safe reduction algorithm (SIGRED)

Input: f alabeled polynomial, G = {g,..., g} a finite set of labeled polynomials
Output: h alabeled polynomial sig-safe reduced w.r.t. G

1 s < siglm(f)

2 p < poly(f)

3 while (p # oand D, « {g € G |lm (poly(g)) | lm(p)} +7)do

4. Chooseany g € D,,.

1t(p)
1t(poly(g))

if (Im(u) siglm(g) < s) then
: p<p-upoly(g)
+ h < (sig(f). p)

return h

5: U <«

In the same fashion Line 4] of Algorithm 33 changes from
I = ulabel(f) — vlabel(g)

to
I = max {ulabel(f), vlabel(g)}.

As we restate INCSIG in the following chapters several times due to the addition of criteria
to detect useless critical pairs, we abandon a restatement of a slim version of INCSIG at this
point and incorporate the above mentioned change in the optimized versions presented
later on.

Besides these evident reasons to choose a sig—safe reduction from an implementational
point of view using slim labeled polynomials, we still need to discuss some curiosity in
its behaviour during the computations of SIGSTD as already mentioned in the proof of
Theorem 2.7}

Remark 4.3.3. The fact to allow only sig-safe reductions in SIGSTD clearly generates some
computational overhead.

(1) First of all each new possible reducer in SIGRED must be checked not only for divis-
ibility of leading monomials, but also for a smaller signature.

(2) The second, even stranger point, is the way how sig-unsafe reductions are handled:

le(f)
le(g)

The reduction f-cAgdoes not take place if 1 1m (sig(g)) > Im ('sig(f)) . Assuming
furthermore that there is no other reducer of f left and f being not sig-redundant,
this means that f generates new critical pairs with elements already in G in INcSiG
(Line 22) and later on added to G (Line[z5). The main fact ensuring correctness of
poly(G) in the end is the generation of the critical pair (C)L of) This critical pair
is just the sig-unsafe reduction, we have rejected beforehand. So two things have
happened:

Assume that one could reduce f by cAg in SIGRED, since Im(f) = A1lm(g), c =

146 4 An introduction to signature-based standard basis algorithms

a) Theelement f has been added to G whereas its leading monomial is not needed
at all to ensure Buchberger’s criterion.

b) The real reduction has been postponed, but still takes place.

The question arises why to do such a complicated and overhead-producing reduc-
tion process at all? The answer to this question is quite easy: the signatures.

> We need to ensure that the signature of an element does not increase during
the reduction process, since our main idea is to equip a polynomial with its
minimal possible signature.

> The element f is clearly useless for poly(G) in the end, but it is possibly crucial
for its computation at all. Thinking about upcoming reductions in INCS1G one
can now reduce multiples of Im(f) either by o f or by oAg. As the signature of
Ag is greater than those of f it can happen that whereas a reduction with o f is
allowed (sig-safe), a corresponding reduction by oAg is rejected (sig-unsafe).

Thus neither f nor the reduction f — cAg can be left out to ensure correctness of the
standard basis computations.

Let us close our discussion on this first, generic framework for signature-based algo-
rithms, illustrating its behaviour by a small example. For this we choose the slim represen-
tation of labeled polynomials

Example 4.3.4. Let us give a small example illustrating computations done by SiGSTD.
Assume P equipped with <g,. As a well-order on the signatures we use <;. Consider

F={y*-xz,x* - yz,xyz- y’z}

as generating set for I = (F). In this example we use the slim variant of labeled polynomials,
which results in reductions only on the polynomial part, but not on the labels themselves.

We start with G, = { y> — xz} which is clearly a Grobner basis for (y* — xz). In the next
iteration we enter INCSIG for the computation of G,, a Grébner basis of (y* — xz, x> — yz).
We start with initializing the set of labeled polynomials

G:= { (e, y* — x2), (e, x> — yz) }

& 82

There is only one critical pair to be considered in P, namely (y*g,,x?g,). Generating the
corresponding s-polynomial r = (y*e,,x%z — y3z) we compute a sig-safe reduction in
SIGRED via

= (e, xz-y3z) - xz(enx*—yz) = (Ve —yz+xyz°),
(y*er,—y*z+xyz*>) + yz(e,y*—xz) = (y*ey0).
Note that both reductions are semi-complete sig—safe reductions since xze, < y*e, and

yze, < y*e,. Thus G, = poly(G) is a Grébner basis of (y* — xz, x> — yz). So we go on with
the last iteration step, adding x yz — y*z to our initial data:

G:= { (1, y* — x2), (€2, x* — y2), (&5, xyz — ¥*z) }

& & &

4.3 Some remarks on sig-safeness 147

Generating the first critical pairs we get the pair set, already ordered by ascending signa-
tures:

P:={(yg xz8), (xg5 y28)} -

We start with generating the s—polynomial r corresponding to (yg;,xzg:) and reduce it
sig—safe in SIGRED:

o= (yey, x*2* — ¥3z) - Z2(en,x*—yz) = (ye;,—yz+yz?),
roi= (ye,,—yz+yz?) + yz(eny*—xz) = (ye;,—xyz*+ yz3),
ro= (J’ea’_x}’z +y2°) + z(epxyz-y*z) = (yes,—y'z* +yz*),
roi= (yey,—y*22+yz}) + 2*(e,y*—x2z) = (ye;,—xz> + yz?).

At this point no further reductions are possible and r is returned to INCSIG in Line[16] We
see that poly(r) # o and r is not sig-redundant w.r.t. G, thus we add new critical pairs to
P generated by g, = 1:

Pi={(xg3 y28), (¥84~2" %) (x84 —2°%:), (84 —x2°81) |-

Note that
x€3 < yze?; < X)/€3 < ySeS >
—— —— — ——
xsig(gs) ysig(gy) xsig(gy) 2 sig(gs)

so it follows that the set P is already ordered by increasing signatures. We add g, to G:

G=1{88:8 84

Computing the semi-complete sig-safe reductions of all the corresponding s—polynomials
r we get poly(r) = o for each. Thus the computation stops, and we have found a Grobner
basis for I:

poly(G) = {y* — xz,x*> - yz,xyz - y*z,-x2* + yz*}.

As one can plainly see, SIGSTD computes lots of zero reductions due to the fact that
besides rejecting sig—equivalent critical pairs and discarding sig-redundant labeled poly-
nomials in INCSIG no real criterion is used to detect useless critical pairs. So right now we
have only shown how to add signatures to polynomials, but not how to use them efliciently.
This is the topic of the following chapters.

5 SIGNATURE-BASED CRITERIA TO
DETECT USELESS CRITICAL PAIRS

After we have given a first, rather generic framework for signature-based standard basis
computations we need to achieve more efficient implementations. Similar to the ideas of
Section [23) we have to find criteria to detect and to reject useless critical pairs of labeled
polynomials in S1GSTD. This is the crucial point still missing.

In this chapter we present first attempts in this direction, including some well-known
implementations like G2V. We lay the groundwork for more aggressive implementations,
like Fs, with the presented, rather generic criteria. The reader should interpret this chapter
asa collection of rather efficient criteria, which can also quite easily be integrated in S1GSTD.

All known signature-based algorithms up to now are based on 2 main criteria: The first
one can be understood as a check for the minimality of the signature for the corresponding
polynomial. We denote it as (NM). The second one, denoted (RW), is more or less a test for
rewritings, i.e. is there another polynomial with the very same signature we should prefer?
In spite of our approach in Section 23} where the main question was how to implement the
criteria (see Section[z4), we need to answer two questions for signature—based algortihms:

150 5 Signature-based criteria to detect useless critical pairs

> Where to place the criteria in SIGSTD?
> How aggressive should the two criteria be implemented?

This second question seems a bit strange, but we see that the main differences between
known signature-based algorithms lays just in this area. Of course, the answer to this
question is not given by the formula the more aggressive, the more efficient, but it is rather
complex to interpret the different behaviours.

In Section [5-3 we state, similar to our approach in Section {2} generic versions of our
criteria. Due to their genericity they are not really efficient, and in some sense they lack a
concrete implementation, but they illustrate the general concept quite clear.

As a first step, we show how to avoid as much as possible computational overhead,
which emerges from the constraint that reductions must be sig-safe. This attempt leads to
a variant called S1GSTDRED, which uses reduced intermediate standard bases.

A first optimization of the criteria used by SIGSTDRED is given in Section53} Algorithm
AP, first stated in [7] as a variant of Faugere’s F5 Algorithm, can be understood as a more
efficient variant of SIGSTDRED detecting more useless critical pairs due to extending (NM)
and (RW). The main idea of AP is to be more specific on the choices which can be made
in an implementation of (RW). However, Algorithm MM presented in Section 54} is just
a variant of AP differing only slightly in the above noted choices.

Last we present Algorithm G2V of [76]]. Besides explaining the algorithm, we show that
it is also just a variant of SIGSTDRED, whose peculiarities can be adopted quite easily.

We close this chapter with a section comparing all presented variants of SIGSTD resp.
S1GSTDRED, giving not only timings but also other, very important data needed to decide
about the performance of a standard basis algorithm.

All implementations we present in the upcoming sections are based on the same setting:

Convention. < denotes a well-order on P. As inherited module order on the signatures
resp. labels of the labeled polynomials we use <;.

For generalizations of these algorithms we refer the reader to Chapter[f

5.1 GENERIC CRITERIA BASED ON SIGNATURES

In the signature-based world two main criteria to detect useless critical pairs are known
and can be described rather easily assuming two different labeled polynomials f, g:

(1) If siglm(f) > siglm (poly(f)), then discard f.
(2) Ifsiglm(f) = siglm(g), then compute only f or g, but not both.

In this section we do not only prove why the above criteria are correct, we also give ideas
of how to implement them. Those implementations are of a rather general fashion such

5.1 Generic criteria based on signatures 151

that they can be easily put in S1GSTD. Clearly, the advantage of an easy and generic imple-
mentation has drawbacks in terms of efficiency. In the following sections we cope with this
problem, giving more concrete and more aggressive implementations of the two criteria.

The first criterion we present is based on a search for the minimal signature. It some-
what answers the following question for f = (I, p): Is siglm(]) equal to Im (sig(p))? If
this is not the case, then we know by the relation I > sig(p) that [is greater than sig(p).
Thus [is not the minimal signature of p.

Lemma 5.1.1 (Non-minimal signature criterion). Let (uf,vg) be a critical pair generated
in INCS1G, and let h = S(f, g). If siglm(h) # Im (sig (poly(h))), then h has a standard
representation w.r.t. G at the moment INCSIG generates h in Line[T3

Proof. Assume that siglm(h) # Im (sig (poly(h))). Let t = sig (poly(h)). Clearly, there
exists a representation r = Y;_ h;e; € P° such that n(r) = Yi_, higi = poly(h) and
Im(r) = t. As INCSIG proceeds by ascending signatures all cancellations of leading terms
in Y};_, h;gi correspond to s-vectors of lower signature than sig(/). Thus we can rewrite
all those by their corresponding standard representation at the moment 4 is generated in
INcS1G. From this we conclude with a standard representation of h. O

The second criterion is based on the fact that whenever two elements f, ¢ have the same
signature during the computations of SIGSTD than at least one of those elements is useless
and needs not be considered in the algorithm at all. Its name is based on the fact that one
can rewrite the information which a computation of g would generate using f and other
elements already stored in the intermediately computed set of labeled polynomials G.

Lemma s5.1.2 (Rewritable signature criterion). Assume the critical pair (ug, vh) in INCSIG,
w.l.o.g. let siglm (S(g, h)) = Im(u) siglm(g). S(g, h) has a standard representation, if one
of the following statements hold for any f € R = {g' € G | siglm(g") | Im(u) siglm(g) }:

1) f+g
(2) S(f. f') is computed, where f = g, f' # h, and siglm (S(f, f')) = 1m(u) siglm(g).

Please note again that due to SIGRED only performing sig-safe reductions the second
condition of Lemma[5.I.2 can appear in SIGSTD.

Proof. Lett=#(G),let S(g, h) = ug—vh,andlet f € R. Then we know that
index(f) = index(g) =s and slm(f) | Im(u)slm(g).

There exists a monomial m € Mon(x;, ..., x,) such that mslm(f) = lm(u) slm(g) = A.
Furthermore, adjusting the coefficient ¢ = %, we know that ug—cw f hasa signature

smaller than Ae,. As we proceed in INCSIG by increasing signatures we know that ug—cw f
has already a standard representation w.r.t. G, i.e. there exist py € P, gx € G such that

ug - wa = Z/tczl Pr8k>
= ug = cwf+22:1pkgk.

152 5 Signature-based criteria to detect useless critical pairs

All top—cancellations of this last representation of ug have a signature which is at most
equal to Ae;. From this it follows that

S(g,h)

ug - vh
cwf + Z,i:l Pkgk —vh

has a standard representation once INCSIG either chooses a new critical pair in Line
which has a signature greater than Aes, or terminates. O

Convention. LemmatagT1and[gI-z]are the basic versions of all signature-based criteria we
present in this thesis. As we refer to them lots of time, let us agree on the notations (NM)
for the non-minimal signature criterion, and (RW) for the rewritable signature criterion.

Whereas (RW), Lemma 517} is already given in a way an implementation in INcS1G
can be easily done, Lemma 5T lacks this practical formulation. Because of this we need
to find a realizable approach for (NM):

Lemma 5.1.3. In INCSIG, let Gi—, = {pi1,..., ps—1} be the previously computed standard
basis of (fi, ..., fr—1). Let S = {It(p,),.. .. 1t(ps—.)}, and let (uf,vg) be a critical pair in
P. If there exists an1 < j < s — 1 such that It(p;) | uslt(f), then S(f,g) has a standard
representation.

Proof. Letlt(p;) € S such that1t(p;) | uslt(f). Then there exists a term v € P such that
vit(p;) = uslt(f). It follows that there exists a principal syzygy

w=pjes—psejeP’
such that It(vw) = uslt(f). Clearly, 7(w) = o, thus we can easily generate

I'=usig(f) - vw
fulfilling (1) = u poly(f) andIm(I) < usiglm(f). By LemmaB.T1S(f, g) has a standard

presentation. 0

Lemma[5.13]is the first practical attempt of (NM) so far. With an easy corollary we can
improve (NM)’s implementation even more.

Corollary 5.1.4. In INCSIG, let Gi—, = {ps, ..., ps—1} be the previously computed standard
basisof (fi, ..., fs=1), andlet S = {lt(p,), ..., 1t(ps—,) }. Whenever SIGRED returns a labeled
polynomial h such that poly(h) = o we can add slt(h) to S.

Proof. Let f be the input value of SIGRED, let / be the corresponding return value such
that poly(h) = o, and let G = {g,,...,g:}. We know that for j € {1,...,¢} there exist
h;j € P such that

mMﬂ:i%wM&)

j=1
As SIGRED performs only sig-safe reductions for all those j it holds that

sig(f) > 1t(h;) sig(g;)-
Thus we can construct w = label(f) - Z;:l hjlabel(g;) € P* such that

5.1 Generic criteria based on signatures 153

m(w) poly(f) - Xj-, hjpoly(g;) = o,
lt(w) = sig(f).

As already shown in the proof of Lemma[5I3)we know now that any critical pair (ug, vh)
with 1t(w) | uslt(g) has a standard representation, as we can rewrite its signature with a
lower leading term subtracting a corresponding multiple of w. Thus we can add It(w) =
slt(f) = slt(h) to S. O

Remark 5.1.5. Also (RW) can be implemented straightforwardly, one needs to decide which
labeled polynomial resp. which critical pair to keep whenever two of them have the same
signature. We see that this is one of the main differences between the later on presented,
optimized implementations of signature-based algorithms like F5 or G2V.

The generic (RW), as stated in Lemma 513} keeps the first element resp. critical pair
entering G resp. P, whereas all others of the same signature are discarded.

With this in mind we can update our implementation of SIGSTD, more precisely INcSIG.
S1GSTD and SIGRED remain unchanged for the time being, (NM) and (RW) affect only
INcS1G. Remember that we use, as explained in detail in Section [£=3} slim labeled polyno-
mials in the following.

Looking at Algorithm@ one notices two major differences to Algorithm

(1) INcS1GCRIT keeps and updates a set S of leading terms of elements in P.

(2) INcSIGCRIT uses two subalgorithms called NoNMin? and REWRITE? to decide whether
a critical pair should be kept or not.

The set S is just the set of terms in P we need to check (NM) via implementation of
Lemmag131and Corollary .4t In Line [7] we initially fill S with the leading terms of the
polynomials p; € G;_,: Every critical pair which signature’s leading term is a multiple of
some element of S can be discarded by Lemma Incorporation of Corollary 5T is
done in Line 23t Whenever SIGRED returns a sig-safe reduced labeled polynomial r such
that poly(r) is zero, we can add the term of the leading part of sig(r) to S.

Let us have a closer look at how Algorithms [57] and 38| implements (NM) and (RW):
Both return boolean values, “true” if they have detected a critical pair to be useless, “false”
otherwise.

(1) NoNMINz? is quite self-explanatory: In Line@we store the term of the maximum of
{ sig(uf), sig(v g)} and check if it is a multiple of some element of S in Line[6]

(2) In contrast, REWRITE? needs to do a lot more computations to check for the use-
lessness of (uf,vg) compared to NONMinz. Besides computing the maximum of
sig(uf) and sig(vg) one also needs to store the generators of the pair separately for
further checks. In Line[condition[(1)]of LemmapT2]is checked. If no such element
gj € G is found REWRITE? goes on and searches in P for other critical pairs having
the same signature (Lines2Hg). This implements condition [(2)] of Lemmag.12

'Note that we use “!I” to negate boolean values in this thesis.

154 5 Signature-based criteria to detect useless critical pairs

Algorithm 36 INcS1G including implementations of (NM) and (RW) (INcS1GCRIT)

Input: f; a polynomial, G;_, = {p,, ..., ps—. } a standard basis for (f,, ..., fi-,)
Output: B a standard basis for (f;, ..., fi) wrt. <
1 B+~ 3,G+< g, P+ J

2 S«

3: Ps‘_fl

4 L <S

5: for (k=1,...,5s-1) do
6 gk < (ex pr)

72 S<Su{lt(pr)}

8 gs < (es, ps)

9: Ge{gl,...,gs}

w0: for (k=1,...,5s-1) do

wooUe lc(gk)%

v < le(gy) Tlgfiﬁk))

13 if (! NoNMIN? (ugs, vgk, S) and | REWRITE? (ug;, vk, G, P)) then
14: P<Pu{(ug:vgr)}

15: while (P * Q) do

16: Choose (uf,vg) from P with max. {usig(f),vsig(g)} minimal w.r.t. <.
172 if (! NoNMiNz(uf, vg,S) and | REwritE?(uf,vg, G, P)) then

s PeP\{(ufvg))

19: I < max. {usig(f),vsig(g)}

20 r< (l,upoly(f)—vpoly(g))

21 r < SIGRED(7, G)

22: if (poly(r) = o) then

23: S« Su{slt(r)}

24: else if (poly(r) # o and r not sig-redundant w.r.t. G) then
25: for (k=1,...,t)do

26: u < lc(gr) Tl(n:’—(grk))

27: v < lc(r) %

28: if (lm(u) siglm(r) # Im(v) siglm(gy)) then

20: if (! NoNMiN? (ur,vgy,) and | REwRITE? (ur, vgy, G, P)) then
30: P<—Pu{(ur,vge)}

31 t<—t+1

32: gr <7

33: G+« Gu {gt}

34: B« pOly(G)
35: return B

Remark s5.1.6.

(1) Note that we always consider the maximum of sig(uf) and sig(vg) of a critical pair
(uf,vg) in (NM) resp. NoNMinz or (RW) resp. REWRITE?. From this it follows

5.1 Generic criteria based on signatures 155

Algorithm 37 Generic implementation of (NM) (NoNMin?)

Input: uf alabeled polynomial multiplied by a term, vg a labeled polynomial multiplied
byaterm, S = {t,,..., t} a finite set of terms in P
Output: TRUE if max. { sig(uf), sig(v g)} is not minimal, FALSE otherwise

1t < slt (max. { sig(uf),sig(vg)})

2: for(izl,...,k)do

3
4
5:

if (t; | t) then
return TRUE

return FALSE

(2

(3

~

s

that index(m) = s where m = max. {sig(uf), sig(vg)}. Thus we always check
signatures resp. labeled polynomials of the current index in INCSIGCRIT.

It seems a bit extraordinary to check (NM) and (RW) 3 times in INCSIGCRIT (Lines[i3}
7 and z9). Clearly, the check in Line [I7]is the latest possible one, where “latest”
means that after this line the s—vector computation and sig-safe reduction of the
critical pair starts. So, from the point of view of fewer lines of code, this check is
enough as this is the biggest data set (S, G, and P) we can consider for finding rea-
sons to reject the corresponding critical pair. From the point of efficient implemen-
tations checking in Line 3 and zg]makes sense, too: The earlier we can throw away
useless critical pairs, the better. Storing useless pairs in P costs time and memory
and should be avoided as much as possible.

Reconsidering[(2)]the reader should be aware that the sets S, G, and P could change
dramatically between a check of (uf,vg) in Line 3 resp. Line zg)and a check in
Line 17} Thus none of the three checks should be left out. Clearly, one can think
of optimizations by considering in Line [7] only elements in S, G, and P which are
added after the corresponding check in Line[3resp. Line[I7]

Clearly, correctness and termination of SIGSTD using INCSIGCRIT with NoNMiIN? and
RewRITE? follows straightforward from Lemma[5.T.qand Lemmaf1.2/ combined with The-

orem 27}

Corollary 5.1.7. Let F c P be the input of SIGSTD. Then SIGSTD calling INCSIGCRIT is an
algorithm computing a standard basis G for(F) w.r.t. the underlying monomial order < on

P.

Example 5.1.8 (Example [7:3-4] revisited). Let us reconsider the example computation of
S1GSTD using INCSIG given in Section 73} This time we use S1IGSTD with INCSIGCRIT.

Again we start with G, = {y*> — xz}. Next we enter INcSIGCRIT with p, = x> — yz,
generating

G:= { (e, y* — x2), (€1, x* — yz) }

& %

156 5 Signature-based criteria to detect useless critical pairs

Algorithm 38 Generic implementation of (RW) (REWRITE?)

Input: uf alabeled polynomial multiplied by a term, vg a labeled polynomial multiplied
byaterm, G = {g,,..., g} afinite set of labeled polynomials, P = {p,, ..., px} a finite
set of critical pairs of labeled polynomials

Output: TRUEf h € {uf,vg} such that sig(h) = max { sig(uf),sig(vg)} is detected by
(RW), FALSE otherwise

i if (sig(uf) > sig(vg)) then

2 h< f,w<u

3 b« oWV

4: else

55 h<gw<v

6 hefiweu

7: for(jzl,...,t)do

g: if (g; # hand sig(g;) | sig(wh)) then
9: return TRUE
10: f0r(j=1,...,k)d0

W W) < py

o if (sig(u'f’) > sig(v'g’)) then

13: h < ffow <u

14: b« g' w v

150 else

16: W < g w <

17: h' <~ f’, 14~/' <~ u’

18 if (h' =handw' =wand i’ # fl) then
19: return TRUE

20: return FALSE

Moreover, S = {y*}. The single critical pair (y*g,,x>g,) is not computed, but discarded,
since y* € § is equal to the multiplier y* of g,, which represents

y*es = max { sig(y*g.), sig(x"g1) |-

Thus no s—vector is considered at all in this round of INCSIGCRIT, and we add p, = xyz—y*z
to our data set. Having S = { y*, x*}. As in Example[g3-g/we consider the pairs (yg;, xzg;)
and (xg;, yzg,). The first one generates g, = (ye;, —xz> + yz3). At this point the pair set
consists of 4 critical pairs:

Pi={(xg3y28), (¥84—2°8)> (x84 ~2°%:), (g4 —x2°) }.

Instead of computing all those pairs and ending up with a zero reduction in each case as it
is done in INCS1G, INCSIGCRIT actively uses S to detect zero reductions in advance:

> (xg;, yzg,) is computed and ends with a zero reduction. It follows that x from xe; =
max. { sig(xg;),sig(yzg,)} is added to S.

5.2 Reducing computational overhead in SIGSTD 157

> y*e; = max- { sig(yg,),sig(~z>g;) } is detected by y* € S, thus (yg,, —2>g;) is dis-
carded.

> xye; = max. { sig(xg,),sig(-zg.)} is detected by x € S, thus (xg,,-zg,) is dis-
carded.

> yley = max. { sig(y*g,),sig(~xz3g,) } is detected by y* € S, thus (y*g,, —x23g;) is
discarded.

In our example, due to the fact of generating only 1 new element throughout the whole
computation, (RW) does not reject any critical pair at all. We show its usefulness in bigger
examples illustrating G2V and Fs in the following.

Nevertheless, we see that using (NM) in INCSIGCRIT we end up with only 1 zero reduc-
tion, which we actively use: Adding x to S enables us to discard the pair (xg,, -23g,). Also
note that this pair is checked and not detected to be useless in Line[zg|of INCSIGCRIT before
the zero reduction of (xg;, yzg,) is known. Thus the recheck in Line[17]is really necessary
to reject (xg,, —2g,).

Remark s5.1.9.

(1) Note that the efficiency of (NM) and (RW) depend on the order, in which the el-
ements of the set of initial generators of the ideal are entered to INcS1GCRrIT. The
problem is that one cannot predefine the best possible way. This problem is part of
further discussions on optimizations, especially of Fs, given later on. For the mo-
ment let us assume to order the set of initial generators F always by increasing leading
terms. Speaking in terms of the incremental behaviour of S1GSTD this clearly holds
for all G; used as input data of INCSIGCRIT, too.

(2) As one can easily realize from looking at the pseudo codes of Algorithm 57jand Al-
gorithm 38| computational time and memory storage are much higher for REWRITE?
than they are for NoNMinz. Later on we see that adding leading terms of signatures
of zero reducions is one benefit of G2V over Fs, which can be easily adopted to Fs
and optimizes its performance in some classes of example sets immensely.

5.2 REDUCING COMPUTATIONAL OVERHEAD IN SIGSTD

The main problem of SIGSTD is the combination of sig—safe reductions with incremental
computations: The intermediate standard bases G; INCSIGCRIT returns are neither reduced
nor minimal in general. As these G; are the starting point for the next iteration step, taking
fi+: into account, the overhead of

(1) multiples of leading terms as well as

(2) quite dense, not tail-reduced polynomials

158 5 Signature-based criteria to detect useless critical pairs

affects upcoming computations and thus generates even more useless data.

Let us try to understand where this computational overhead is inherited and how to
avoid it as much as possible in a sensible way. The ideas given in this section are based
on [58], where Perry and the author have presented the idea of interreducing intermediate
bases in F5. As it is a common tool in nearly all available signature-based algorithms these
days, we decided to present the idea at this point of the thesis for a better understanding
on how to optimize signature-based algorithms in general.

Let us start with the problem of having a non-minimal standard basis G; at the end of
the i—th call of INCSIGCRIT.

(1) Due to the fact that the signatures of the labeled polynomials must be kept valid
during the reductions taking place in SIGRED, some leading term reductions do not
take place immediately, but are postponed. These reductions, which are needed to
ensure correctness of SIGSTD are computed when generating new critical pairs. Thus
at the end we could have the 3 polynomials poly(f), poly(g), and poly(h) in G; in
S1GSTD such that

> 1t(g) | 1t(f), but the reduction f — tg for some term ¢ € P has not taken place
due to sig-unsafeness.

D> h is the result of the later on constructed s—vector tg — f, which is sig-safe due
to changing the order of tg and f.

In the end, we only need two out of these three elements for a standard basis; in a
minimal standard basis we would discard f. The problem is that for the correctness
of INCSIGCRIT the computation and addition of the labeled polynomial f is impor-
tant: Without adding f to G in INCSIGCRIT the critical pair (tg, f) would not be
generated at all, thus the element 4, possibly needed for the correctness of the stan-
dard basis in the end, would never be computed. So we are not able to remove f
during the actual iteration step.

Clearly, in the same vein the problem of non-reducedness of the standard basis G;, i.e.
the missing tail-reductions, can be understood.

(2) Since SIGRED computes only reductions of the leading terms of the polynomial parts
of the labeled polynomials, elements with non-reduced tails can be entered to G;.
The main argument for not doing complete reductions in SIGRED is the requirement
of sig-safeness: Comparing the signatures must also be done before each possible
tail-reduction. This can lead to quite worse timings. From the point of view of the
already computed standard basis G;, returned by INcSIGCRIT, which consists only
of polynomial data, we do not need to take care of sig—safeness and can tail-reduce
the elements in G; as usual without any preprocessed comparison. This is way faster
than implementing tail-reductions in SIGRED, although we have to use the non-
tail-reduced elements during a whole iteration step.

From this discussion we can derive the following:

> The computational overhead during an iteration step is prerequisite for the correct-
ness of INCSIGCRIT and thus of S1GSTD.

5.2 Reducing computational overhead in SIGSTD 159

> The polynomial standard basis G; returned by INCSIGCRIT after the ith iteration step
is used as input for the (i +1)st iteration step. The emphasis lies on the fact that only
the polynomial structure is used. Each such polynomial gets a new signature at the
beginning of INCSIGCRIT when initializing G in Line[g}

Thus it follows that one can easily reduce the intermediate standard basis G; after the
ith and before the (i +1)st call of INcSIGCRiIT. This is illustrated by the pseudo code given
in Algorithm The only difference to Algorithm [§2]is given in Line[§ Instead of the
standard basis for (f,,..., fi) computed in INCSIGCRIT for the (i + 1)st iteration step in
INCSIGCRIT, the corresponding reduced standard basis is computed. REDSB takes a stan-
dard basis and computes the corresponding, reduced standard basis. Thus in the next iter-
ation step INCSIGCRIT starts with a reduced standard basis as input.

Algorithm 39 S1GSTD with reduced standard bases (SIGSTDRED)

Input: F = {f,,..., f,} afinite subset of P
Output: G a standard basis for (F) w.r.t. <
v G {f}
2 for (i=2,...,r)do
32 G, < REDSB(G,_,)
4 fi < Repucke(f;, Gioy)
5. if (f; # 0) then
6
7

G; < IncS1G(fi, Gi—y)

else
8: Gi <~ Giﬂ
9: G« Gm

10: return G

Clearly, the idea of tail-reducing the polynomials in G; before starting the (i + 1)st
iteration step gives advantages in the reduction process:

> The polynomials are possibly sparser, which leads to less operations for multiplying
them with terms and comparing with other terms when subtracting polynomials.

> Some reductions which would have taken place in SIGRED, possibly multiple times,
are already carried out once.

The only drawback of reducing the intermediate standard bases could be that some useless
critical pairs which are detected in SIGSTD are no longer detected in SIGSTDRED, but luckily
this is not true at all.

Proposition 5.2.1. Any useless critical pair detected by NONMIN? or REWRITE? in SIGSTD is
also detected in SIGSTDRED.

Proof. Assume that G; is the return value of INCSIGCRIT after the ith iteration step, and let
B; = REDSB(G;). By the above discussion we do not need to take the tail-reduction of the
elements both in G; and B; into account. So it is left to consider elements, which are in G;,
but are removed from B; (if no such element exists we are done). Let g be such an element.

160 5 Signature-based criteria to detect useless critical pairs

It is removed from B; since there exists an element h € G; n B; such that It(h) | 1t(g). Let
us assume the (i +1)st call of INCSIGCRIT and investigate the differences between using G;
and B; as input data. For this we need to look at NoNMin? and REwRITE?. Let g;, g/, gk € G
in INcS1GCRIT such that poly(g;) = g and poly(g;) = h, index(gx) be the current index].
Moreover, we assume that gy is just returned by SIGRED and new critical pairs with g; and
elements of G need to be generated.

(1) Using G;, 1t(g) € Sg,- As g ¢ B;, lt(g) ¢ Sp,. From this it clearly follows that
#(SG,) > #(Sp,). Whenever lt(g;) would detect a useless critical pair in S1GSTD
we know that there exists It(g;) € Sg, N S, such that It(g;) | 1t(g;). Moreover, by
Remark it holds that j < i. It follows that any useless critical pair detected
by NoNMIN? in SIGSTD is also detected by NONMIN? in SIGSTDRED.

(2) Next we investigate the differences using REWRITE? in SIGSTD resp. SIGSTDRED.
Since we generate less critical pairs in SIGSTDRED than in SIGSTD we need to check,
if the signature of one of these not generated critical pairs could be used to detect
more useless critical pairs in S1GSTD. Since g; and g; are both in G the critical pairs
(urgr>uigi) and (vigx,v;g;) are considered. By our above assumption it holds that

7(gr &) | (g &i)-

Moreover, by index(gx) > max{i, j} and by assuming <; we have that

ug sig(ge) > wisig(gi)

visig(gr) > vjsig(g;)-
As j < i by Remark5To[(1)] (g« g;) is investigated before (g, g;). Moreover, vy | .
Thus, two situations can happen:

a) If (gx, g;) is detected to be useless in REWRITE?, then (gx, g;) is detected, too,
as v | ug.

b) If (g« gj) is not detected to be useless in REWRITE?, then (g, g;) is detected
to be useless, since vy | ug, i.e.

k
u
S(gr-8i) = V_]I: S(gk’gj) + Zwlgl’
=1

where vy sig(gy) > max {wl sig(g1)|1 <I<k}.

Hence (g, gi) is never used in SIGSTD to detect a useless critical pair.
O

From Propositiongz3jand our previous discussion on the advantages considering tail-
reduced elements it is clear that computations nearly always (see Remark 527 below for
an explanation of nearly) benefit from reducing the intermediate standard bases due to the
following facts:

>Thus poly(gx) # g and poly(gx) # h.

>

>

>

5.2 Reducing computational overhead in SIGSTD 161

less reduction steps,
pre—detection of useless critical pairs due to minimalization, and

faster detection with NoNMIiIN? due to less elements in S.

Remark 5.2.2.

()

(2)

(3)

(4)

(5)

Note that the solution of reducing computational overhead by interreducing the in-
termediate standard bases G; after each iteration step is nowadays standard in in-
cremental signature-based algorithms. Nevertheless it is important to mention that
Perry and the author where the first to present this idea by optimizing Fs in [58]]. See
Section [6.2] for more information on this.

The functioning of this idea is based on the fact that we assume < to be a well-order
in the signature-based setting. Otherwise a terminating computation of a reduced
standard basis B out of a non-reduced standard basis G via REDSB as it is assumed
in Algorithm 39} Line 3} is not provided in general (see Section 7). Still, a mini-
mal standard basis can be computed nevertheless, which drops the computational
overhead, too.

In SIGSTDRED, as presented in Algorithm [3g} we do not reduce the last standard
basis. Thus the result of SIGSTDRED need not be the reduced standard basis of the
ideal generated by the input data. One can do another reduction of G, at the end
before returning the result, but this comptutation can be heavy. Most of the time a
standard basis is enough for further computations, thus it saves time and memory
to not reduce at the end.

Also note that due to the fact that Fs implements (NM) and (RW) quite more aggres-
sive than all variants presented in the current chapter (being just variants of SIGSTD)
an optimization in the vein of the one given in this section cannot as easily be done
as illustrated here.

There are some situations where SIGSTD can be faster than SIGSTDRED. Those are
quite unusual and not performance-critical at all, but we should mention them here
for the sake of completeness of our discussion:

a) One possibility would be that all intermediate standard bases computed by
INCSIGCRIT are already reduced. Calling REDSB in SIGSTDRED produces some
more computational overhead in this situation, but which can be neglected in
comparison to the complete computation of the algorithm w.r.t. memory usage
and time.

b) The second possibility is that the whole computation is done so fast that reduc-
ing the standard bases inbetween the iteration steps slows done the algorithm
a bit. Considering such ideals the performance of SIGSTD resp. SIGSTDRED is
not critical at all.

162 5 Signature-based criteria to detect useless critical pairs

In Section[5.6|we compare signature-based algorithms based on S1GSTD with those us-
ing SIGSTDRED as basis in various different examples to illustrate the benefits of reducing
the standard bases between iteration steps.

In the remaining of this chapter we assume all variants of the generic signature-based
standard basis algorithm, presented in Section [} to use SIGSTDRED instead of S1GSTD.

5.3 AN EXPLICIT CHOICE IN (RW)

In [7] Arri and Perry have presented an algorithm, which can be understood as a gen-
eralization of Faugere’s F5 Algorithm by changing F5’s implementation of (RW). The nice
fact is that from our recent point of view in this thesis their algorithm is (restricted to our
predefined module order <;) nothing else but a variant of implementing (NM) and (RW)
in INCSIGCRIT.

Sadly the authors of [7] have not given their algorithm a concrete name. In this thesis
we denote it AP, by the first letter of their respective surname, in the vein of other naming
conventions in the signature-based world.

The historical reason for this is that our way more general attempt to signature-based
algorithms we have presented in this thesis has been developed first in late 2010, preparing
[59], whereas the ideas for [7] go back to 2009. We give the connection to F5 in detail in
Section [6.3] resp. Section [77] (see Remark53-1 below):

Section Section [6.3]
S16STDRED (INCSIGCRIT) AP Fs

The generalizations of Fs’s criteria by Ars and Hashemi (see [9]), Sun and Wang (see
), and Zobnin (see [163]) can be understood as special cases of the algorithm presented

in this section.

Remark 5.3.1. Itis important to note that AP as presented in [7] is much more general than
the restricted version we state in this section. This is due to the fact that AP can be used w.r.t.
to any module well-order < and is not restricted to <;. This can lead to non-incemental
signature-based algorithms. We consider those in Section[74} There we discuss this more
general, module order independent version of AP in detail.

We review some of their definitions and state the main theorem of [7]. Afterwards we
merge their ideas to our attempt and see that AP differs from SIGSTDRED just by a special
implementation of (RW).

In [;7], the notion of a normal critical pair is defined, which restricts a critical pair by
ensuring some properties on its generators. We show that these properties are just special
interpretations resp. implementations of sig-redundancy, (NM), and (RW).

Definition 5.3.2. We denote the variant of SIGSTDRED calling INcS1GCRIT, NONMINAP?,
and REWRITEAP? by AP.

5.3 An explicit choice in (RW) 163

Definition 5.3.3. Let I = (f;,..., f;) be an ideal in P. We say that a set G of labeled
polynomials such that {f, ..., f,} c poly(G) is an sig-standard basis for 1, if for each not
sig-safe reducible element f € G there exist g € G and a term ¢ € P such that 1t(tg) = 1t(f)

and sig(tg) = sig(f).

The main usage of sig—standard bases can be found in Theorem[53.5 There a computa-
tional approach of sig-standard bases is given. For the complete statement of Theorem[5:3.5]
we need some more notation.

Definition 5.3.4. In INCSIGCRIT we call a critical pair (uf, vg) normal if
(1) Im(u)siglm(f) # Im(v) siglm(g),
(2) neither uf nor vg are sig-redundant, and
(3) Im(u) sighm () = siglm(uf) and Im(v) siglm(g) = siglm(vg).

Theorem 5.3.5. Let G be a finite set of not sig-safe reducible labeled polynomials whose po-
lynomial parts are in I. If

(1) foreachi=1,...,rsuch that e; ¢ L(Syz(F)) there exists g € G such that siglm(g) =
e;, and

(2) forany f, g € G such that (uf,vg) is a normal critical pair there exist a labeled poly-
nomial h € G and a term t € P such that th is not sig-safe reducible and siglm(th) =

sighm (S(f, 2)),
then G is an sig-standard basis for I.
Proof. See proof of Theorem 18 in [7]. O

Proposition 5.3.6. From every sig-standard basis G for an ideal I c P one can derive a
standard basis H of 1.

Proof. See proof of Proposition 14 in [7]. O

These are the main facts of AP, they can be quite easily translated to fit into SIGSTDRED.

The notion of a sig-standard basis is not important in our approach, it is useful the
way the authors describe and embed their ideas in [7], but not needed in our more general
attempt to signature-based standard basis algorithms.

Let us have a closer look at the definition of normal critical pairs, which are the ones of
interest in Theorem

> Property[(1)]is included in Theorem [£.1.18]and thus also in S1GSTD.

> [(2)|discards critical pairs generated by sig-redundant labeled polyomials. Those are
also discarded in INCSIGCRIT.

> Property[(3)]is just a reformulation of (NM), thus it can be implemented via NoNMin?.

From this we can follow:

164 5 Signature-based criteria to detect useless critical pairs

Algorithm 40 AP’s implementation of (NM) (NONMINAP?)
Input: uf alabeled polynomial multiplied by a term, vg a labeled polynomial multiplied
byaterm, S = {t;,..., t; } a finite set of terms in P
Output: TRUE if sig(uf) or sig(vg) is not minimal, FALSE otherwise
u s < slt(uf)
2 t < slt(vg)
3: f()l'(iIl,...,k)dO
4 if (t;|sand i < index(f)) then
5 return TRUE
6 if (t;| tand i < index(g)) then
7
8

return TRUE
. return FALSE

Lemma5.3.7. AP implements (NM) similar to INCSIGCRIT, but extends the criteria check to
both generators of the critical pair (uf,vg).

This leads to a new implementation of (NM) we present in Algorithm [76}

The pseudo code should be clear to the most parts, NONMINAP? checks not only the
multiplied generator which corresponds to max- { sig(uf), sig(vg) }, but both generators
(see Lines @ and @ of Algorithm F0). Due to our module order this leads to the extra
overhead of checking the index of the generator (Lines g and[6). Here we do not know
ifindex(f) resp. index(g) is the current index of INCSIGCRIT. So it is possible that (one of
them) has a lower index. Let us assume that index(g) is smaller than the current index s.
To discard a critical pair using (NM) we need to ensure the existence of a principal syzygy
whose leading term divides sig(vg). If we find an element #; € S such that ¢; | slt(vg) but
i > index(g), then we cannot build a principal syzygy:

> If i = index(g), then t; = 1t(g), w = %, and we get a syzygy

w(ge; —ge;) =o€ P*

> If i > index(g), then there exists j < i such that 7(e;) = g, w = Si:grg)) b= 1t(gi),

and we get

w(giej — gei).
It holds that Im(wge;) < Im(wg;e;). Thus we cannot assume to lower the signature
resp. label of vg as it is done in the proof of Lemma 513 This is why we need to
require the condition on the indices of the divisors found in S.

Itisleft is to see how (RW) is used in AP. This information is also given by Theorem[5:3.5¢
Whereas the first property is clearly fulfilled in our incremental approach based on <; as
monomial order < on the signatures, the second property is the interesting one:

On the one hand it requires only normal pairs to be considered. This is checked in AP
by NONMINAP:. It also states that if there are two or more normal critical pairs of the same
signature on the corresponding s-vector, we can freely consider just one of them. This is

5.3 An explicit choice in (RW) 165

the rewritable criterion of AP. As mentioned already in Remark[5-T.5] one needs to choose
which one of the multiple critical pairs corresponding to the same signature should be kept.
In AP the critical pair is chosen, whose corresponding s—vector has minimal leading term.

Algorithm 41 AP’s implementation of (RW) (REWRITEAP?)

Input: uf alabeled polynomial multiplied by a term, vg a labeled polynomial multiplied
byaterm, G = {g,, ..., g} afinite set of labeled polynomials, P = {p,, ..., px} a finite
set of critical pairs of labeled polynomials

Output: TRUEf h € {uf,vg} such that sig(h) = max- { sig(uf),sig(vg)} is detected by

(RW), FALSE otherwise
 if (sig(uf) > sig(vg)) then

1

2 h< f,w<u

3: b« LWV

4 else

55 h<gw<v

6 h< frw<u

7: for(jzl,...,t)do

s: if (g; # hand sig(g;) | sig(wh)) then
o m< ey

10: if (mlt(g) <lt(uf - vg)) then
11 return TRUE

12 f0r(j=1,...,k)d0
o (uf Ve < p
e if (sig(u'f') > sig(v'g’)) then

150 W < ffow <

16: W g w v

172 else

18: W < g w <

19: h' « f’, 14~/’ <~ u’

200 if (W' =handw’ | wand b+ ft) then
21: m < %

22: if (mlt(u'f' —v'¢') <lt(uf - vg)) then
23: return TRUE

241 else

25: Delete p; from P

26: break

27: return FALSE

Two main differences to Algorithm 38| can be found:

> Inboth checks done during the computations of REWRITEAP? the multiplier m of the
element in G resp. critical pair in P must be computed such that the leading terms
can be compared (see Linesg)andz1). If the leading term of the investigated critical
pair is smaller, then it is not discarded, but computed. Considering the second check

166 5 Signature-based criteria to detect useless critical pairs

with elements of P one more step must be done: It is possible that the leading term
of the investigated critical pair is smaller than those of the critical pair already in P.
Then we must remove the critical pair from P and add the investigated one to it.

> Moreover, note that in Line 0] we only check for divisibility of sig(uf — vg) by
sig(u’ f" — v'¢") and do no longer require equality. This enables us to discard a lot
more critical pairs than REWRITE?.

Remark 5.3.8.

(1) Besides the optimizations discussed in[(2)] correctness and termination of AP fol-
lows easily from Theorem [f:Z-7}

(2) Note that both, NoNMINAP? and REWRITEAP? have new properties we have not
proved here so far. NONMINAP? checks both generators of the critical pair, whereas
REWRITEAP? needs only divisibility and not equality on signatures. The correctness
of both optimizations of NONMIN? resp. REWRITE? can be found in the proof of
Theorem 18 in [7]. We see in Chapter [@] that F5 implements (NM) and (RW) even
more aggressive, including the optimizations of AP mentioned here. We refer the
reader to this part of the thesis for related proofs.

(3) Note that the pseudo code of REWRITEAP? is not optimized at all. For example,
elements whose signature leading term has index smaller than the current one are
never detected by REWRITEAP? as for any such wh there exists only & € G having
the same index. Thus in Line[8]the if clause is never fulfilled for such elements.

5.4 A VARIANT OF AP USING SPARSER POLYNOMIALS

This section describes a short variant of AP (and thus of SIGSTDRED) preferring sparser
polynomials. We have already seen that the only real choice one can make in signature-
based standard basis algorithms is which critical pair to take in (RW). Clearly, some choices
make sense, whereas others, like keeping the pair with largest leading term, does not.

The variant presented here was first mentioned by Perry and the author in [59]. We call
it MM, short for minimal number of monomials, which describes the main idea: Having
several elements of the same signature, then keep the sparsest element. This is in the vein
of the ideas behind Brickenstein’s SLIMGB presented in Section There, during the re-
duction steps, polynomials are dynamically exchanged with sparser equivalents w.r.t. the
intermediate standard basis.

Definition 5.4.1. We denote the variant of SIGSTDRED calling INCS1GCRIT, NONMINAP?,
and REWRITEMM:? by MM.

5.4 A variant of AP using sparser polynomials 167

Algorithm 42 MM’s implementation of (RW) (REWRITEMMz?)

Input: uf alabeled polynomial multiplied by a term, vg a labeled polynomial multiplied
byaterm, G = {g,, ..., g} afinite set of labeled polynomials, P = {p,, ..., px} a finite
set of critical pairs of labeled polynomials

Output: TRUEf h € {uf,vg} such that sig(h) = max- { sig(uf),sig(vg)} is detected by

(RW), FALSE otherwise

: 8 < #(supp(poly(uf - vg)))

 if (sig(uf) > sig(vg)) then

-

2
3 h<fiw<u
4 b« LWV
5. else
6 h<gw<vw
7: h < fow<—u
8: for (j=1,...,t)do
o if (gj # handsig(g;) | sig(wh)) then
1o m < st(wh)
slt(gj)
1 if (#(supp(poly(g;))) <) then
12: return TRUE

13: for(jzl,...,k)do
w (Wf V) < pj
5. if (sig(u'f’) > sig(v'g’)) then

16: W < flow <

17: h’ <~ g’,M;’ <~ V’

18: else

19: h < g w <

20: h' < f’, 14~/’ <~ u’

2 if (W =handw' | wand i’ # h) then
22! m < %

23: if (mlt(u'f' —v'¢g’) <lt(uf - vg)) then
24: return TRUE

25 else

26: Delete p; from P

27 break

28: return FALSE

We give the pseudo code of this idea in Algorithm 7} again highlighting the differences
to Algorithm 1

The only difference can be found in LinefMwhere we compare the number of monomials
in poly(g;) to those in poly(uf — vg), instead of comparing the leading terms. Clearly,
#(supp(poly(g;))) = #(supp(poly(mg;))), thus the check in Line mis consistent and
saves the computation of multiplying poly(g;) by m. As one can see there is no change to
REWRITEAP? in the second for loop of REWRITEMM:. One can freely choose which critical
pair to keep, but we found out that AP’s choice is the most efficient in this situation. The

168 5 Signature-based criteria to detect useless critical pairs

question arises why we do not check for minimality of monomials there, too? The point is
that one needs to store the lengths of the corresponding s—vectors of the critical pairs. The
overhead for all those computations is too high to benefit from them. We see in Section[5.6]
that despite the good idea of MM in general, the computations do not benefit from this
decision, to the contrary, they get slower.

Clearly, correctness and termination of MM follows from those of AP.

5.5 G2V - COMPLETE REDUCTION, WEAKENED (RW)

In 2010 Gao, Guan, and Volny presented their algorithm G2V in [76]. The algorithm
is quite flexible in the sense that one cannot only compute the standard basis of an ideal
I={ps,...,pr) c P,but also the ideal quotients (p,, ..., p;—,) : p;. This can also be done
by any other signature-based standard basis algorithm (see Section [7] for more details).
In this section we focus on the standard basis computation and see that G2V is nothing
else but a rather straightforward implementation of SIGSTDRED with a complete sig-safe
reduction and a softer variant of (RW).

Definition 5.5.1. We denote the variant of SIGSTDRED calling INcS16G2V, NONMING2V?,
and REWRITEG2V? by G2V.

G2V, as stated in [76], does not keep any label for elements from the previously com-
puted standard basis G;_,, but sets them to zero. In more detail, G2V maintains two lists of
polynomials, U, V € P. The elements the algorithm works with are pairs (u,v) € U x V,
whereas u must be thought of as a signature of the polynomial v. So, assuming the be-
ginning of the ith iteration of INCSIGCRIT, for each element p; € G;_, G2V generates the
element (o, py). The new element f; from the initial set of generators of I is stored as (1, f;).

We can easily translate this into our setting, as illustrated in Algorithm F5} the imple-
mentation of INCSIGCRIT for G2V: All labeled polynomials g with polynomial part in
G-, are initialized with label(g;) = o (see Line[8)). The labeled polynomial corresponding
to the generator f; of I, entering the computations at this point, is generated as usual by
gs = (es, ps) (see Line[8). The same holds for all newly computed labeled polynomials of
the current index s (see Line[§2). We can define a map

y: P°xP — P xP
g > (slt(g),poly(g)),
which does nothing else but to extract the term out of the signature of the labeled poly-
nomial, i.e. it forgets the index. Due to the fact that G2V does only keep data u # o if

the corresponding polynomial is of current index, we have a one-to-one correspondence
between

(1) labeled polynomials, whose labels are not equal to o if and only if their index is
maximal, and

5.5 G2V - Complete reduction, weakened (RW) 169

(2) pairs of polynomials in U x V c P x P.

It follows that we can keep our notation of labeled polynomials and discuss G2V in our
setting. Having unified notations it is left to compare the main parts of SIGSTDRED and
G2V, namely the reduction process and the criteria checks.

In G2V a new notion is defined, the super top-reduction. Again, we can easily translate
this to our notation using labeled polynomials.

Definition 5.5.2. Alabeled polynomial f is called super top-reducible if there exist a labeled
polynomial g and a term ¢ € P such that

tlt(g) =1t(f) and tsig(g) = sig(f).

In G2V those super top-reductions are not allowed in the sig—safe reduction steps. Thus
we get a slightly different implementation of SIGRED for G2V

Algorithm 43 G2V’s sig—safe reduction algorithm (SIGREDG2V)

Input: f alabeled polynomial, G = {g,,..., ¢} a finite set of labeled polynomials
Output: h alabeled polynomial sig-safe reduced w.r.t. G
1 s < siglm(f)
2 ¢ < sle(f)
: p < poly(f)
while (p # 0and D, « {g e G|Im (poly(g)) | Im(p)} # @) do
Choose any g € D,,.
1t(p)
lt(poly(g))
7 if (Im(u)siglm(g) < s) then
& p<p-upoly(g)
o elseif (Im(u)sigim(g) =sand lc(u) # c) then
. p<p-upoly(g)
1 c<c—lc(u)
12: h <+ (csiglm(f), p)

13: return h

AN AN -

Uu <

As one can see the only real difference between SIGRED and SIGREDG2V is given in
LinesgHIT Instead of checking only

Im(u) siglm(g) < siglm(f)

as it is done in SIGRED, SIGREDG2V also checks the whole signature including the co-
efficients. So the only reductions which do not take place are sig-unsafe or super top-
reductions. Looking again at Definition we see that this is just the difference be-
tween a complete and a semi-complete sig-safe reduction. Moreover, we have shown in
Lemma [£:2.35) that there cannot be a complete sig-safe reduction in SIGREDG2V without
a semi-complete sig—safe reduction in SIGRED. Thus comparing the coefficients (Lineg)
and adjusting them (Line 1) enables us to do complete sig-safe reductions. In the end,

170 5 Signature-based criteria to detect useless critical pairs

Algorithm [3 returns the reduced labeled polynomial with possibly adjusted label resp.
signature ¢ siglm(f) (Linem). It could be possible that a reduction of f by some element
g, which S1GRED would not allow, can be processed in SIGREDG2V, but there always exists
an element h € G such that f can be reduced by h in SIGRED in this situation. So the only
question that arises is the one of the better reducer at this point of the computations, g or
h?

Let us get back to the essential point that G2V does not store any label for elements of
Gi_,. This is a small change, since all situations where the label resp. its leading term is
important it is checked, if the signature of an element is of current index. The signatures
of the elements from G;_, have by definition smaller index and thus are not considered
NoNMIiN? or REWRITE? at all. Setting the labels of those elements to o leads to three main
differences to current index elements:

(1) They are not checked by NoNMin?, since their signature is o and o is not divisible
by any term in P.

(2) They are checked neither by REWRITE? as there exists no other element of the same
index in the current iteration round.

(3) Itissafe to reduce with these elements as the leading term of their signature is always
smaller than the leading term of the signature of the element to be reduced (which
has the current index).

In fact, G2V implements (NM) just like the generic signature-based algorithm in Sec-
tion[5-7does. So we can apply the following equality:

NoNMING2V? = NONMIN?.

As alast step in our discussion of G2V we need to discuss its implementation of (RW). At
a first glance it seems that G2V has not implemented (RW) at all, since it is not mentioned
in [76]. Having a closer look at the SINGULAR library source code Gao, Guan, and Volny
have made publicly available at

http://www.math.clemson.edu/~sgao/code/g2v.sing

one can find a rather soft implementation of (RW) at the point where new critical pairs are
generated. This leads to the fact that INCS1IGG2V calls REWRITEG2V? only in Line 3 and
Line z9] (see Algorithm [3), but not in Line [[7} where only NONMING2V? is called. This
lies in the nature of the softer implementation of REWRITEG2V?: In G2V (RW) detects a
useless critical pair if and only if for a newly generated critical pair (uf, vg) there is another
critical pair (u’f’,v'¢") in the pair set P such that

max { sig(uf), sig(vg) } = max { sig(u'f"), sig(v'g") }.

http://www.math.clemson.edu/~sgao/code/g2v.sing

5.5 G2V - Complete reduction, weakened (RW) 171

In this situation G2V keeps only one of the two critical pairs (by sig-redundancy it
is clear that only one of these is needed). G2V assumes that the newly generated pair
(uf,vg) has some better properties than (u'f’,v'g"), thus it deletes (v f',v'¢’) from the
pair set and inserts (uf,vg) later on. In Algorithm [g7] we present the pseudo code of
REWRITEG2V?. Due to the fact that it is quite stripped down we do not highlight changed
lines, but give a complete new pseudo code. One can see that a check is done with quite
less comparisons and multiplications. Note that it does not check (uf,vg) with elements
already in G as it is done in REWRITE?, REWRITEAP?, and REWRITEMMy?, thus less useless
critical pairs can be detected.

Algorithm 44 G2V’s implementation of (RW) (REWRITEG2V?)
Input: uf alabeled polynomial multiplied by a term, vg a labeled polynomial multiplied
by aterm, P = {p,,..., px} a finite set of critical pairs of labeled polynomials

Output: FALSE

1 s < max. { sig(uf),sig(vg)}
2 for (j=1,...,k) do
s Wfhvg) < p;
4 < maxe {sig(u'f’),sig(v'g")}
5. if (s =t) then
6
7
8:

Delete p; from P
break
return FALSE

Remark 5.5.3.

(1) REwWRITEG2V? always returns FALSE due to its description strongly related to REWRITE?.
Whenever a critical pair is detected, the one in P is deleted, but the actual critical
pair has to be added to P later on. For the sake of unifying notations and letting the
theoretical changes affect the pseudo code as less as possible we keep the boolean
framework of REWRITE? also for REWRITEG2Vz.

(2) Note that the proof of correctness of G2V is straightforward using the results of Sec-
tion 51} Moreover, termination of G2V is proven by Corollary 57} too. This proof
appeared initially in [59] and is the first publicly available proof of G2V’s termina-
tion.

This finishes our discussion about G2V, which is the last variant of S1IGSTD presented
at this point. We close this Chapter with an extensive comparison of all presented variants
of SIGSTD resp. SIGSTDRED.

172 5 Signature-based criteria to detect useless critical pairs

Algorithm 45 G2V’s implementation of INCSIGCRIT (INCS1GG2V)

Input: f; a polynomial, G;_, = {p,, ..., ps—, } a standard basis for (f, ..., fi-,)
Output: B a standard basis for (f,,. .., fi) wrt. <
1 B« @, G« 3, Py

2 S« g

3t Ps ‘_fz

4 L < S

5: for (k=1,...,s—1) do
6: gk<—(0,pk)

. S suit(p)

8: g < (e ps)

9: G(_{gl)---)gs}

10: for (k=1,...,s-1)do

11: u <« lc(gk) —Tl(n‘fs(ﬁk))

V<~ lc(gs)%

13 if (! NONMING2V? (ug, vgx, S) and | REWRITEG2V? (ugs, vk, P)) then
14: P < Pu{(ug:vgr)}

15: while (P * Q) do

16: Choose (uf,vg) from P with max. {usig(f), vsig(g)} minimal w.r.t. <.
7 if (INoNMING2Vz(uf,vg,S)) then

8 P P\{(uf,vg)}

19: I < max. {usig(f),vsig(g)}

200 1< (Lupoly(f) - vpoly(g))

21 r < SIGREDG2V (7, G)

22: if (poly(r) = o) then

23: S« Su {Slt(?’)}

24: else if (poly(r) # o and r not sig-redundant w.r.t. G) then
25: for (k=1,...,t)do

26: u < le(gy) Tl(n:’—(g:))

27: v < le(r) %

28: if (Im(u) siglm(r) # Im(v) sigim(gy)) then

20: if (! NONMING2V? (ur, vgy, S) and | REWRITEG2V? (ur, vgy, P)) then
30: P < Pu{(ur,vgy)}

31 t<—t+1

328 gy < r

33: G+~ Gu {gt}

34: B < poly(G)
35: return B

5.6 Experimental results 173
5.6 EXPERIMENTAL RESULTS

After we have given lots of different variants of SIGSTD we want to compare them. Before
we can do this a small interlude of how we compare the algorithms shall give the reader an
idea on the accuracy we try to achieve.

All algorithms presented throughout sections 5.1 - 53] differ only in minor parts, most
of the time only in their implementation of (NM) and (RW). Thus the following underlying
structure of our test suite makes sense: We have implemented the overall, generic struc-
ture of SIGSTD resp. SIGSTDRED without using any criteria (see Section [7-2). Keeping this
implementation without any changes to data structures, polynomial representations, etc.,
we have added the corresponding implementations of (NM) and (RW) for S1GSTD resp.
S1GSTDRED with generic criteria, AP, MM, and G2V. Using this the best possible compar-
ison can be done. The source code of the different algorithms distinguish in at most 127
lines of code, compared to nearly 3,300 lines of code overall quite neglectable.

The algorithms are implemented in the SINGULAR kernel in the programming language
C++. Note that the code is open source and publicly available at

git@github.com:ederc/Sources. gi1ﬂ.

The implementation is done not only in the most optimized way to compare the different
algorithms, but also focusses on the efficiency of the computations. Still we should note
the following.

Remark 5.6.1. The implementation presented in this section is not intended to be compa-
rable with SINGULAR s highly efficient and optimized standard basis algorithm implemen-
tation. Our implementation is slower due to the following facts:

(1) We do not want to optimize any part of the algorithm all variants are sharing due to
the problem that one of the variants could take more an advantage out of this than
another variant.

(2) All signature-based algorithms presented here, being derivates of Fs, as we see in
the next chapter, have to cope with a problem their functioning is based on: They
use an incremental structure, which can slow done computations due to not using
all input data in an optimal way. We show that this is a field of high research in the
signature-based world these days

In Section [74) we give more insight in this area, which is of great importance in the
signature-based world.

All examples where computed on a computer with the following specifications:
> 2.6.31-gentoo-r6 GNU/Linux 64-bit operating system,

> INTEL® XEON® X5460 @ 3.16GHz processor,

3You can get the git repository by typing git clone git@github.com:ederc/Sources.git. Each algo-
rithm has its own branch.

git@github.com:ederc/Sources.git

174 5 Signature-based criteria to detect useless critical pairs

best better average worse worst

Figure 5.6.1: Coloration of results for variants of SIGSTD

> 64 GB of RAM, and
> 120 GB of swap space.

For all computations we used the lates(developer version of SINGULAR 3-1-3, revision
14,372 in the SVN trunk available at

http://www.singular.uni-kl.de/svn/trunk/,

A complete list of the test cases can be found in Appendix[Al In this series of tests we
always compute in the respective polynomial ring over a field of characteristic 32, 003 using
the graded reverse lexicographical order <gp,.

The series of examples we give results for in the following cover different settings, from
complete intersections to overdetermined systems, from inhomogeneous to homogeneous
input data.

In Figure [5.6| we explain how the different colors of the results presented in the tables
have to be interpreted: The best results are always written in blue, the worst in red. As we
give not only timings, but also memory consumption, and various other data, we cannot
be more precise with terms like “best” or “worse”. This should be no problem for the reader
as it is clear from the context of the table.

The table which can be understood easiest is Table 5.2} It shows the number of zero re-
ductions not rejected in each of the 5 algorithms during the corresponding computations.
As one can see all algorithms share the same number of zero reductions. This can be in-
terpreted in the following way: The implementation of (NM), which is equal in all variants
discards nearly all critical pairs which would lead to a zero reduction. The differences in the
implementation of (RW) does not alter the behaviour of the algorithms w.r.t. zero reduc-
tions. Note that even S1GSTD, which does not interreduce the intermediate standard bases,
does not compute more zero reductions. This again is based on the strength of NoNMinz.

Looking at the timings in Table 51]an overall statement is the following: AP and G2V
are the fastest of the 5 given algorithms. Whereas G2V is mostly the fastest or second
fastest algorithm, AP sometimes loses track, e.g. F~744(-h) and Katsura-11(-h). On
the other hand, AP is way faster, even than G2V, in examples like Cyclic-7(-h) and
Eco-x(-h).

Clearly, S1GSTp must handle all the overhead of not interreducing intermediate stan-
dard bases which slows down the algorithm noticeable. Its timings are getting better with

#Itis the current developer version of SINGULAR at the point we start the first computation of the series. To keep
the computations comparable we fix this revision number of SINGULAR for all experimental results given in
this thesis.

http://www.singular.uni-kl.de/svn/trunk/

5.6 Experimental results 175

the Katsura-x(-h) examples, as those are regular sequences, where no zero reduction at
all takes place and any useless critical pair is already handled by (NM). There, especially
in the smaller test sets, SIGSTD benefits from the overhead of computational time needed
interreducing intermediate standard bases which is done by the other algorithms only.

Moreover, one should note that, besides AP which actively looks at the polynomial
leading terms in its (RW) implementation, all other algorithms really slow down when
computing standard bases of inhomogeneous ideals. In Section [Z] we give more details
on this behaviour of signature-based algorithms in general. Note that the algorithms, as
implemented, are not able to compute the inhomogeneous example Eco-11 in a reasonable
amount of time, whereas a standard basis for Eco-11-h can be given.

Table 53]is the quite opposite of Table G- at first esteem. Giving it a closer look it turns
out that nearly all algorithms behave the very similar to the timings table, but AP. In nearly
all examples AP needs the most memory during the computations. Comparing this with
its quite good timings, this is a strange behaviour and needs some clarification: As ex-
plained in the prelude of this section we have implemented all 5 algorithms based on one
basic underlying framework. We changed only very few lines of code for the different al-
gorithms to ensure a comparison of the different ways (NM) and (RW) are implemented
as precise as possible. However, AP compares the leading terms of the critical pairs for its
implementation of (RW). In a specialized implementation one would keep this data stored
in the structure of the critical pair. Since we decided to use the same data structures for all
5 algorithms, we cannot do this in AP and need to compute the leading terms again and
again when checking (RW). Whereas it does not cost much time to get the leading term
out of the critical pair, comparing two terms consumes memory to store those terms and
the result of the comparison. Calculating roughly the number of calls of REWRITEAP? this
explains the memory overhead of AP compared to the other 4 algorithms.

Tables4land[5-5need to be taken into account together. Whereas the first one presents
the number of critical pairs not detected by any criterion in the algorithm, and thus fur-
ther processed, the later one gives us the complete number of all single reductions steps
that have taken place during the computations. The clear winner of these two properties
is AP: It detects the most useless critical pairs and does the fewest reduction steps of all
algorithms. The fact that it discards the most critical pairs follows from its sophisticated
implementation of (RW). The fact that it computes so much less single reduction steps is
not only based on the fact that it handles less critical pairs, but it is also a consequence of
AP’s implementation of (RW) keeping the elements of lowest possible leading term. This
has quite astonishing effects as we can see in Table[535} In nearly all examples AP computes
less than half the number of reduction steps the other algorithms do. Thinking of MM as
being just a variant of AP preferring sparser polynomials the differences in the results are
quite big. MM performs even worse than G2V in most of the examples. The main prob-
lem of MM is that favouring sparse polynomials it keeps critical pairs of the first labeled
polynomials of the iteration steps, since those have the fewest terms in general. This leads
to a recomputation of reduction steps the generators of other critical pairs, which e.g. AP
keeps instead, have already been undergone.

As a last criterion to distinguish the given algorithms we present the number of ele-
ments in the resulting standard bases. Note that SIGSTD does not interreduce intermediate
standard bases, whereas the other does. However, no algorithm reduces the result of the

176 5 Signature-based criteria to detect useless critical pairs

last iteration of INCSIGCRIT.

Clearly it follows that the number of elements in G computed by S1GSTD is always the
largest one. The astonishing outcome of Table[5.6]are the numbers of the other 4 algorithms:
they are all the same! This means that their differences in (RW) does not have an effect on
the number of elements computed at all. All start with the very same reduced standard
basis as input for their last iteration step. In there, the same number of elements is added
to G. This again shows the strength that lies in (NM), but also the impact of the restricting
sig-safe reduction process.

With this we finish our discussion of this canonical derived signature-based standard
basis algorithms. We have presented different possible attempts and compared them in
some basic features that are most interesting in terms of standard basis computations.
Problems with inhomogeneous computations as well as the incremental structure of the
algorithms are discussed in detail in Section [Zqresp.[74} Next we start an in-depth charac-
terization of Faugere’s F5 Algorithm, which turns out to be a way more aggressive variant
of SIGSTD.

Test case S16Stp | SIGSTDRED AP MM G2V
Cyclic-7-h 67.180 41.280 6.090 26.900
Cyclic-7 66.210 40.230 5.950 26.350
Cyclic-8-h 73,903.890 21, 090.780 14, 645.590 13,991.890
Cyclic-8 69, 356.880 19, 468.020 14, 078.000 12, 973.530
Eco-8-h 0.470 0.450 0.210 0.410
Eco-8 0.500 0.080 0.480
Eco-9-h 13.440 13.020 2.960 11.870
Eco-9 29.400 28.950 1.630 29.110
Eco-10-h 420.520 418.410 127.190 386.680
Eco-10 1,548.090 1,554.970 67.410 1, 492.900
Eco-11-h 14, 948.500 14,973.920 4,521.250 13, 691.810
F-633-h 0.000 0.000 0.010 0.010 0.000
F-633 0.000 0.010 0.000 0.000 0.000
F-744-h 62.330 44.910 39.200 34.150
F-744 52.840 . 42.700 29.370 28.760
F-855-h 2, 414.730 1,349.680 492.980 1,266.440 .

F-855 7,005.730 1, 844.650 182.390 1,071.850
Gonnet-83-h 37.620 12.760 8.920 10.890
Katsura-8-h 0.050 0.070 0.050 0.050 0.050
Katsura-8 . . 0.050 0.040
Katsura-9-h 0.560 0.580 0.450 0.400
Katsura-9 0.580 0.440 . 0.400
Katsura-10-h 6.220 5.170 6.590 4.430
Katsura-10 . 6.150 5.110 6.490 4.360
Katsura-11-h 69.900 84.210 84.100 62.600
Katsura-11 65.170 76.860 . 77.540 56.760
Schrans-Troost-h 6.580 3.160 6.110 4.590

Table 5.1: Time needed to compute a standard basis, given in seconds.

sjnsad [ppuauiiadxy 9°S

LL1

178

5 Signature-based criteria to detect useless critical pairs

| Test case | S1GSTD | S1IGSTDRED | AP | MM | G2V
Cyclic-7-h 36 36 36 36 36
Cyclic-7 36 36 36 36 36
Cyclic-8-h 244 244 244 244 244
Cyclic-8 244 244 244 | 244 | 244
Eco-8-h 57 57 57 57 57
Eco-8 o] o] o] o] o
Eco-9-h 120 120 120 120 120
Eco-9 o] o] o] (o) o)
Eco-10-h 247 247 247 247 247
Eco-10 o] o] o] (o) o)
Eco-11-h 502 502 502 502 502
F-633-h 2 2 2 2 2
F-633 o] o] o] o] o)
F-744-h 323 323 323 323 323
F-744 o] o] o] o] o)
F-855-h 835 835 835 835 835
F-855 o] o] o] o] o)
Gonnet-83-h 2,005 2,005 2,005 | 2,005 | 2,005
Katsura-8-h o] o] o] o] o)
Katsura-8 o] o] o] (o) o)
Katsura-9-h o] o] o] o] o)
Katsura-9 o] o] o] (o) o)
Katsura-10-h o] o] o] o] o
Katsura-10 o] o] o] (o) o)
Katsura-11-h o] o] o] o] o
Katsura-11 o] o] o] (o) o)
Schrans-Troost-h o] o] o] (o) o)

Table 5.2: Number of zero reductions computed by the algorithms.

Test case S16Stp | SIGSTDRED AP MM G2V
Cyclic-7-h 305.093 638.073 180.627 155.201
Cyclic-7 305.594 637.573 180.627 155.202
Cyclic-8-h 40, 514.258 70,500.524 11, 049.046 10,387.808
Cyclic-8 34,775.470 60, 444.643 9,490.331 8,917.106
Eco-8-h 22.547 . 45.065 21.076 20.600
Eco-8 12.515 11.529 . 11.529 12.036
Eco-9-h 186.765 350.688 177.826 176.957
Eco-9 138.072 90.595 134.105 139.133
Eco-10-h 1,588.217 2,982.387 1,533.829 1,547.097
Eco-10 1,384.822 666.817 1,353.436 1,394.078
Eco-11-h 13,695.384 . 26,206.020 13,279.561 13,376.611
F-633-h 0.000 0.036 0.536 0.036 0.036
F-633 0.000 0.535 . 0.034
F-744-h 368.775 458.346 236.260 207.322
F-744 174.631 133.606 92.110 84.134
F-855-h 4,735.116 . 5,876.375 3,101.008 3,065.703
F-855 4,299.398 2,361.621 1,228.474 . 1,518.127
Gonnet-83-h 102.887 193.013 78.870 76.963
Katsura-8-h 2.500 2.000 8.000 2.000 1.500
Katsura-8 2.500 2.000 8.000 2.000 1.500
Katsura-9-h 9.500 7.000 41.000 7.000 6.500
Katsura-9 9.500 7.000 41.000 7.000 6.500
Katsura-10-h 39.500 212.046 28.016 25.521
Katsura-10 39.500 212.546 28.016 25.521
Katsura-11-h 185.545 1,295.758 127.585 116.098
Katsura-11 162.542 1,133.735 111.583 101.598
Schrans-Troost-h 45.028 113.555 31.037 29.541

Table 5.3: Memory used to compute a standard basis, given in Megabyte.

sjnsad [ppuauiiadxy 9°S

6/1

180

5 Signature-based criteria to detect useless critical pairs

Test case | S1GSTD | S1IGSTDRED | AP MM G2V
Cyclic-7-h 4,868,209 3,194,383 93,742 1,915,620
Cyclic-7 4,868,209 3,194,383 93,742 1,915,620
Cyclic-8-h 624,588,332 | 189,526,325 | 49,444,223 118,873,460
Cyclic-8 624,588,332 | 189,526,325 | 49,444,223 118,873,460
Eco-8-h 72,348 72,140 15,583 69,087
Eco-8 72,138 72,107 10,161 70,144
Eco-9-h 673,572 672,973 112,285 654,585
Eco-9 862,776 862,683 83,911 824,967
Eco-10-h 6,259,660 6,258,064 904,936 6,083,158
Eco-10 10,201,164 10,200,912 869,101 9,580,146
Eco-11-h 56,484,340 56,480,296 7,787,226 54,221,419
F-633-h 671 389 637 681
F-633 561 319 556 540
F-744-h 2,203,159 1,623,992 636,295 1,103,524
F-744 1,224,352 748,585 249,228 481,477
F-855-h 38,155,078 25,114,845 5,408,786 23,212,624
F-855 39,102,121 19,477,654 1,749,296 8,085,517
Gonnet-83-h 180,061 145,494 84,203 120,296
Katsura-8-h 3,694 3,647 1,626 1,780
Katsura-8 3,694 3,647 1,626 1,780
Katsura-9-h 14,950 14,857 5,309 5,729
Katsura-9 14,950 14,857 5,309 5,729
Katsura-10-h 57,479 58,495 17,868 19,403
Katsura-10 57,479 58,495 17,868 19,403
Katsura-11-h 238,219 240,294 60,965 66,760
Katsura-11 238,219 240,294 60,965 66,760
Schrans-Troost-h 59,817 57,127 14,167 19,628

Table 5.4: Number of all reduction steps during the computations.

5.6 Experimental results

Test case | S1GSTD | S1IGSTDRED | AP | MM | G2V |
Cyclic-7-h 3,496 3,072 914 3,072 3,072
Cyclic-7 3,496 3,072 914 3,072 3,072
Cyclic-8-h 37,260 24,600 20,086 | 24,600 | 24,600
Cyclic-8 37,260 24,600 20,086 | 24,600 | 24,600
Eco-8-h 2,147 2,012 694 2,012 2,012
Eco-8 821 796 398 796 796
Eco-9-h 6,141 5,794 1,852 5,794 5,794
Eco-9 1,997 1,933 954 1,933 1,933
Eco-10-h 17,379 16,535 5,148 16,535 | 16,535
Eco-10 4,742 4,587 2,337 4,587 4,587
Eco-11-h 49,079 47,105 14,994 | 47105 | 47105
F-633-h 80 80 56 80 80
F-633 74 74 54 74 74
F-744-h 4,090 3,451 2,221 3,451 3,452
F-744 1,467 1,280 899 1,280 1,280
F-855-h 16,442 14,197 6,532 14,197 14,197
F-855 7,206 6,365 3,309 6,365 6,366
Gonnet-83-h 12,407 10,241 7,573 10,241 10,248
Katsura-8-h 120 120 120 120 120
Katsura-8 120 120 120 120 120
Katsura-9-h 247 247 247 247 247
Katsura-9 247 247 247 247 247
Katsura-10-h 502 502 502 502 502
Katsura-10 502 502 502 502 502
Katsura-11-h 1,013 1,013 1,013 1,013 1,013
Katsura-11 1,013 1,013 1,013 1,013 1,013
Schrans-Troost-h 469 461 397 461 461

Table 5.5: Number of critical pairs not detected by the respective criteria used.

181

182

5 Signature-based criteria to detect useless critical pairs

Test case | S1GSTD | S1IGSTDRED | AP | MM | G2V
Cyclic-7-h 749 658 658 658 658
Cyclic-7 749 658 658 658 658
Cyclic-8-h 3,865 2,611 2,611 | 2,611 | 2,611
Cyclic-8 3,865 2,611 2,611 | 2,611 | 2,611
Eco-8-h 356 249 249 | 249 | 249
Eco-8 294 187 187 187 187
Eco-9-h 721 499 499 499 | 499
Eco-9 595 373 373 373 373
Eco-10-h 1,438 979 979 979 979
Eco-10 1,184 725 725 725 725
Eco-11-h 2,901 1,968 1,968 | 1,968 | 1,968
F-633-h 58 56 56 56 56
F-633 58 56 56 56 56
F-744-h 1,252 204 204 204 204
F-744 694 87 87 87 87
F-855-h 2,277 688 688 688 688
F-855 2,012 148 148 148 148
Gonnet-83-h 2,673 1,035 1,035 | 1,035 | 1,035
Katsura-8-h 128 105 105 105 105
Katsura-8 128 105 105 105 105
Katsura-9-h 256 202 202 202 202
Katsura-9 256 202 202 202 202
Katsura-10-h 512 399 399 399 399
Katsura-10 512 399 399 399 399
Katsura-11-h 1,024 784 784 784 784
Katsura-11 1,024 784 784 784 784
Schrans-Troost-h 398 189 189 189 189

Table 5.6: Size of the resulting standard basis.

6 FAUGERE’S F5 ALGORITHM

In the proceedings of the ISSAC’02 conference Faugere published his F5 Algorithm
([63]]). This algorithm is nothing else but the ancestor of all (incremental) signature-based
algorithms presented in this thesis. Nevertheless F5 can be understood as the most aggres-
sive variant of SIGSTD, as we see in the following. Due to this fact we decided to discuss
Fs after we have already discussed the other variants, although Fs is scheduled before each
algorithm presented in Chapter[g}

Fs is famous for its great performance computing standard bases. Especially in the
situation of regular sequences as input, F5’s criteria rejecting useless data are very powerful,
not computing any zero reduction at all. We see that this holds for all variants of SIGSTD
previously mentioned, too. Moreover, using his initial implementation of Fs5, Faugere was
the first who computed a standard basis for Cyclic-10 over a field of characteristic p,
p prime. Also in the field of cryptography and cryptanalysis Fs is well-known, e.g. for
breaking some previously untractable HFE systems ([19/64}/68]]).

There are a lot of open questions left after reading [[63]. Whereas Faugere presented his
ideas in full, some gaps in the essential proofs as well as some issues considering perfor-
mance were given. First improvements in understanding F5 were done by Stegers in [144].

184 6 Faugére’s F5 Algorithm

In this chapter Fs is not only presented and explained in detail, we also show the con-
nections and differences to the algorithms presented in Chapter g}
The main points of our discussion are:

(1) How to prove the correctness of F5? There exist various attempts of this task, but
none of them provide a gapless and correct proof. We give a complete proof together
with an in-depth presentation of F5 in Section [61]

(2) Do there exist optimizations of F5? We present various in this chapter, the most sig-
nifcant being the variant FsC in Section It shows how to reduce computational
overhead to a minimum and improve Fs’s performance by a large factor.

(3) One of the hardest problems around Fs is to prove its termination. Until now no
complete and correct proof of this exists to the knowledge of the author. Different
variants ensuring termination are already known, but all of them lack F5’s perfor-
mance due to introducing a huge overhead in the computations. In Section [6.5] we
present another variant of Fs, ensuring termination with no penalty on performance
at all.

The author has tackled the above mentioned problems in [55}[56], together with John
Perry in [58]], and together with Justin Gash and John Perry in [57]. The ideas discussed in
this chapter are initially presented in those publications, whereby lots of generalizations of
these attempts are presented for the first time in this thesis.

Some other ideas of generalization and optimization, sometimes just specializations of
our research can be found in various publications of the last years, e.g. [8H10}71,78}[148}163]
et al. Signature-based standard basis algorithms are a field of high research these days, a
lot of new ideas and constructions can be expected in the near future, understanding the
special behaviour of these algorithms more and more.

6.1 FAUGERE’S INITIAL PRESENTATION OF Fj5

In this section we start our discussion of Fs5 giving the algorithm in its initial form as
presented in [63]. Explaining the underlying ideas in constructing an efficient standard
basis algorithm we use the notations previously defined in Chapters@and[5] Based on this
we can easily use already found aspects and compare F5 with S1GSTD and its variants.

Since we guess that most readers are either not at all familiar with F5 or possibly only
aware of [63], we focus on introducing Fs in this vein. A complete classification of the algo-
rithm in the field of signature-based standard basis algorithms is postponed to Section[6.3]

In this section we give a full proof of the correctness of Fs, including both its criteria
used. John Perry and the author are the first who published a complete proof in [58].

Due to our intention to present F5 as much as possible unaltered in this section, we
need to agree on the following:

6.1 Faugére’s initial presentation of Fs 185

Convention. In this section we restrict ourselves to homogeneous polynomials and ideals
in P. So the input F = {f,,..., f;} of the presented algorithms are always homogeneous.

Remark 6.1.1. Note that in [[63] a slightly different module order is used,

x%e; <neg-i xﬁej = i>jor,

i=jand x* < xP.

We keep stuck to <; being the order on the signatures. The main difference between <peg
and <; concerning Fs is that we compute incrementally standard bases for (1), (/1, f2), etc.,
whereas Faugere’s F5 goes the other way around starting with a basis for (£,), (f;, fr—1), etc.
So this is only a difference in notation, but not in the mathematical approach and should
not irritate the reader at all.

The F5 Algorithm is an incremental standard basis algorithm, in particular, we can de-
fine a main loop iterating over all elements f; of the input data:

Algorithm 46 The F5 Algorithm(F5)
Input: F = {f,,..., f,} afinite subset of P
Output: B a standard basis for (F) w.r.t. <
1 G {(e, i)}
2 § = empty list
3 R = empty list
cfor(i=2,...,r)do
fi < Repuce (fi, poly(Gi-,))
if (f; # o) then
G;,S,R < INCcFs5(f;, Gi-1, S, R)
else
G, < G,
: B < poly(G,)

1: return B

2 ® N vk

-
o

o

Algorithm [46] coincides with Algorithm [37)besides some small, but quite essential dif-
ferences:

> Thewhileloop runs over sets of labeled polynomials G;, so G, is initialized in Linem

by G, = {(e,, fi)}-

> In Line[7jwe do not call INCS1G or INCSIGCRIT, but the incremental F5 routine de-
noted INCFs. This differs from the previously presented incremental algorithms
mostly in its usage of the signature-based criteria, which we explain in detail in
the following. At this point it is important that the kth call of INCF5 returns a set
of labeled polynomials G such that poly(G) is a standard basis for (f,, .. ., fx). This
is a very important change since it enables us to reuse signatures computed during
previous iteration steps in upcoming one.

186 6 Faugére’s F5 Algorithm

> Due to the fact of using sets of labeled polynomials, we need to extract the polyno-
mial part of G, at the end. With this we return a set of polynomials which is just a
standard basis for I = (f,, ..., f;) with respect to the given monomial order <.

> S is a list of list of terms in P. It is used for Fs5’s implementation of (NM). One
should think of it as a more structured way of storing the needed criteria. This more
in structure can be used to implement (NM) way more aggressive as we show in the
following.

> R is some data structure describing lists of terms in 7. Those are needed for F5’s
implementation of (RW) in REwRITEFs2. It is initialized to the empty set in Line[3}
We give a detailed explanation when discussing the Rewritten Criterion below. In the
meantime the reader should just think about some data which is updated in INCF5
and is used in REWRITEFs5? to detect useless critical pairs.

Remark 6.1.2. Note that in the description of F5 in [63] Line[g)does not appear. As we have
already pointed out in Section [£:2 this is an quite obvious improvement of the algorithm.

Potentially the most known feature of Fs is the fact that it can compute standard bases
highly efficient, given some minor restrictions to its input data: Let F = (f,..., f;) bea
regular sequence of homogeneous polynomials f; € P. Computing a standard basis, to be
more precise, a Grobner basis in this setting, G for I = (f; ..., f,), F5 does not compute
any reduction to zero at all.

This property of Fs is based on the so-called F5 Criterion, for which the notion of nor-
malized elements is essential:

Definition 6.1.3 (Fs5 Criterion).

(1) Alabeled polynomial f with sig(f) = tey, t € P,and poly(f) € Iis called normalized
(Wt (fise ooy froa) if
té L((fir- s fimn))-

(2) A critical pair (uf,vg) is called normalized if
a) usig(f) #v sig(gﬂ, and
b) uf and vg are normalized.

(3) We say that a critical pair is detected by the Fs5 Criterion iff it is not normalized.

Remark 6.1.4. Note that in INCFs slt(g;) needs not be 1if i < s as it used to be in INcSiG
resp. INCSIGCRIT. F5 reuses the signatures computed in previous iteration steps. This is
due to the more aggressive implementation of (RW) in Fs, which makes use of those “old”
signatures.

'In [63] usig(f) > vsig(g) is claimed. This is due to the fact that there the first entry of the critical pair is
assumed to be the element giving the corresponding s-vector its signature. In our setting we do not require
this for critical pairs, thus inequality is enough to ask for.

6.1 Faugére’s initial presentation of Fs 187

Let us have a closer look at INCFs5, the incremental part of F5 presented in Algorithm 5o}
Doing this we lay a focus on how the Fs5 Criterion and the Rewritten Criterion are used to
detect useless critical pairs.

It seems quite clear that normalized critical pairs are in a strong connection to the non-
minimality property of signatures we discovered in Section 5} In particular, the Fs5 Crite-
rion is much stronger than S1GSTD’s implementation of (NM) due to the fact that in F5 also
the second generator of the critical pair is checked. This means that we cannot implement
the detection of non-normalized critical pairs just by using NoNMinz (Algorithm [37), but
need a special implementation presented in the pseudo code of Algorithm 77

Algorithm 47 Fs’s implementation of (NM) (NoNMInFs?)

Input: uf alabeled polynomial multiplied by a term, S a finite list of finite lists of terms
inP
Output: TRUE if usig(f) is detected by the F5 Criterion, FALSE otherwise
1 |« index(f)
2 t < uslm(f)
3 for(i=1,...,1-1)do
4 m < length (S[i])
5 for (j=1,...,m) do
6 if (S[i][j]|t) then
7: return TRUE
8: return FALSE

The main idea is to implement S in F5 not as a set, but as a list. Due to the fact that both
generators of a critical pair are checked we must ensure that we do not discard an element
of index 3 by a term in S whose corresponding labeled polynomial has index 4 during a
computation of INCF5 of actual index 11. This is ensured by keeping all terms corresponding
to a given index j in a list S[j] and storing all those lists in one big list S. This is done in
Linemof INCFs.

Thus by ensuring the correct initialization of S in Line [we can use NoNMiNFsz in
Linesglandzg|when new critical pairs are generated. Note that as contrast from INCSIGCRIT
we do not need to use NONMINFs5? in Line 15} too, when entering the critical pair to the
reduction process. This is owing to the fact that S is not updated when a zero reduction
takes place in the presented, original version of Fs.

Whenever a new element is added to G in INCF5, we add its leading term to S[i]
(Line[z3) as it will be useful in the next iteration round for detecting useless critical pairs
generated by elements of index i + 1. This is done in Algorithm [48]

Algorithm 48 F5’s F5 Criterion adding algorithm (addFsCrit)
Input: faterm, S alist of terms in P
Output: S alist of terms in P

1 append (t, S)

2: return S

188

6 Faugére’s F5 Algorithm

INCFs5 seems to be quite similar to INCSIGCRIT, but differs in some substantial points:

()

(2)

(3)

(4)

(5)

Due to the fact that F5 reuses already computed signatures from previous iteration
steps, there is no need to initialize all elements of G as it is done in INCSIGCRIT
(Lines[5H7). There is only one initialization, namely those of g; in Line[3} all other
elements are just copied from G;_,.

In Line @2 INCF5 preselects a bunch of critical pairs out of the pair set P. These
elements are determined by their degree: P’ is the set of critical pairs of P, which
have the minimal possible degree. It follows that the computation process does not
only loop over elements of P, but goes through an inner loop over the elements in P’.
In P’ the order in which the elements are sorted to proceed with the reduction steps
is the same as in INCSIGCRIT: At each start of a new reduction process we choose the
critical pair of P’ for which the signature of the corresponding s-vector is minimal
w.r.t. P’ (if there are several pairs of the same signature, take the one which was
added to P first).

This storage of elements of smallest possible degree, say d, in P’ has some conse-
quences for INCFs: In Line o]any new critical pair (ur, vgy) is added to P, but not
to P’. Thus it must be ensured that the degree of (ur,vgy) is greater than d. This is
caused by the test that Im(gx) + Im(r) in Line[z5} and the fact that we are restricting
the input to homogeneous data only.

From [(3)] it follows that it is, in contrast to INCSIGCRIT, not possible to introduce
sig-unsafe reduction steps disguised as critical pairs after a new element is added
to G. The problem is that some of the sig-unsafe reductions might be essential for
the correctness of F5’s computations, so we must ensure that these are computed
nevertheless. In Fs this is handled by SIGREDFs.

Moreover, in Linezolof INCFs the polynomial part of r is reduced w.r.t. poly(G;_,).
Note that this “labelless” reduction does not pose a problem for the sig—safeness at
all! Since we are using <; on the signatures all elements in G;_, have a lower index,
and thus all corresponding signatures are ensured to be smaller than those of r.

The last three points give us an idea of the capabilities SIGREDF5 must offer: Besides per-
forming only sig-safe reductions with elements of current index (which is not the complete
truth as we explain below) it needs to generate new critical pairs representing sig-unsafe
reductions and enters them to P’. In addition another crucial difference to SIGRED can be
found in Algorithm 79} The testing of (NM) and (RW) on the reducers.

Let us discuss the above mentioned essential points in detail:

)

In Linesmand Zthe sets D and B;_, are constructed: D is the set of all labeled poly-
nomials of current index, which are possible reducers of f and must be checked for
sig-safeness before performing a reduction with them (Line[). B;_,, on the other
hand, is a polynomial set, consisting of the polynomial parts of labeled polynomials
in G, whose index is smaller than the current one. This set is used in Line[@al The
idea behind this is the following:

6.1 Faugére’s initial presentation of Fs 189

Algorithm 49 F5’s semi-complete sig-safe reduction algorithm (SIGREDF5)

Input: f alabeled polynomial, G = {g,..., ¢} a finite set of labeled polynomials, S a
list of lists of terms in P, R a list of lists of terms in P, s the index of the first labeled
polynomial of current index, P’ a set of critical pairs

Output: h alabeled polynomial sig-safe reduced w.r.t. G, P’ a set of critical pairs

v D« {g,....q}

2 Biy < {poly(g.),. .., poly(g:-1)}

3 | < siglm(f)

4 p < poly(f)

s: while (p # oand D, < {g e D |Im (poly(g)) |Im(p)} + @) do

6: Choose any g € D,.
5 ue)
' lt(poly(g))
8 if (! NoNMiNFsz(ug, S) and ! REwRITEF52(u, ¢, R)) then

9 if (lm(u) siglm(g) < 1) then

10: q < Repuck (upoly(g), Bi-y)
11 p<p—¢q

12: else if (Im(u) siglm(g) > /) then
13 P'— P u{(ug, (sig(f).p))}

140 h <« (Slg(f),p)
15: return (h, P')

> One the one hand poly(f) is completely reduced w.r.t. B;_, before it enters
S1GREDFj5 (see Line 0l of INCFs). Thus it is enough to reduce f with labeled
polynomials of the current index, i.e. we only need to search in D for possible
reducers, not in the whole G.

> On the other hand, when we reduce poly(f) with some multiple u of some
poly(g), g € D, it is possible to introduce terms in poly(f) — u poly(g) which
can be reduced w.r.t. B;_,. By construction these terms come from u poly(g).
Thus reducing u poly(g) w.r.t. B;_, to an element q before reducing poly(f)
with it ensures that poly(f) — g is still completely reduced w.r.t. B;_,.

> Since poly(f) is completely reduced w.r.t. B;_, and Im(f) = ulm(g), it is not
possible that Im(g) < ulm(g). It follows that

Im (poly (f) - q) <1m (poly (f)) .

(2) The second crucial change of SIGREDF5 compared to SIGRED is that whenever a sig—
unsafe reduction f — ug would happen a new critical pair (ug, f) is generated and
added to P’. This process is well-defined since deg(ug — f) = deg(f) assuming all
elements to be homogeneous. Thus (ug, f) must be part of the current preselection
P’, therein sorted by increasing signature. We already know that sig(ug) > sig(f),
thus the reduction of (ug, f) is scheduled after the current reduction of f for sure.

(3) We see that not all possible sig-safe or sig—unsafe reductions take place. In Line[§]
S1GREDF5 checks the possible reducer ug for minimality of its signature (NM) as

190

6 Faugére’s F5 Algorithm

well as for its non-rewritability (RW). This is something SIGRED does not perform,
with tremendous impacts on the performance as we see later on.

Remark 6.1.5.

)

(2)

(3)

(4)

(5)

Note that in the description of the F5 Algorithm in [63] the so—called top-reduction
process, which parallels SIGREDFs5, does not take care of the reduction of elements
w.r.t. G;_,. This is outsourced to another wrapper algorithm in [63]. We want to
keep the description of the algorithm as comprehensible as possible, in this sense we
have chosen this more unsophisticated presentation.

On the other hand, Fs, as presented in [[63]], keeps recently computed new elements of
degree d ina pool R, until the whole degree step is done, i.e. until P’ = @. Afterwards
those elements are added to G. We do this right away to conform to our notation
introduced in the presentation of SIGSTD since it seems to be more fluent. By all
means this difference does not change any computational aspect of Fs.

The idea of using NoNMiNFs? and REWRITEF5? in SIGREDFs for testing the reducers
ug is quite natural. Any such reduction step can be interpreted as a critical pair
(f,ug). For such a pair it is self-evident in our context to test both criteria.

Moreover, note that we clearly do not need to recheck f with both criteria, since we
have done this already before entering SIGREDFs. g itself, as an element already in G
is also already tested, but multiplying ¢ with a term u it is not clear if ug still passes
the tests.

Another important fact we should mention is the different treatment of current in-
dex labeled polynomials and those of lower index in F5. Whereas those of current
index are always checked by the criteria before reducing with them, Fs5 does not
check the reducers of lower index. Moreover, whereas F5 performs complete reduc-
tions w.r.t. the elements of previous iteration steps, it only reduces leading terms
with the current index ones. In Section [6.2] we see that this handling of the overall
reduction process is quite essential improving Fs.

What is left is a discussion of how Fs resp. INCF5 implements (RW) in REwRITEFs5?. For
this we need to give some more background on rewritability. Aswe have already mentioned
in Chapter 5| F5 implements (RW) way more aggressive than all other signature-based al-
gorithms. It checks, as AP, not only for equality (i.e. checking if another critical pair of the
same signature exists), but for divisibility (i.e. an element whose signature divides the one
of the critical pair in question). We see that this Rewritten Criterion influences two main
parts of Fs:

>

>

On the one hand, it improves its performance quite a lot detecting more useless
critical pairs than all variants of SIGSTD.

On the other hand, it seems to be “too aggressive” in an algorithmic sense: Until now
there is no full proof of Fs’s termination. Although we present some variants of Fs
that ensure termination with nearly no overhead in Section[6.5] showing termination
for the original version of Fs is still an open problem.

6.1 Faugére’s initial presentation of Fs 191

Algorithm 50 Incremental Fs step (INCF5)

Input: f; a polynomial, G;_, = { Giree o gs_l} a set of labeled polynomials such that
poly(Gi_,) is a standard basis for (f,,..., fi_;), S alist of (i —1) lists of terms in P, R
alist of (i — 1) lists of terms in P

Output: G a set of labeled polynomials such that poly(G) is a standard basis for

(fir..-, fi), Salist of i lists of terms in P, R alist of i lists of terms in P

B+« @,G< @,P« @, P « @ R[i] < empty list, S[i] < empty list

L<s

g < (ei fi)

S[i] « addFsCrit (1t(g), S[i])

G« {gl,...,gs

for (k=1,...,5s-1)do

7 U<~ lc(gk)Tl(n‘fs(—ﬁg)
g v<lc(gs) —Tlgz’;k"))
o if (NOoNMINF5? (ug;, S) and | NONMINFs? (vgy, S)) then

10: P Pu{(ug,vgr)}

u: while (P # @) do

122 P’ < SELECT(P) (critical pairs of minimal degree)

13 while (P’ # @) do

AN -

14: Choose (uf,vg) from P’ with max. {usig(f),vsig(g)} minimal w.r.t. <.
15: if (! REWRITEF5?(u, f, R) and | REWRITEFs?(v, g, R)) then

6 P P\ {(uforg))

17: | < max. {usig(f),vsig(g)}

18: R[i] < addRule(/, R[i])

19: r < (L upoly(f) - vpoly(g))

20: poly(r) < Repuck (poly(r), poly(Gi_,))

21 (r, P") < SIGREDF5(7, G, S, R, s, P')

22: if (poly(r) # o and r not sig-redundant w.r.t. G) then

23: S[i] < addFsCrit(1t(r), S[i])

24: for (k=1,...,t)do

25: if (Im(gx) +1Im(r)) then

26: u < le(gr) Tl(r;’(%)

27: v < lc(r) %

28: if (lm(u) siglm(r) # Im(v) siglm(gk)) then

29: if (! NoNMiNFs? (ur,S) and ! NONMINFs? (vgy, S)) then
30: P<Pu{(ur,vg)}

31 t<—t+1

32: gy < T

33: G+« Gu {gt}

34 return (G,S,R)

Next we give a definition of how (RW) is implemented in F5 using so-called rules, a

192 6 Faugére’s F5 Algorithm

B - (“igi’”jgj) T

RN

i —— ¢ ——— > & - @ — > @ — > @ - @ ———— @ ————

e —»

use th'i'srvway 8r

Figure 6.1.1: Illustration of the Rewritten Criterion

data structure which collects all already known signatures in lists.

Definition 6.1.6 (Rewritten Criterion). LetI=(f,,..., f;), let g;, gj be two labeled poly-
nomials in G, computed in by INCFs, and let u;, u; be two terms in P.

(1) Arulerisslm(u;g; —u;g;) for an s—vector u;g; — u;g; considered in INCFs.

(2) The ruleslist R[m] corresponding to some index m w.r.t. Gisalist R[m] = (ry,...,7%)
of rules r; which are signature monomials of elements g considered in INCFs5 such
that index(g) = mand r; > r;_, forall i € {2,...,k}. Moreover we define the
complete list of rules by

R=(R[1],R[2],...,R[r—1],R[r]).

(3) We say that a critical pair (u;gi,u;g;) is detected by the Rewritten Criterion if the
following holds: There exists k € {i, j} with I = index(gx) such that there exists
t € R[1] with

t>slm(gx), and
t| ug slm(gy).

The basic idea behind the Rewritten Criterion can be illustrated as in Figure[6.1.1} Think-
ing of G as a list of labeled polynomials appended to its end whenever a reduction process
stops with a nonzero remainder, we see that after having added g; and g to G we are at
the point where the critical pair (u;g;, ujg;) should lead to a new element g;. Now we can
assume that the pair is detected by the Rewritten Criterion, in particular, let us say that the
rule corresponding to gy rewrites u; g;. This means that there are elements being generated
after g; which can contribute to get an element g, (during the actual degree step, i.e. before
INCFs5 jumps back to Line[z) with the same signature as g;, but generated of another criti-
cal pair. So our way of constructing G changes a bit, getting a possible different element g;/
instead of g;, but hopefully performing less reduction steps in the following due to using
elements, which entered G after g; had done so.

We have already seen that Fs takes care of R, using it as parameter for INCF5. The main
construction and usage of R takes place there and is quite similar to the usage of S in Fs:

In Line 18 the algorithm addRule is called, which appends the signature monomial of
I to the rules list R[i]. The important point is to add the rule exactly at this point of the

6.1 Faugére’s initial presentation of Fs 193

computation: The critical pair (uf, vg) has already passed both criteria checks and the cor-
responding s—vector is constructed out of it. This element is investigated by the algorithm
and further reduced. Even if uf — vg reduces to zero in the end its signature monomial
should be added to R[i] and can thus be used to reject other useless critical pairs with
the Rewritten Criterion. Moreover, due to Line] the rules appended to R[i] are always
greater than the ones already in the list, thus an increasing list of rules is constructed in
this way.

The steps of addRule are presented in the pseudo code of Algorithm [gTjand should be clear
without any further explanation.

Algorithm 51 F5’s rule adding algorithm (addRule)

Input: [asignature, R a list of terms in P
Output: R alist of terms in P
1: append (1m(1),R)

2: return R

As a last step we discuss REWRITEFs5?, which implements the Rewritten Criterion. In
detail, this algorithm is called once in INCF5, namely in Line[15} This is the optimal choice,
since at this point all possible rules which could be useful to detect the critical pair are
stored in R already. REWRITEF5? takes the two generators of the critical pair (uf,vg) and
the complete rules list R. It checks Rewritten Criterion for u f and v g separately, by

> extracting the index of the labeled polynomial (Linem), and

> looping over all rules in the respective lists until the rule coming from the corre-
sponding labeled polynomial is reached (Line[).

Whenever a divisibility check is fulfilled the algorithm returns TRUE, the critical pair is
detected by the Rewritten Criterion. Otherwise, the critical pair seems to be useful and its
computation in INCFs5 goes on.

Algorithm 52 F5’s implementation of the Rewritten Criterion (REWRITEF5?)

Input: u aterm, f alabeled polynomial, R a list of lists of terms in P
Output: TRUE if uf is detected by the Rewritten Criterion, FALSE otherwise
1 k < index(f)
: t < uslm(f)
m < length(R[k])
while (slm(f) < R[k][m]) do
if (R[k][m]]t) then
return TRUE
m<—m-—1
return FALSE

S EEECAN S S A

Remark 6.1.7.

194

()

(2)

(3)

(4)

(5)

(6)

6 Faugére’s F5 Algorithm

Note that it is crucial that R[] are lists, not sets. The order of the list is essential for
the correctness of the Rewritten Criterion. We have already seen that REWRITEF5?
appends a new rule to the list whenever a new s-vector is prepared to be reduced.
This order is not allowed to change.

In the kth call of INCFs only the lists S[1] for 1 < I < k are used detecting useless
critical pairs by the F5 Criterion. The list S[k] is only initialized and new elements
are added to it. It is first used in the next iteration step.

In the definition of the Rewritten Criterion we see for the first time in this thesis why
Fs wants to keep the signatures of the previous iteration steps: Looking at a critical
pair, both generators are checked by the criterion. Thus also a generating labeled
polynomial of lower index, i.e. from the previous iteration round could be detected
to be rewritable and help to reject useless critical pairs.

Comparing Definition[6.1.6](3)|to Lemma[T-Zlone obviously sees that the later one is
a very special situation of the Rewritten Criterion for Fs: Firstly, only one generator
is tested in REWRITE? and its derivatives, namely the one giving the signature for the
corresponding s—vector. Secondly, another critical pair of the same signature must
exist. In this situation the Rewritten Criterion clearly holds, too.

Note that REWRITEF5? can be implemented in parallel, just like NoNMinFs?, check-
ing both generators uf and vg separately at the same time, since the computations
are independent from each other. Clearly this cannot be done on the level of different
processes, but must be implemented on the level of threads. One task which is not
straightforward in this setting is how one of the rewrite algorithms can tell the other
one that a useless critical pair is found without consuming too much computational
time.

In an optimized implementation one would compute the coresponding indices of f
and g beforehand and pass the corresponding lists R[index(f)] and R[index(g)] to
REwRrITEF5? only.

We need to prove that F5 computes a correct standard basis for any input. This we do
in several steps, preparing the main theorem [6.1.13]

Lemma 6.1.8. Let uf be a multiple u of a labeled polynomial f € G in INCFs5. Assume that
uf is detected by the Rewritten Criterion. In particular, there exists a rule r € R [index(f)]
such that r | uslm(f) and r > slm(f). If P' becomes the empty set, then there exist terms
0j € P, and g; € G such that

upoly(f) = tpoly(h)+ > &;poly(g;)
gi€G.gj*h

such that

(1)

h e G orpoly(h) = o,

(2) forall gj with t; # o t;siglm(g;) < usiglm(f), and

6.1 Faugére’s initial presentation of Fs 195

(3) Im(u) siglm(f) = Im(¢) siglm(h).

Proof. Assume that P’ = @, after we have considered uf in some critical pair, i.e. the
current degree step in Fs has just finished. Since upoly(f) € I = (f,..., f;) we can write

k
upoly(f) = Y.\,

such that index(f) = k < r, Ay = uslt(f). Moreover, let us assume s to be the correspond-
ing s-vector of the labeled polynomial & with siglm(h) | u siglm(f). Since we compute by
increasing signatures and P’ = &, we can assume that either poly(/) = o or h € G already.
In any case the rule siglm (/) € R[k] has detected u f to be rewritable. As & is constructed
out of s by sig-safe reduction steps we can assume that

k
poly(s) = Y a1,

where g = slt(s) = slt(h). Since we have already computed all elements of P’ there exist
1j € P such that

poly(s) = poly(h) + > #;poly(g;) with
8j€G.gj*h
sig(h) > max {1t(n;) sig(g;) | g; € G. g # h} -

Let t € P be a term such that ¢sig(h) = usig(f). Then we can represent u poly(f) in the
following way using the two different representations of poly(s) mentioned before:

=

upoly(f) = 2, Aifi + tpoly(s) — tpoly(s)

1

M»

(Ai —tay) fi —tpoly(h)+ >, n;poly(g;)

gi€G.gj*h

=tpoly(h)+ > d&;poly(g;)
j€G.g#h

Il
—

where
5 -)Lj—t(aj—qj) if poly(gj) = fi forsome i € {1,...,k},
- tn; otherwise.

Since (e;, f;) € G forall i € {1,...,k} at this point and due to the fact that sig(h) >
max. {It(y;) sig(g;) | g € G, gj # h}, the statement follows. O

Remark 6.1.9.

(1) Note that it is not a problem if poly (%) = o and & is not added to G at all. Then we
still have a signature # o of the zero polynomial and the restriction that g; # h for
gj € G in the representation of uf is trivial.

196 6 Faugére’s F5 Algorithm

(2) Note that Lemma [6.1.8] does not claim that the found representation of u poly(f)
is a standard representation w.r.t. poly(G). The only usefulness lies in the fact
that the corresponding labeled polynomials of the elements in the representation
of u poly(f) have a smaller signature than uf, besides possibly th. What seems to
be a completely useless statement in a usual standard basis computation is of greatest
importance in the signature-based world as we see in the proof of the main theorem
of this section, Theorem [6.1.13}

Lemma 6.1.10. Let g; and g; be two labeled polynomials in G computed by Fs such that
index(g;) = index(g;) = k and i < j. If there exist terms u,v € P such that usig(g;) =
vsig(gj), then ug; (and thus any critical pair it is generating) is detected by the Rewritten
Criterion

Proof. Clearly, g; was considered before the s—vector s which leads to g;, thus the cor-
responding rule slm(g;) is in R[k] and it also checks to rewrite any multiple of g; in
the following. Since ug; is considered and u sig(g;) = vsig(g;) there exists a monomial
m € Mon(x,, ..., X,) such that m slm(g;) = Im(u) slm(g;). In particular, m = Im(v). O

Also Lemmal[6110] seems quite clear, neither Faugere ([[63]) nor Stegers ([144]) men-
tion that the signature monomials of the corresponding generators of critical pairs must
be different. Otherwise one would get sig-equivalent critical pairs, which need not be
considered as we have shown in Corollary [4.1.18] The point of Lemma[6.110]is that even
though they do not check for sig-equivalence at all they discard those critical pairs by the
Rewritten Criterion. Nevertheless this can have a bad influence on the performance of the
algorithm since the Rewritten Criterion is checked much later than the sig-equivalence
check is done in INCSIG, this means more data must be stored and carried. Thus in our
presentation of INCF5 in Algorithm [5o]we have kept the sig—equivalence check in Line 28]
from INcS1G due to optimization reasons.

Lemma 6.1.11. Let uf be a multiple u of a labeled polynomial f € G considered in INCFs5
where index(f) = k. Assume that uf is detected by the Fs Criterion. Then there exists a
principal syzygy s € P* such that It(s) | usig(f).

Proof. We have shown this already in the proof of Lemmap11 O

Corollary 6.1.12. Let uf be a multiple u of a labeled polynomial f € G in INCF5 where
index(f) = k. Assume that uf is detected by the Fs5 Criterion. Then there exists a syzygy
s € P* such that

It (ulabel(f) —s) = sig (upoly(f)) < usig(f).
Proof. Aslong as uf is detected by the F5 Criterion rewrite uf by uf — vg where

vit(s) = usig(f), and
g= (s, n(s)),

with s being the principal syzygy from LemmaBimland 7 : P*¥ — P, e; — f; fori €

{1,...,k}, k <r. Then upoly(f) = upoly(f) — vpoly(g), since poly(g) = n(s) = 0. Due
to < being a well-order this process of rewriting u f terminates at some point. O

6.1 Faugére’s initial presentation of Fs 197

Now we are ready to prove the main theorem of this section.

Theorem 6.1.13. Let F = {f,,..., f,}, afinite set of homogeneous polynomials in P equipped
with a well-order <, be the input of Fs. If the kth iteration of INCF5 terminates with output
(G, R), then poly(G) is a standard basis for {f,, ..., fr) w.r.t. <.

Proof. Looking at the elements in G three types of labeled s—vectors can occur:
(1) uf —vghas astandard representation w.r.t. G.
(2) uf —vgisdetected by the Fs5 Criterion.
(3) uf —vgisdetected by the Rewritten Criterion.

We need to show that any corresponding polyomial s—vector of two elements p, q € poly(G)
has a standard representation w.r.t. poly(G).

We have already seen in Section £ that having a standard representation w.r.t. G im-
plies having a standard representation w.r.t. poly(G). Thus it isleft to show that an s-vector
of one of the other two types has a standard representation w.r.t. poly(G), too.

Let S be the set of all s—vectors of labeled polynomials of G. Choose uf — vg out of
S to be the element of maximal signature. Note that there might be a choice of such s—
vectors. For any such elements f, g, and i € G choose the s—vector uf — vg such that
ulm(f) =vIm(g) = wlm(h) and u siglm(f) > vsiglm(g) > wsiglm(h). Thus uf —vgis
uniquely determined and we can assume that sig(uf — vg) = usig(f).

Two situations are possible:

(1) While there exists a component of uf — vg, which is detected by the Fs Criterion,
we can construct a syzygy s as in Corollary[6.1.12] such that we can rewrite uf — vg
using h = (s, 77(s)) such that

upoly(f) —vpoly(g) —wpoly(h) = upoly(f) —vpoly(g), and

sig(uf —vg—wh) =sig (upoly(f) — vpoly(g)). So in the end we can assume that
uf — vg — wh has minimal signature.

(2) While there exists a component of u f — vg, which is detected by the Rewritten Cri-
terion, we can rewrite it as shown in Lemmal6.1.8

We do this until there does no longer exist intermediate s—vectors in the representation of
uf — vg. At this point, we receive a standard representation of uf — vg w.r.t. G due to the
fact that all rewritings cancel out some multiple leading terms and do not introduce higher
signatures. Thus it is left to show that this iterative process of rewriting terminates after
finitely many steps.

Let us have a closer look at what can happen during the two types of rewriting:

(1) In the rewriting triggered by the F5 Criterion we have seen in Corollary [6.1.12] that
the considered component of uf — vg is rewritten with a lower signature.

198 6 Faugére’s F5 Algorithm

(2) If the rewriting is induced by the Rewritten Criterion we have seen in Lemmal[6.1.8]
that all but one of the introduced elements have smaller signature. The only element
which can have the same signature is th.

> If poly(h) = o, then we have rewritten the component of u f — vg completely
with lower signature elements.

D> Otherwise h € G, but h was added to G after the component it rewrites by
definition of the Rewritten Criterion. We choose h to be the element added
to G latest rewriting the component. Thus we can assume that th itself is not
detected by the Rewritten Criterion.

In each of this rewritten representations of uf — vg let A be the larger signature and o be
the smaller one.

In most rewritings A does not increase. There is one exceptionf] Assume that the com-
ponent corresponding to A has already been rewritten and A has been decreased in this
situation to A’. Now, if a rewriting for the component corresponding to o is applied it is
possible that the leading term of the component corresponding to A’ (introduced during
the beforehand rewriting) cancels out a non-leading term of the actual rewriting. In this
situation it is possible that A’ increases back to A.

(1) If this rewriting is based on the Fs5 Criterion, the value of ¢ must decrease. As <isa
well-order, o can decrease only finitely many times.

(2) Ifitis evoked by the Rewritten Criterion, the rewriter was added to G after the ele-
ment it is rewriting. Since we assume that INCF5 has terminated, G has only finitely
many elements. Thus also this process must terminate after finitely many steps.

Hence A can increase to any previous already taken value only finitely many times.

This means that each iteration of the rewriting process either decreases one of A or o,
or gives us an element with signature A resp. ¢, which was added to G at a later point of
the computations. Since we choose the rewriter element to be the one added to G latest the
Rewritten Criterion can invoke a rewriting of a given value of A or ¢ at most once. Since G
is finite, this process of finding elements with signature A resp. o, which are added to G at
a later point during the computations has to terminate eventually. In other words, A must
decrease permanently below any given level at once the element added to G at the latest
possible point is found.

As < is a well-order, A cannot decrease indefinitely. Hence the iteration must terminate
with a standard representation of uf — vg w.rt. G. O

Remark 6.1.14.

(1) In [63] and [144] proofs of the correctness of the F5 Algorithm are given, too. These
proofs do not cover the usage of the Rewritten Criterion in Fs, but only take the Fs
Criterion into account. Proving the correctness including F5’s aggressive implemen-
tation of (RW) was one of the main problems in the last couple of years and was first
achieved in [55] resp. [58]. Later on, different variants of the proof of Theorem[6.1.13]
and / or new proofs have been published, see, for example, [78l[148].

*Thanks to Vasily Galkin for pointing out this exception.

6.1 Faugére’s initial presentation of Fs 199

(2) Note that we must assume termination of INCFs5 in Theorem As we see in
Section [6.5] the problem proving termination of Fs is quite difficult and not solved
until now. At this point let us just point out that all proofs of F5’s termination given
until now either have some errors or have some not completed gaps. The main reason
why proving termination for F5 is way more complicated than proving termination
of SIGSTD or G2V lays in the aggressive implementation of (RW) using the Rewritten
Criterion.

As alast step in this introduction to F5 let us show why Fs, and also any other signature—
based standard basis algorithm, is very efficient when it comes to the computation of bases
for input corresponding to regular sequences.

Proposition 6.1.15. If the polynomials generating the input ideal I = (f,,..., f) ¢ P form
a regular sequence F = (f,, ..., f;), then Fs does not compute any zero reduction.

Proof. 1f F is a regular sequence, then Syz(I) is generated by the principal syzygies in P”,
w.r.t. <; in this situation. Assume there exists a zero reduction in Fs, say poly(r) is reduced
to zero w.r.t. G for some labeled polynomial r in INCF5. This means that there exist terms
uiePandg; € G={g,..., g such that

t
poly(r) = Z u;poly(g;), and

siglm(r) > max {u; siglm(g;) |i=1,...,t}.

So it follows for the corresponding syzygy s € P" that 1t(s) = sig(r). Since s € Syz(I) and
as Syz(I) is generated by principal syzygies it follows that there exists a gx € G such that
index(gx) < index(r) and 1t(gx) | slt(r). But this means that r, in its initial form as a
critical pair, must have been detected by the F5 Criterion. Thus Fs5 has not considered r at
all. A contradiction to our assumption that F5 has reduced r to zero. O

Corollary 6.1.16. If the polynomials generating the input ideal I = (f,,..., f,) ¢ P form a
regular sequence F = (f,, ..., f;), then none of the signature-based standard basis algorithms
presented in this thesis does compute a zero reduction during the computation of a standard
basis G of I

Proof. The statement follows from Proposition [6.1.15|together with Lemma[513 O

We finish this section with an example computation for a standard basis for an ideal
generated by elements forming a regular sequence.

Example 6.1.17. Let us give an example computation of a standard basis using F5. We use
the example given in [63] in Section 8. We have already considered this computation in
Example 333 using SyzSTD. This example is very useful in two ways:

> On the one hand, we can compare the syzygy-based attempt of Moller, Mora, and
Traverso (see Section [33) with the signature-based one of Faugere.

200 6 Faugére’s F5 Algorithm

> On the other hand, this example also shows the problem of proving Fs’s termination
(see Section [6.5] for more details).

What we need to do in order to use F5 on Example[3:3-3]is to homogenize the polynomials.
Assume that P is equipped with <q,, and let F = {f,, f,, f;} ¢ K[x, y, 2z, t] where

fi=x"y -2t
fo = x2% - y*t,
fy=y2 =Xt

Note that we use the slim representation of labeled polynomials in this example. Moreover,
note that we use a slightly different numbering of the elements due to our notations. Also
note that in our computations coefficients can be part of signatures due to our more general
definition. We start our computations setting G, = {(e,, f;)} since f; cannot be reduced
wrt. {f,, f;}, and S[1] = (1t(f,)). The first real iteration round starts entering INcFs5 with
f> and G,. There we start by initializing 3 data structures,

G={(enf)s(es o) }»
T T
S[2] = (lt(fz)), and
P={(xyg.,2"g)}-

In this situation, P’ = P. Since (xyg,,zg,) is detected neither by the Fs nor the Rewritten
Criterion we start the computation of the corresponding s—vector:

> r=(xye, xypoly(g,) — 2> poly(g:)) = (xyes, —xy*t + z*¢)
> The rule xy is appended to the as yet empty list of rules of index 2, R[2].

There exists no reducer in poly(G,) nor of current index of r thus we add the new element
g = (xye,, —xy*t +z*t) to G, —x)3t to S[2], and compute new critical pairs:

> On the one hand, (xg;, y*tg,) is not added to P, since xsig(g;) = x*ye, and x>y €
S[]
> On the other hand, (z°g;, —y*tg,) is added to P.

Thus after setting G = {g,, £», g; } the computations go on, again with P’ = P: Computing
r = (xyz’e,, 22 poly(g;) + y*tpoly(g,)) = (xyz*e,, z°t — y°t*). We add the rule xyz* to
R[2]. There is no possible reduction we can perform, thus
g = (xyze,, 2%t - y°1*),
G=Gu{g}, and
S[2] = (xz>,-xy,2°t).

The 3 possible critical pairs generated by g, are all rejected:

6.1 Faugére’s initial presentation of Fs 201

> (x?yg,,2z°tg,) is detected by the Fs Criterion as x*ysig(g,) is clearly divisible by
x*y.

> (xg,,z*tg,) is also detected by the Fs Criterion due to x slm(g,) = x> yz?, which is
divisible by x*y.

> (xy3g4, _ng3) is also detected by the Fs Criterion since x 3 slm(g,) = x*y*z*.

Thus INcFs terminates at this point and returns, besides S and R the set G, of labeled
polynomials. poly(G,) is a standard basis for (f;,).
The next and final iteration step starts, initializing

85 = (es’fs)’
G=1{88»8 84+ &} and
5[3] = (lt(gs))-

Next, the first bunch of critical pairs is generated:
P={(xg;2°g), (xg5 y28.)s (xy*1gs, ~x2°8,), (2185, ¥84) }-

Note that none of the critical pairs is detected by the F5 Criterion. We take those of lowest
possible degree, in this situation 5, and move them to P’:

P’ = {(xgs, yzg.) }-

Since there is no rule added until now, the corresponding s—vector is computed:

r= (xe;, xpoly(gs) — yzpoly(g:)) = (xe, y’zt - °1%).
We add x to R[3] and add the new element to G as there is no possible reducer in G:
g6 = (xey, Yzt — x317),
S[3] = (y2, yzt).

Of the 4 possible new critical pairs only 3 are added to P:

P=PuU{(x’gs y2tg), (x286, ¥°18:)> (x86> 283)> (286> ¥°84) }-

(2%gs, y>tgs) is detected by the Fs5 Criterion using xz* from S[2]. The next bunch of critical
pairs of minimal degree 6 is moved to P’:

P'={(x’g5,2°8), (xg6:—283) }-

The corresponding s-vectors have the same signature x”e;, so we take (x?g;,z%g,) first,
since it was added to P earlier than the other one. x*g; is detected by the Rewritten Cri-
terion using x € R[3]. Thus this pair is deleted and we go on with (xgs, —zg;). Although
the corresponding s-vector has the same signature x*e, as the former critical pair it is not
detected by the Rewritten Criterion. This is due to the fact that we check only for those

202 6 Faugére’s F5 Algorithm

rules t which fulfill that ¢ > slm(gs). Since slm(gs) = x and x is the only rule in R[3] until
Now xgs + zg; is not detectedd We go on generating r = (x”e;, 2°t — x*#*) and add x* as
rule to R[3]. Next we see that there is no reduction w.r.t. poly(G,) possible, and also no
element of index 3 reduces 1t(r), thus we are done with the degree 6 step and update our
data set:

g, = (x%e;, 22t — x*t*),
S[3] = (2, y’zt, 2°t).
Building new critical pairs we see that (x7g,,2°tg,), (xy3g,, —2°¢;), (vg5, 2t gs), as well
as (y3g,,z*gs) are detected by the Fs Criterion using x>y € S[1].
P=Pu{(xg;218.): (287 84) }-
The next step takes all pairs of degree 7:

P'={(x"gs> y2tg1), (X286, ¥*18:), (x87, 2°185)5 (2875 84)- }

Examining the signatures, we go on with (zg,, g4), which is not detected to be useless:
After adding the rule x>z to R[3] we compute the 8th element for G by constructing the
corresponding s-vector:

gs = (x%zey, Y17 — x%zt?),
S[3] = (yz’, y’zt,2°t, y°1?),

P=Pu{(xgs—y"tg:), (x"gs, y*1°8) }-
Besides these two, above mentioned new critical pairs, all others generated by gs are de-
tected by the Fs Criterion.
Using the Rewritten Criterion we can now reject (xzgs, y3tg,) by x>z € R[3] correspond-
ing to gs. Next we compute (xg,,2%tg,), adding the rule x> to R[3] and generating g, =
(x3e;, —x5t*+y*23t>) we see that a reduction of poly (r) w.r.t. poly(G,) is possible, whereas
no further reductions with current index elements take place. We end up with

g = (FPey, —x°1* + 2°1%),
S[3] = (y22, y*zt, 2°t, y°1*, —-x°t*) .

All critical pairs generated by g, are detected by the F5 Criterion, thus P is not updated at
all.

With the rule coming from g, we can reject (x*gs, y*ztg,) and finish this degree step.
For degree 8 we pick

P'={(xy*tgs, ~x2°g;), (2185, y84) (x85: —7’185) }.
We start with (z3tgs, yg,), add the rule z3¢ to R[3] and get the new element

S0 = (Zte;, yOr — xy’zt*).

3Note that otherwise we would have detected xgs by ge as the rule x corresponds to gg. Clearly this cannot be
a correct way deleting critical pairs.

6.2 F5C - F5 using reduced bases 203

Note that the sig—unsafe reduction of g,, by gs in SIGREDF5 does not take place since
ysig(gs) = x*yze, is divisible by x>y € S[2]. Thus no new critical pair is generated in
S1GREDFs5.

At this point all already constructed and all to be generated critical pairs are detected by
Fs’s criteria. Thus INCF5 finishes and returns to Fs with

G={g g0} -
Fs extracts the polynomial part of G and returns

B = {xzy - 22t x2* — y*t, —xy3t + 24, 25t — Y512,
¥z = X2, yizt — x3t2, 2t — x*2, it — xtzt?,
X1 =225,)51 - xy*ztt],

a standard basis for I = (x*y — 2°t, xz* — y*t, yz° — x*12).
Remark 6.1.18.

(1) Note that whereas SyzSTp computes 1 zero reduction, F5 does not reduce any s—
vector to zero.

(2) Thinkingabout optimizing F5 while looking at the example computation given above
one could get the idea to use the Rewritten Criterion even more aggressively: Why
not adding the rules whenever a new critical pair is generated and added to P ? The
problem is that such a critical pair, although it passes the Fs Criterion, can still be
detected by the Rewritten Criterion later on. Let us look at the degree 6 step of the
third iteration round of the above example: Assume that we have added the rule x*
coming from the signature x*e, of the critical pair (x*g;,23¢,) to R[3]. This pair is
rewritten by the rule x € R[3], but now also the next critical pair in P’, (xgs, —2g;),
is detected by the rule x* and thus the corresponding s—vector is not computed. We
have seen that the data stored in xgs + zg; is essential for the correctness of the
computations of F5. We see that, although (xgs, —zg;) delivers the very same rule
x> to R[3] it is crucial that the rule does not correspond to a critical pair which is
possibly rejected later on. Thus we need to wait adding rules to R until the critical
pair is completely checked and stamped as useful.

Based on this discussion we can start not only comparing F5 to SIGSTD and its variants,
but we can also optimize F5 and have a closer look at the problem of proving its termina-
tion.

6.2 F5C - F5 USING REDUCED BASES

As a first step on our way improving the initial F5 Algorithm, we want to use a similar
attempt as in Section[5-2} The main computational drawback of Fs lies in the overhead pro-

204 6 Faugére’s F5 Algorithm

duced during each iteration step due to sig—safe reduction steps. This leads to the computa-
tion of intermediate standard bases poly(G;), neither reduced nor minimal. The problem
is that we use these bases in the next iteration step for further computations, which results
in two disadvantages:

(1) An overhead of possible reducers of lower index, as well as
(2) an overhead of newly generated critical pairs are generated.

Whereas the idea of interreducing the intermediate standard bases poly(G;) in SIGSTD is
straightforward due to the fact that there only the polynomial data of G; is further used in
the (i + 1)st iteration step of INCSIGCRIT, it is not so easy to achieve such an result in Fs.
Note that the main differences between both classes of algorithms (see Section[6.3]for more
details) lies in the implementations of (NM) and (RW). In both Fs5 is way more aggressive,
rejecting lots more critical pairs. The main problem interreducing G; in Fs is that the data
stored in the signatures of the elements in G; become corrupted once we interreduce the
basis due to performing sig—unsafe reductions.

Understanding how to do this effectively is the main content of this section. John Perry
and the author have presented these ideas first in [58]]. It should be mentioned that the
idea of interreducing SIGSTD and its variants, mainly G2V, is just taken from the attempt
presented here.

Convention. Explaining the ideas of interreducing previously computed standard bases in
F5 we need to talk a lot about different iteration steps. Let us agree for this section on the
following notations: We always assume that the current iteration step is the kth one. This
means that labeled polynomials computed during this iteration step have index k. Thus
G-, denotes the set of all labeled polynomials computed in the first (k —1) iteration steps
and poly(Gy_,) is a standard basis for (f,,.. ., fi_.)-.

As mentioned above there are two main points one would like to optimize thinking
of F5’s computations: Less reduction steps and less critical pairs. The first problem is the
easier one and is first solved by Till Stegers in his diploma thesis ([144]). It is mainly based
on the fact that in F5 we split up the reduction process of an s—vector in two parts:

(1) All reductions of elements of index k, i.e. elements generated during the current
iteration step, must be done sig-safe (or must generate new critical pairs, if a sig—
unsafe reduction takes place). Here the elements of G_, have no influence at all,
thus this part of F5 is completely independent to any change of G_,.

(2) Whereas the above mentioned current index reductions are done in SIGREDFs, re-
ductions w.r.t. Gj_, are performed plainly based on polynomial data. In Line
of Algorithm [50] the polynomial part poly(r) of the current s-vector is reduced
w.r.t. poly(Gg_,). All these reductions are sig-safe as all reducers have lower index.
Moreover it is quite important to note that, in spite of the current index reducers in
SIGREDFs, the reducers of poly(Gy_,) are not checked by the Fs5 or the Rewritten
Criterion. Thus only their polynomial part is used in terms of reduction.

These facts about F5’s reduction process have provided Stegers the idea of his variant
of Fs, denoted FsR. The “R” in F5R stands for reduction and means, in short, that FsR

6.2 F5C - F5 using reduced bases 205

uses reduced standard bases for lower index reduction purposes. In [i44] he describes his
discovery. We give a brief summary of it:

When the (k —1)st call of INCFs5 returns a new set of labeled polynomials G, poly(G) is
a standard basis for (f,, ..., fr—.). As INCF5 needs G, now as Gy_, in its kth call for gener-
ating new critical pairs the signatures of the elements in G_, are crucial to the correctness
of further computations, as otherwise the F5 Criterion and the Rewritten Criterion do not
work properly any longer. Thinking about interreducing poly(Gy_,) to a reduced standard
basis Bj_, one must keep in mind that the reductions taking place there are exactly those
which were not allowed in the previous iteration steps of INCFs5 due to either the Fs5 Cri-
terion or the Rewritten Criterion or the sig-unsafeness of the reduction. Not performing
these reduction steps keep the signatures as well as the rules list R correct, so interreducing
the standard basis at the end corrupts these data and we cannot use them in any upcoming
iteration step anymore. Thus, if we want to keep the signatures and rules already computed,
we really need to stuck to G,_, when talking about generators of new critical pairs.

On the other hand, we have seen that the reduction with elements of index < k is done
plainly on the polynomial side, thus no information about signatures or rules is important.
So we can optimize Fs5 in the following way: Whenever INCF5 returns we take the computed
standard basis poly(Gy_,) and reduce it to By_,. Besides passing Gy_, to the kth instance of
INcF5 we also pass By, to it. There we use the elements of G,_, to build new critical pairs.
This is possible, because the signatures and rules are correct for these elements. When it
comes to a prereduction of a newly computed s-vector in INCF5 we use Bj_,. This has
the advantage over reducing w.r.t. poly(Gy_,) that there are no redundant reducers to be
checked and that the reducers are completely reduced. This can lead to a lot less divisibility
checks and reduction steps.

The problem of this attempt is that one has only an advantage on the reduction process,
and there not even on the complete one, but only on the part of lower index. Moreover,
one needs to store By_, besides Gy_,, which consumes more memory. For solving these
problems we developed the idea of completely switching from Gy_, to By_,.

FsR is fully integrated in our idea of interreducing intermediate standard bases, a vari-
ant we call FsC. The “C” in F5C is derived from FsR and means that we do all computations
of Fs5 using reduced bases. So the main obstacle to leap is how to handle the signatures
and rules when having interreduced poly(Gy_,)? We have already explained that those
are useless after that step, i.e. there is no longer a connection between the signatures resp.
rules from the (k —1)st iteration step and the polynomials in By_,. Thus we need to throw
away those data sets and generate new ones, which are appropriate for By_,. In this sense
we need to start again with counting indices: An element b; € By_, gets the label e;. The
whole process keeps our computations correct since going on to the next iteration step k
we want to compute a standard basis for (f;, ..., f¢). But it clearly holds that

(fireoos fi) ={(bis. .o bsoys fi)

where s — 1 = #(Bj_,). Thus everything that needs to be adjusted in INCFs is that the new
labeled polynomial for f; does not get label ey, but label e;. Looking to INCSIGCRIT one
sees how this fits quite smoothly in the initialization of G there. With this operation we
receive correct labels resp. signatures for the elements in By_,, but we still have lost the

206 6 Faugére’s F5 Algorithm

information stored in R which are useful for detecting useless critical pairs being partly
generated by elements of By_,. How to recover at least some rules that help us on this task?
The idea is simply to loop over all s—vectors of elements of By_, and store the corresponding
signatures in a newly created list of lists of rules R:

Algorithm 53 F5C’s interreduction process (REDUCEF5)

Input: G afinite set of labeled polynomials, S a list of lists of terms, R a list of lists of terms

Output: G’ a finite set of labeled polynomials, S’ a list of lists of terms, R’ a list of lists of
terms

: B« poly(G)

: Delete G, R and S.

: G' < @, R’ < empty list, S’ < empty list

B < ReDpUCE(B)

RS #(B)

G« G u{(e,b)}

. S'[1] < (1t(by))

8: R'[1] < empty list

9 for(i = t,...,z) do

10: G’<—G,U{(ei,bi)}

w S'[i] < (lt(bi))

12: for(j: i—1,...,2)d0

13: A<~ Tftb(‘b’fj;)

14: R’[i] < append(A, R'[i])

15: return (G, S, R’)

AN A T

~N

We know that the s-vector of any critical pair (b;, b;) reduces to zero, because B is a
reduced standard basis. Thus we can add the corresponding signatures of these s-vectors
to the rules lists. We see in Line[m3lhow easily a rule is computed: For any element g’ € G’ it
holds that slm(g") = 1. Thus the rule is nothing else but the multiplier of the corresponding
s—vector generator. Moreover, j is always bigger than i, thus we explicitly know that the
rule is just the multiple of b;.

With this we can present Algorithm[7}, F5C, as a slightly variant of F5. Note that INCF5C
differs to INCF5 in exactly one point: Instead of initializing

g < (ei fi)
in Line[g]we need to initialize it by
g < (es fi)
since the indices have changed due to the reduction of the intermediate standard basis.
The following theorem is quite clear from the above discussion.

Theorem 6.2.1. Let F = {f,,..., f,}, a finite set of homogeneous polynomials in P equipped
with a well-order <, be the input of F5C. If the kth iteration of INCF5 terminates with output
(G, R), then poly(G) is a standard basis for (f,, ..., fx) w.rt. <.

6.2 F5C - F5 using reduced bases 207

Algorithm 54 The F5 Algorithm using reduced standard bases(F5C)

Input: F={f,,..., f,} afinite subset of P
Output: B a standard basis for (F) w.r.t. <
1 G {(en)}
2. § = empty list
31 R = empty list
4 for(i=2,...,7r)do
s= fi < Repuck (f;, poly(Giy))
6: if (fi # 0) then
7
8
9

Gi, S, R < INCF5C(f, Gy, S, R)
G;,S,R < RepuceFs(G;, S, R)
else
10: Gi <~ Giﬂ
1 B < poly(G,)

2: return B

—

-

Proof. Let(Gj_,,S’,R") = ReDUCEF5(Gy_;, S, R). $" and R are valid for G;_, due to their

constructions in REDUCEF5. Moreover,

(fis- o frma) = (poly(Giy)) = (pOIY(ch—l))'

Thus our proof of Theorem holds for the new parameters (G;_,,S’,R") passed to
INCFs in the kth iteration, too. O

Remark 6.2.2. Note that in contrast to the variants of SIGSTD it is not so clear that reducing
the intermediate standard bases is really an optimization. On the hand, thinking about the
Rewritten Criterion it is possible that all those rules, which are deleted in REDUCEFs, are
carrying a lot more data and information about the ideal. This could lead to the detection
of more useless pairs. On the other hand, one cannot prove which attempt is the better
one due to the fact that F5 and FsC compute different critical pairs and use different sig-
natures. Thus a complete comparison is not possible. We see in the experimental results
presented in Section[6.4]that, in practice, F5C does not compute more zero reductions than
Fs. Moreover, it needs less memory and is faster than FsE

In Section 52l we have seen that interreducing intermediate standard bases in S1GSTD
no extra computations are needed. Clearly, since Fs is based on its criteria, S and R must
be recomputed. At least, it seems so.

The following convention seems a bit strange, but makes sense in the world of signature—
based algorithms as we see in Lemmal6.2.3}

Convention. Note that considering F5’s criteria it is a bit tricky to keep the good properties
of Fs alive in F5C. For this let us agree on the following way we reduce poly(Gy_,): Let
poly(Gi_,) = {p1,--., Ps—1}. When minimizing poly(Gy_,), we remove an element p;
because there exists some other element p; such thatIm(p;) | Im(p;). If we do so, we keep

4Again, as in Remark[5:2.7} in some not important cases Fs is faster than F5C due to the weighting of the overhead
of reducing the intermediate standard bases in comparison to the whole computation.

208 6 Faugére’s F5 Algorithm

Pi>--.»> pimy and move p; to p;_, forall I > j. When we go on reducing elements completely
and normalizing the p;s we do not change their position or order the elements in any other
way.

Lemma 6.2.3. Any critical pair detected by the Fs Criterion in Fs is also detected by the Fs
Criterion in F5C.

Proof. Any element of current index k which is detected in Fs is also detected in F5C due
to the fact that whenever we have deleted some p; € poly(Gy-,) during the interreduction
process there exists a p; in the reduced standard basis such that Im(p;) | Im(p;). So any
element detected by Im(p;) is also detected by Im(p;). Due to our above convention this
also holds for elements of index < k. O

Corollary 6.2.4. If the polynomials generating the input ideal I = (f,,..., f;) ¢ P form a
regular sequence F = (fi,. .., f;), then F5C does not compute any zero reduction.

Proof. Clear by Lemmal6.2.3] O

Remark 6.2.5. Note that we can even improve the F5 Criterion on elements of index < k
due to the following:Let g;, gj € Gy, with index (g;) = index (g;) such i < jand such that
poly(g;) reduces to p; and poly(g;) reduces to p,, in the reduced intermediate standard
basis By_,. It follows that | < m by Convention thus the correspoding labeled polyno-
mials are h; = (e;, p;) and hy, = (em, pm) in G;_,. Now when checking the F5 Criterion
for some multiple of 4, we can also use It(g;) for a possible detection. This is not possible
in Fs, but in F5C only.

Also the above holds it is still a bit tricky to ensure the order of the elements in the
reduced standard bases, since such a restriction can slow down computations. The nice
thing is that we do not need to check any multiple of a lower index labeled polynomial by
the Fs Criterion at all in F5C:

Lemma 6.2.6. Let (uf,vg) be a critical pair in F5C such that k = index(f) > index(g). If
vg is detected by the Fs Criterion, then uf is also detected by the Rewritten Criterion.

Proof. If vg is detected by the Fs5 Criterion, then there must exist some / € G such that
index(h) < index(g) and

Im(g)
This means that 7(g, h) | 7(f, g). By LemmapzTit follows that 7(f, k) | 7(f, g) and thus

©(f,h) | ©(/.8)
Im(f) " Im(f) "

By the algorithm’s design the critical pair generated by f and h is considered before (uf, vg).
The following two situations are possible:

(1) The critical pair generated by f and / is computed, then the rule ft(nf(;f)) is added to
R[k]. It follows that (uf, vg) is detected by this rule.

6.2 F5C - F5 using reduced bases 209

(2) The critical pair generated by f and / is detected either by the F5 or the Rewritten
Criterion. In any case, this implies that (uf,vg) is detected, too.

O

From Lemma[6.2.6] we can follow that we do not need to recompute S in REDUCEFs.
Even more, S does no longer need to be alist of lists of terms, but just a set of terms. Assume
we are in the kth iteration of INCFs, then it is enough to check labeled polynomials of index
k by the Fs5 Criterion. This means we do not need to distinguish between different index
levels in S, as all leading terms of elements of poly(Gy_,) are allowed to be used for an
element of index k.

We can do even better, namely we do not need to recompute new rules at all in REDUCEF5.
The next lemma shows that it is enough to check those generators of a critical pair, which
have the current index.

Lemma 6.2.7. Let (uf,vg) be a critical pair in F5C such that k = index(f) > index(g). If
vg is detected by the Rewritten Criterion, then uf is also detected by the Rewritten Criterion.

The proof is similar to the one given for Lemmal[6.2.6

Proof. If vg is detected by the Rewritten Criterion, then there must exist some 4 € G such
that index(h) < index(f) and

(g, h) | 7(f. g)
Im(g) ' Im(g) "

This means that 7(g, h) | 7(f, g). By Lemmapzit follows that 7(f, h) | 7(f, g) and thus

w(f,h) | ©(f.8)
Im(f) * Im(f)

By the algorithm’s design the critical pair generated by f and h is considered before (uf, vg).
The following two situations are possible:

(1) The critical pair generated by f and h is computed, then the rule ;I(nf(?)) is added to

R[k]. It follows that (uf, vg) is detected by this rule.

(2) The critical pair generated by f and / is detected either by the F5 or the Rewritten
Criterion. In any case, this implies that (uf,vg) is detected, too.

O

Corollary 6.2.8. In F5C there is no need to recompute rules in REDUCEFS5.

Proof. Aswe have already seen the one place where rules of lower index are needed is when
checking generators of critical pairs, which have lower index. By Lemma[6.2.7] we see that
this is not needed at all. O

210 6 Faugére’s F5 Algorithm

Algorithm 55 Incremental F5C step (INCF5C)

Input: f; a polynomial, G;_, = {p,, ..., ps—, } a standard basis for (f, ..., fi-,)
Output: B a standard basis for (f,,. .., fi) wrt. <
1 B+ @,G <« @,P « &, R « empty list

2 S«

30 Ps ‘_fz

4 L <S

5: for (k=1,...,s—1) do
6: gk(_(o’pk)

. Sesuit(p)

8: g < (e ps)

9: G(_{gl)---)gs}

10: for (k=1,...,s—1)do

11: U <« lc(gk) —T(gs’gk))

Im (g
2 v<le(gs) %
13 if (! NOoNMINFs? (ug, S) then
14: P < Pu{(ug:vgr)}
15: while (P * Q) do
16: P’ < SeLECT(P) (critical pairs of minimal degree)
172 while (P' # @) do

18: Choose (uf, vg) from P’ with max. {usig(f),vsig(g)} minimal w.r.t. <.
19: if (! REWRITEF5?(u, f,R)) then

20: if ((index(g) < s) or | REWRITEF5?(v, g, R)) then

2 Pl < P\{(uf,vg)}

22: I < max. {usig(f),vsig(g)}

23: R « addRule(l, R)

r < (Lupoly(f) - vpoly(g))

25: poly(r) < Repuck (poly(r), poly(Gi_,))

26: (r, P") < S1GREDF5(7, G, S, R, s, P')

27: if (poly(r) # o and r not sig-redundant w.r.t. G) then
28: for (k=1,...,t)do

20: if (Im(gy) +1m(r)) then

30: U« lc(gk)rl(n:’—g"))

31 V<« lc(r)%

32: if (Im(u) siglm(r) # Im(v) siglm(gy)) then
33 if (! NoNMINFsz (ur, S)) then

34 if ((index(gx) < s) or | NONMINFsz(vgy, S)) then
35: P < Pu{(ur,vgy)}

36: t<t+1

37: gt < r

38: G+« Gu {gt}

39: B« pOly(G)
40: return B

6.3 Classifying Fs in the signature-based world 211

All in all we have stripped down the complexity of the interreduction step quite a lot.
Interreducing the intermediate standard bases does not only optimize reductions and re-
duces the number of useless critical pairs, it also provides alot easier handling of the criteria
and less checks. In the end we see that F5C is nothing else but a variant of SIGSTDRED. For
this let us present the incremental part of FsC in Algorithm

The main changes from INCFs5 to Algorithm B5]should be clear:

D> easier structures for S and R,
> initializing G completely similar to INCSIGCRIT,
> criteria checks only for elements of current index.

After all this optimizations, let us clarify what we mean when talking about FsC in the
following:

Definition 6.2.9. F5C denotes the variant of SIGSTDRED calling INCF5C, NoNMINFs?, and
REwRITEF5?.

Besides having achieved an optimized variant of Fs, F5C represents an algorithm which
is quite similar to SIGSTDRED and its derivatives. Thus we are ready to give a detailed
discussion on similarities and differences of the various attempts in the signature-based
world presented in this thesis.

6.3 CLASSIFYING F5 IN THE SIGNATURE-BASED WORLD

After this extensive introduction to the F5 Algorithm, also including optimizations due
to interreducing intermediate standard bases, let us take a small break and try to collect
differences and similarities of F5, SIGSTD, and all their derivatives. This is also helpful when
we go on optimizing and generalizing Fs in the following sections.

We start with a comparison of F5 to SIGSTD. As SIGSTD is the common core of all other
algorithms presented in Chapter[5} this is a natural point to start at.

(1) Comparing Algorithm [46] and Algorithm [52) with each other we see that F5 keeps
track of two global lists, S and R, which consist of the criteria used to reject useless
critical pairs. Due to the fact that the F5 Criterion and the Rewritten Criterion in Fs
are a lot more aggressive than NoNMIN? and REWRITE? in SIGSTD, this bookkeeping
is crucial.

(2) Based on the first point, F5 handles and passes always sets of labeled polynomials to
INCFs5, and not just polynomial sets, i.e. previously computed intermediate standard
bases. It follows that as opposed to INcS1GCRIT INCF5 does not initialize the elements
of G;_, since they already carry their signatures.

212

6 Faugére’s F5 Algorithm

(3) The Rewritten Criterion detects way more useless critical pairs than S1GSTD’s imple-

(4)

(5)

(6)

(7)

mentation of (RW). In (RW) it is essential that another critical pair with the same sig-
nature exists, for the Rewritten Criterion only divisibility is neccessary. This is some
optimization we have already found in AP, which requires in REWRITEAP? also only
divisibility for detecting useless critical pairs. Whereas AP rewrites elements based
on comparing the corresponding leading terms, F5 uses the information stored in the
signatures. If F5 detects a critical pair (uf, vg) to be useless based on the Rewritten
Criterion, then there exists some other combination of elements which have a sig-
nature greater than the one of the detected generator of (uf,v g)ﬁ In this sense the
algorithm assumes that there exist “better” elements in G describing the polynomial
data of (uf,vg). This “better” can be interpreted as better reduced, sparser, and so
on. It is mainly based on the fact that the rewriting labeled polynomials are added
to G later than f resp. g, thus the likelihood to get a better representation is taken
into account.

Looking at the F5 Criterion two diverging statements must be done:

a) On the one hand, the F5 Criterion is way stronger than the general (NM) Cri-
terion. NoNMiNFs? does check both generators of the critical pairs, whereas
No~NMinz checks only the one corresponding to the signature of the resulting
s—vector. This means that F5 must be able, in contrary to SIGSTD, to check also
labeled polynomials of lower index. This leads to the more complex structure
of S in F5. Whereas S is just a set of leading terms of labeled polynomials of
lower index in S1IGSTD, S is a list of lists S[i] carrying the leading terms of the
labeled polynomials of index i. This enables NONMINFs? to check an element
of any given index correctly.

b) On the other hand, S1GSTD and all its derivatives use zero reductions actively
by adding the corresponding signature to the set S. F5 does not do this, but
also uses the corresponding signatures as rules in the Rewritten Criterion. The
disadvantage of this attempt is that searching in lists of rules is a bigger com-
putational effort than just checking for the Fs Criterion.

Fs5 chooses critical pairs of P by lowest possible degree, not by lowest possible sig-
nature. Thus the computations can only be done for homogeneous polynomials,
otherwise later on computed elements of lower degree could destroy correctness of
Fs.

Fs distincts between current index reductions, which must be ensured to be sig-safe,
and lower index reductions, which are processed on the polynomial side only, since
all elements to be reduced have the current index k, and all reducers of Gj_, have
lower index. Thus no sig—unsafe reduction can happen. Note that this is true for
S1GSTD and all its derivatives, too. Thus we can adopt this idea easily.

Instead of allowing only sig-safe reductions in SIGREDF5 as it is done in SIGRED, F5
also allows sig—unsafe reductions. These are not real reductions, but a sig-unsafe

5Clearly the signature of the combination of those multiplied labeled polynomials has a signature smaller or
equal to the one of the s-vector corresponding to the rejected critical pair.

(8)

6.3 Classifying Fs in the signature-based world 213

reduction leads to a new critical pair for P’. In S1GSTD the construction of these
critical pairs is postponed to INCSIGCRIT at the point the new element is already
reduced and prepared for addition to G. The only real differences can be found in
the following situation:

Assume a labeled polynomial f to be reduced by some other labeled polynomial of
the same index, say g. Furthermore, assume that

It(f) =ult(g) and siglm(f) < usiglm(g)

for some u € P. Moreover, there exists a third labeled polynomial of the same index,
h,and a term v € P such that

It(f) =vlt(h) and siglm(f) > vsiglm(h).

What actions take place in the two algorithms?

> In Fs the new critical pair (ug, f) is added to P’ and later on f is reduced by
vh.

> In S1GSTD f is not reduced by ug, but by vh. Thus in the end an element not
equal to f is added to G. It follows that SIGSTD does not generate the critical
pair (vg, f) due to the lack of existence of f resp. 1t(f) in G.

This means that the way of searching a possible reducer of current index is quite im-
portant for the following steps. A sig-safe reduction always takes place, correctness
of the algorithms is ensured. But in a situation like the one above different critical
pairs can be generated by the two algorithms. Finding heuristics for this selection of
possible reducers of G is an area of active research these days.

In S1GREDF5 the possible reducers are checked by the two criteria. This is the one
difference which leads to several important facts:

a) Fs5 computes way less reduction steps than S1GSTD and all other variants.

b) Proving termination of F5 cannot be done the same way as the corresponding
proof for SIGSTD. We show in Section[6.5how to handle the termination issues
of F5 quite elegant and without losing any performance at all. There we also
give a more detailed discussion on how this process of rejecting reducers really
works in the interior of Fs.

We have seen at the end of Section [6:2]that SIGSTDRED and F5C are not so far apart as
it seems from the above discussion of the respective basic algorithms.

AP, MM, and G2V are using SIGSTDRED as a basis, not SIGSTD, thus it is clear that when
comparing Faugere’s attempt to these we should switch from Fs to FsC. Looking at G2V, its
description is a lot easier than Fs’s. This is based on the fact that coming from SIGSTDRED
G2V uses mainly (NM) only. So assuming SIGSTDRED as some zero point between F5C
and G2V we describe the algorithms’ connection in the following way:

>

G2V strips the criteria checks down: (RW) is only used in some special situation
when generating new critical pairs. Thus it does more computations, but has less
interrupts checking labeled polynomials.

214 6 Faugére’s F5 Algorithm

> F5C focusses on more checks, less computations. This is not only present in the ag-
gressiveness of the Rewritten Criterion, but also in the idea of checking the possible
current index reducers in SIGREDFs.

AP however has a really different origin than G2V. AP is rather a variant of F5 resp. F5sC
than a variant of SIGSTD. As it is described in [7] it is more or less a fork of Fs5. Besides giv-
ing a non-incremental description of the algorithm (see Section [74]for more details), the
main purpose of AP is to illustrate the F5 Criterion with a simpler version of the Rewritten
Criterion. This has two effects:

(1) AP’sinner workings are readily understood in contrast to F5’s quite complicated sub-
algorithms.

(2) One can easily prove termination of AP. We see in Section[6.5]that the corresponding
proof is a real problem for Fs.

Based on the above discussion we can optimize the F5 Criterion even more: By[()b]we
can achieve an easy, but as we see in the experimental results quite useful optimization:
In the same way as SIGSTDRED uses zero reductions in its implementation of (NM) we
can add the signature of an element which reduced to zero in F5 to S. As we have already
mentioned, checking the Fs5 Criterion is, from a computational point of view, much faster
than searching in a list of rewrite rules.

Thus we can define the following variant of F5C:

Definition 6.3.1. F5E denotes the variant of SIGSTDRED calling INCF5E, NoNMinFsz, and
REwWRITEF5¢?.

The “E” in F5E stands for “enhanced” as it incorporates not only the optimization of in-
terreducing intermediate standard bases of F5C, but also the active usage of zero reductions
introduced in SIGSTDRED. The differences between INCF5C and INCF5E are quite clear, but
due to its impact on the algorithm let us give the pseudocode in detail in Algorithm [56

The steps in Lines[39}- @Tare clear from our discussion: We can delete the last rule from
R, because we add this signature to S. The effect on the whole algorithm can be found in
a new addition of calls of NONMINFs? in Lines[fgJand 2ot As we dynamically update S it
is useful to check the F5 Criterion again when entering the reduction process of a critical
pair.

With this last optimization of Fs5 the differences between FsE and the other signature-
based standard basis algorithms drop down to

> using homogeneous input data in F5 only (we see in Section[ZT]that even this restric-
tion can be removed from Fs.),

> checking elements by a more aggressive implementation of (RW), and

> checking possible reducers in the current index reduction steps, too.

6.3 Classifying Fs in the signature-based world

215

Algorithm 56 Incremental FsE step (INCF5E)

Input: f; a polynomial, G;_, = {p,, ...

Output: B a standard basis for (f;,. .., fi) wrt. <

1:
2:

3

10:

21:
22:
23:
24:
25:
26:
27:
28:
29:
30:

3L
32:
33:
34
35:
36:
37:
38:
39:
40:
41:
42:
43:

2 ® N vk

B« @,G < @, P « &, R < empty list

S«<o

ps < fi

t<s

for (k=1,...,s-1)do
gk < (0, px)

S < Su{lt(pe)}
g < (es, ps)
G« {gl,...,gs}
for (k=1,...,5s-1)do

= 1c<gk)—fé§§zg{g)>
v le(g))
if (! NoNMINFs? (ug;,S) then

P Pu{(ug,vgr)}

: while (P + @) do

P" « SeLeCT(P) (critical pairs of minimal degree)
while (P' + @) do

Choose (uf,vg) from P’ with max. {usig(f),vsig(g)} minimal w.r.t. <.

if (! NoNMINFsz(uf,S) and | REWRITEFs?(u, f, R)) then

, Ps—1} a standard basis for (fi, ..., fi-)

if ((index(g) < s)or (INoNMinFsz(vg,S)and | REWRITEFsz(v, g, R)))

then
P P\ {(uf,vg))
I < max. {usig(f),vsig(g)}
R < addRule(], R)
r < (L upoly(f) - vpoly(g))
poly(r) < Repuck (poly(r), poly(Gi_,))
(r, P") < SIGREDF5(7, G, S, R, s, P')
if (poly(r) # o and r not sig-redundant w.r.t. G) then
for (k=1,...,t)do
if (Im(gx) +1m(r)) then

e le(gi) oy

7(r.8k)
Im (gy)
if (Im(u) siglm(r) # Im(v) sigim(gy)) then

if (! NoNMINFs? (ur,S)) then

v <lc(r)

if ((index(gx) < s) or | NONMINFsz(vgy, S)) then

P < Pu{(ur,vgr)}
t«<t+1
g T
G < Gu{g}
else if (poly(r) = o) then
Delete last rule from R.
S« Su{slm(l)}
B« pOly(G)
return B

216 6 Faugére’s F5 Algorithm

best average worst

Figure 6.4.1: Coloration of the results for different variants of Fs

All in all it is quite amazing how all these different algorithms, with their various ap-
proaches and origins fit together so well. Optimizing F5 does not only have a positive ef-
fect on its performance, but yields suprisingly to even more similarities with SIGSTD resp.
SIGSTDRED.

6.4 EXPERIMENTAL RESULTS

Let us try to give a comparison of the 3 variants of F5 we have discussed until now:
(1) the initial F5 Algorithm,
(2) the variant F5C interreducing the intermediate standard bases, and
(3) the variant FsE, an F5C Algorithm actively using zero reductions.

As in Section [5.6] we use colors to classify the timings. This time we compare only 3
different algorithms, Figure[6.4]illustrates the coloration.

The presented variants of Fs are implemented in SINGULAR and can be also downloaded
from

git@github.com:ederc/Sources. gi'lﬁ.

We used the same revision of SINGULAR as for the algorithms of Chapter 5} Moreover,
the very same computer was used for the following computations. In this series of tests
we always compute in the respective polynomial ring over a field of characteristic 32, 003
using the graded reverse lexicographical order <gp,.

Looking at the timings given in Table[6:1lone sees that, besides the Katsura-n-hexam-
ples, F5C is always faster than Fs, and FsE is always faster than F5C. Looking at examples
like Eco-n-h there is a factor of nearly 10 between F5 and F5E. Whereas we see a clear
benefit of interreducing the intermediate standard bases in F5C in all examples, again be-
sides the Katsura-n-h ones, the positive effect of using zero reductions actively in F5E
differs for the examples. For Cyclic-n-h the benefit is much less than, for example, for
Eco-n-h or F-xxx-h. The reason for this lies in the fact that whereas in Cyclic-n-h
not so many zero reductions appear, FsE does not benefit as much as it does in Eco-n-h

$You can get the git repository by typing git clone git@github.com:ederc/Sources.git.

git@github.com:ederc/Sources.git

6.5 Termination-ensured variants of Fs 217

where the number of zero reductions is going down by a factor of 10 switching from F5C
to FsE (see Table[6.2]). Moreover, F5 and F5C are not able to compute a standard basis for
Eco-11-h. Here the idea of using zero reductions actively, improving the Fs5 Criterion
check, is fundamental for the computations.

Why do the Katsura-n-h examples not take advantage when using F5C or F5E? The
explanation can be found in Table Those examples correspond to complete intersec-
tion, that means that neither F5 nor F5C nor FsE compute any zero reduction. With this
in mind none of the optimizations mentioned in the last sections can improve the compu-
tations, as all useless critical pairs are already found by the default F5 Criterion. Moreover,
interreducing the intermediate standard bases and bookkeeping of the zero reductions cre-
ate an overhead on the computations such that the timings of F5C and FsE are even worse
than those of F5. On the other hand, one really should point out that F5C and FsE have
a much smaller memory footprint than F5 due to the fact that whereas the interreduction
and the newly added criteria do not lead to more rejections of critical pairs or less reduction
steps (see tables [6.5]and [6.4), they detect those useless elements faster and more efficient.

Comparing the 3 variants of F5 to the algorithms presented in Chapter 5] we should
mention that F5C and FsE are implemented in the same framework as AP, MM, and G2V.
Thus comparing the results of this section with the ones given in Section [5.6]is possible.

Clearly, the fact that FsC does not actively use zero reductions in the F5 Criterion check
is a huge drawback, leading to worse timings than most of the algorithms of Chapter [5}
besides examples like Cyclic-n-h and Katsura-n-h. The variants of F5 benefit from
using the criteria to detect also useless reducers in SIGREDFs. This leads to less reduction
steps and thus less memory consumption. Having a closer look at G2V, FsE is always faster
and less memory hungry. The only algorithm of Chapter[gbeating FsE in some examples is
AP: AP is the fastest algorithm for the Eco-n-h examples as well as the F-855-h example.
There it takes advantage of chosing critical pairs in (RW) by the least common multiple of
the polynomial leading terms.

All in all one can summarize the experimental results to the following statement: FsE
is the fastest algorithm in a wide range of example classes. In some settings AP, which is
also just a variant of F], gives the best results. In these examples the choice by a minimal
leading term seems to be the best possible one. It boils down to use these two variants of F5
for an efficient signature-based standard basis computation. Having a heuristic to decide
when to use which of the two variants is an ongoing research project of the author.

6.5 TERMINATION-ENSURED VARIANTS OF Fj5

An open question surrounding Fs regards its termination. In a traditional standard
basis algorithm, like the ones presented in chapters@Mand & termination is based on the
ability of the algorithm to exploit the fact that the polynomial ring is Noetherian: Each

7See Section [6.3]for more details.

218 6 Faugére’s F5 Algorithm

Test case Fs | Fs5C | FsE
Cyclic-7-h . 5.880 5.630
Cyclic-8-h . 7,247.690 5,266.440

Eco-8-h . 1.930 0.300

Eco-9-h . 61.500 6.650

Eco-10-h . 2,592.830 198.230
Eco-11-h —— —— 8,367.680

F-633-h 0.000 0.000 0.000

F-744-h . 36.740 20.520

F-855-h . 3,019.870 620.880
Gonnet-83-h . 220.540 11.860
Katsura-8-h 0.050 0.050 0.050
Katsura-9-h 0.390 0.400 0.400

Katsura-10-h 4.070 . 4.410
Katsura-11-h 49.880 61.080 .
Schrans-Troost-h 2.860 . 3.550

Table 6.1: Time needed to compute a standard basis, given in seconds.

Test case | Fs | FsC | FsE |
Cyclic-7-h 76 76 36
Cyclic-8-h 1,540 | 1,540 244

Eco-8-h 322 322 57

Eco-9-h 929 929 120

Eco-10-h 2,544 | 2,544 247
Eco-11-h - - 502

F-633-h 2 2 2

F-744-h 498 498 323

F-855-h 2,829 | 2,829 835
Gonnet-83-h 8,129 | 8,129 | 2,005
Katsura-8-h o] o] o)
Katsura-9-h o] o] o

Katsura-10-h o] o] o)
Katsura-11-h o] o] o
Schrans-Troost-h o] o] o)

Table 6.2: Number of zero reductions computed by the algorithms.

6.5 Termination-ensured variants of Fs5 219

Test case Fs | FsC | FsE
Cyclic-7-h . 19.031 18.031
Cyclic-8-h . 1,250.106 569.513

Eco-8-h . 17.062 4.061

Eco-9-h . 151.168 26.684

Eco-10-h . 1,345.006 168.827
Eco-11-h - - 1,046.751

F-633-h 0.000 0.036 0.036

F-744-h . 79.814 54.314

F-855-h . 985.874 313.612

Gonnet-83-h . 52.533 15.889
Katsura-8-h . 1.500 1.500
Katsura-9-h . 6.000 6.000
Katsura-10-h . 23.018 23.018
Katsura-11-h . 105.602 105.602
Schrans-Troost-h . 20.037 20.037

Table 6.3: Memory used to compute a standard basis, given in Megabyte.

Test case | Fs | Fs5C | FsE |
Cyclic-7-h 1,018 | 1,018 978
Cyclic-8-h 7,066 | 7,066 | 5,770

Eco-8-h 830 830 565

Eco-9-h 2,087 | 2,087 | 1,278

Eco-10-h 5,123 5,123 | 2,826
Eco-11-h - - 6,219

F-633-h 56 56 56

F-744-h 2,089 | 2,089 | 1,914

F-855-h 7,922 | 7922 | 5,928

Gonnet-83-h 12,111 | 12,111 | 5,987
Katsura-8-h 120 120 120
Katsura-9-h 247 247 247
Katsura-10-h 502 502 502
Katsura-11-h 1,013 1,013 | 1,013
Schrans-Troost-h 393 393 393

Table 6.4: Number of critical pairs not detected by the respective criteria used.

220 6 Faugére’s F5 Algorithm

Test case Fs | FsC | FsE
Cyclic-7-h 100,569 100,569 83,880
Cyclic-8-h 14,823,873 | 14,823,873 | 3,403,874

Eco-8-h 186,854 186,854 18,514

Eco-9-h 1,996,849 1,996,849 136,842

Eco-10-h 19,755,560 | 19,755,560 | 1,019,439
Eco-11-h - - 7374779

F-633-h 366 366 366

F-744-h 789,072 789,072 435,869

F-855-h 12,294,951 | 12,294,951 | 2,633,666
Gonnet-83-h 278,419 278,419 64,788
Katsura-8-h 1,634 1,634 1,634
Katsura-9-h 5,371 5,371 5,371

Katsura-10-h 18,343 18,343 18,343
Katsura-11-h 63,194 63,194 63,194
Schrans-Troost-h 14,010 14,010 14,010

Table 6.5: Number of all reduction steps during the computations.

Test case | Fs | FsC | FsE |
Cyclic-7-h 758 758
Cyclic-8-h 3,402 | 3,402

Eco-8-h 249 249

Eco-9-h 499 499

Eco-10-h 979 979
Eco-11-h - - 1,968

F-633-h 60 60

F-744-h 204 204

F-855-h 688 688
Gonnet-83-h 1,156 1,156
Katsura-8-h 105 105
Katsura-9-h 202 202

Katsura-10-h 399 399
Katsura-11-h 784 784
Schrans-Troost-h 189 189

Table 6.6: Size of the resulting standard basis.

6.5 Termination-ensured variants of Fs 221

polynomial added to the standard basis G during the computations expands the leading
ideal of G. This can happen only a finite number of times.

Moreover, even for the signature-based algorithms presented in Chapter 5|termination
can be shown (see Theorem [£:2.7} termination of all variants of SIGSTD is proven in the
very same way).

In F5 an optimization during the reduction step introduces unforeseen issues regarding
termination: Possible, also sig—safe reductions are rejected due to Fs’s criteria. This leads
to the fact that F5 can add new elements to G which are redundant for the standard basis.
On the one hand, until today no non-terminating example for Fs is knowrﬂ but on the
other hand there is still a correct and gapless proof of termination missing.

Different approaches tackling this problem have been published:

(1) In [8] Ars tries to use Buchberger’s criteria to determine a degree bound for Fs.

(2) In Gash uses the Macaulay bound and breaks the computations down to a basic
standard basis algorithm without any criteria checks for everything above the bound.

Besides presenting the above mentioned methods to ensure termination, and discussing
their drawbacks from a computational point of view, we give a variant of F5 which ensures
termination using data F5 computes itself. This variant changes just a few lines of code
in an existing Fs implementation, but terminates for sure and introduces no penalty to
performance at all. Later on we even combine our ideas with Ars’ leading to a terminating
algorithm which is sometimes even faster than Fs.

Remark 6.5.1. Proving termination of Faugere’s attempt computing standard bases is not a
mere problem of Fs, but of all its variants. It is mainly based on the usage of the Rewritten
Criterion and the fact that possible reductions are rejected not only due to sig—unsafeness,
but also based on criteria checks. Thus speaking about Fs5 in the following, the very same
holds for F5C and FsE.

Definition 6.5.2. A labeled polynomial f computed in Fs5 is called redundant if there exists
g € G at the moment SIGREDFs returns f such that 1t(g) | 1t(f).

Remark 6.5.3.

(1) Note that also in a Buchberger-like algorithm a standard basis G can be computed
such that there exist p, g € G withlt(q) | It(p). The important difference to the above
definition is that if this situation appears in Buchberger-like algorithm p is added to
G before g, not the other way around. In Definition [6.5.2] we explicitly require that f
is added to G affer g. This is a situation which is only possible in the signature-based
world due to the fact that some reductions are not allowed.

(2) Furthermore the above situation really is a problem only in F5 as we see in the fol-
lowing: Whenever a redundant labeled polynomial is added to any of the algorithms
presented in Chapter [5a sig-unsafe reduction has been rejected. Thus in the next
round of critical pairs the corresponding reduction is available and computed. So
termination of the algorithm can be ensured as shown in Theorem 27} In contrast

81n the past, non-terminating examples were always based on implementational errors.

222 6 Faugére’s F5 Algorithm

to this F5 can reject a reduction not only based on its sig-unsafeness, but also due to
detecting the multiplied reducer by one of its criteria. In this situation no critical pair
corresponding to this reduction step is generated later on, which leads to problems
in proving termination of Fs.

Even using the restriction to homogeneous input in F5 does not help us tackling this
problem:
Convention. Let us assume that the critical pairs in P” have degree d during a call of INCFs.

It is clear that all critical pairs left in P have a degree > d. This means that at the moment
P’ = @ in the kth call of INCF5 G is a d-standard basis for (f; ..., fx).

Definition 6.5.4. We denote the set of elements added to G during the step of degree d in
a certain call of INCFs5 by Ry.

Let us define the problematic situation.
Situation 6.5.5. Suppose that R; # & and for every element f € R, f is redundant.

At first glance this situation seems to be completely theoretical, but it does appear in
practice: Reviewing Example[6.1.17]we see that at degree 7 F5 adds

gs = (x7zey, 17 — x*zt?)
to G. At degree 8, however, Rg = {g,, } with
S0 = (Zte;, yor — xyzt*).

The reduction of g, by ygs in SIGREDF5 is rejected due to the Fs5 Criterion. Thus Situa-
tion[6.5.5]occurs even in small examples.

Lemma 6.5.6. There exists a finite subset F = {f,, ..., f,} ¢ P of homogeneous polynomials
as input of Fs, a degree d, and a point of INCF5s computation where poly(G) is (d —1)-
standard basis for (f,, ..., f,) such that

(1) Ry + @, and

(2) L(poly(GURy)) =L (poly(G)).

Proof. Such an input F is given in Example Computing a standard basis for I =
(x*y — 2°t,xz2*> - y*t, yz> — x*1*) we end with aset G = {g,, ..., g, } where poly(G) is 7-
standard basis for I. Ry = {g;0 } with 1t(gs) | 1t(g10), so L (poly(G U Rg)) = L (poly(G)).

O

Remark 6.5.7. In [63] Faugere argues in Corollary 2 that termination of Fs5 follows from
the (unproven) assertion that if F5 does not reduce any polynomial to zero, then for any d
L (poly(G)) # L (poly(G U R;)) where poly(G) is a (d — 1)-standard basis for the input
ideal. We see that although there is no zero reduction in Example[6.1.17]L (poly(G U Rg)) =
L (poly(G)). Thus we have found a counterexample showing that Theorem 2 and, by as-
sociation, Corollary 2 of [[63] are incorrect. It follows that termination of F5 remains un-
proven, even for regular sequences: There could be infinitely many steps where redundant
labeled polynomials are added to G.

6.5 Termination-ensured variants of Fs 223

By contrast, Lemma [6.5.6] is not true for a Buchberger-like algorithm. Such an algo-
rithm always expands the leading ideal when a polynomial does not reduce to zero, which
ensures termination.

In the last couple of years two approaches to solve the termination issue of F5 have been
published. We discuss them shortly, give the rough ideas and show the drawbacks of the
attempts:

)

(2)

In 2005 Ars presented a variant of Fs5 in [8] which suggests to determine a degree
bound using Buchberger’s 2nd Criterion. The following three facts outline the gen-
eral idea:

> A global variable dp,y = o is initialized, which stores a degree of a polynomial.

> P’ is a second set of the critical pairs, like P. This set is used to determine a
degree bound only, not giving any other impact on the standard basis compu-
tation at all.

> Whenever a new element f is added to G in INCF5 a copy of each critical pair
generated by f and not detected by Buchberger’s 2nd Criterion is stored in P’
Moreover, the elements already in P’ are again checked by Buchberger’s 2nd
Criterion, and removed from P’ when detected to be useless. After this process
has finished, dp.y is set to be the highest degree of an element of P’.

If the degree of all critical pairs in P exceeds dax, then Buchberger’s 2nd Criterion
implies that the algorithm has already computed a standard basis, and can terminate.

It is important to maintain the distinction between the two sets of critical pairs, as
otherwise the correctness of the algorithm is no longer assured: Buchberger’s 2nd
Criterion does not take the signatures of the labeled polynomials into account.

Two major drawbacks of this approach are clear:

a) Every critical pair is computed and checked twice: once for Buchberger’s 2nd
Criterion, and again for Fs’s criteria. Although the F5 Criterion also checks for
divisibility, it checks only labeled polynomials of smaller index, whereas Buch-
berger’s 2nd Criterion checks all labeled polynomials. For most input data the
number of elements of the current index in INCFs5 is much larger than the total
of all labeled polynomials of smaller index. We see in the experimental results
of the algorithm that this inconspicuous check can accumulate a significant
time penalty.

b) To make things even worse, the standard F5 Algorithm generally terminates
from its own internal mechanisms before the degree dp.x is even reached.
Thus, except for pathological cases, the penalty for this short-circuiting ma-
chinery is not compensated by a discernible benefit.

We denote this variant of F5 by F5B, the “B” stands for “Buchberger” in this setting.

Gash presented another approach in [[78]], which reintroduces some more reductions
to zero due to switching between different criteria checks of useless critical pairs.
Gash denotes his variant by Fst, where the “t” indicates an ensured termination of
the algorithm.

224

6 Faugére’s F5 Algorithm

Again, let us give a short summary of the ideas behind Fst:

>

>

Asin FsB adegree bound isinitialized. Here the Macaulay bound M for regular
sequences (see [16}[114] and Section [I.9)for more details) is used.

Once the degree of the labeled polynomials cosidered in Fst exceeds 2M, re-
dundant labeled polynomials are stored in a set D different from G.

Whenever Situation [6.5.5 happens for degrees d > 2M all elements of R; are
reduced completely w.r.t. G U D not taking care of sig-safeness at all. Any
polynomial which does not reduce to zero in this process is added to D instead
of G.

Due to the possible sig—unsafeness of the reduction described in the previous

point all rewrite rules in R coming from such labeled polynomials in R, are
deleted.

Subsequently, s—vectors generated using an element of D are reduced without
regard to any criterion, and those that do not reduce to zero are also added to
D, generating new critical pairs.

There are 4 major drawbacks of this approach:

a)

b)

c)

d)

The reintroduction of zero reductions incurs a performance penalty. In Gash’s
experiments this penalty is minimal, but these were performed on relatively
small systems without many redundant polynomials. In some systems, like
Katsura-9-h, F5 generates hundreds of redundant labeled polynomials.

Fst needs to keep track of two different sets of labeled polynomials, G and
D, for generating critical pairs. Moreover, it uses a completely new reduction
process at some point of the computations. Trying to incorporate the ideas of
Fst to an existing F5 implementation adds a significant amount of complicated
code, which is quite hard to handle in an optimized way.

It has to abandon some signatures due to the new, sig-unsafe reduction pro-
cess. Thus, a large number of useless critical pairs can be left undetected and
increase the computational overhead leading to zero reductions.

The doubled Macaulay bound 2M controls the point at which D is introduced
to the computation, and thus the number of elements in D. Nevertheless this
bound is quite imprecise and ad-hoc: In some experiments from [78]], Fst ter-
minates on its own before polynomials reach degree 2M. For other input, Fst
yields polynomials of degrees well beyond 2M, and a higher bound would be
desirable.

Both approaches are based on the idea to get some information from outer sources
about the standard basis computation Fs is doing. This leads to the fact that a terminat-
ing variant of F5 can only be achieved by being highly dependent on different algorithms.
Moreover, implementing a high—performance, low-level F5 Algorithm is a long-term at-
tempt. Adding this high amount of changes, regardless of whether going to Ars’ or Gash’s
approach, can be nearly impossible without rewriting a greater part of already existing
code, besides the implementation of the new ideas.

6.5 Termination-ensured variants of Fs 225

So we need to find a less thwarting way to solve the issue of termination for Fs. The
idea presented in the following was first published in [57] by Gash, Perry, and the author.
Starting the search for a solution, the first idea that comes into one’s mind is to ignore the
redundant labeled polynomials in F5’s computations. Sadly it is not that easy to sort the
wheat from the chaff.

Example 6.5.8. Suppose we modify the F5 Algorithm to discard all critical pairs that have
at least one generator being a redundant labeled polynomial. Furthermore, consider for
the following two examples polynomial rings over a ground field of characteristic 7583:

(1) For Katsura-5-h, the algorithm no longer terminates. It computes an increasing
chain of labeled polynomials with leading terms xzxf x5x6 and signatures x*x, for
k>

(2) For Cyclic-8-h,the algorithm terminates, but its output is not a standard basis at
all.

This is a quite amazing fact: How can critical pairs involving “redundant” polynomials
be necessary? To answer this question, let us define a more consistent notation.

Definition 6.5.9. Let f and g be two labeled polynomials computed in Fs5. A critical pair
(uf,vg) is called an SB~critical pair if neither f nor g is redundant. If a critical pair is not
an SB—critical pair, then we call it an Fs—critical pair.

In the following we show that F5—critical pairs are necessary for the correctness of the
Fs Algorithm. On this way, the intention of the above definition gets clearer.

Lemma 6.5.10. Let f and g be two labeled polynomials in G and assume that 1t(g) | 1t(f).
Then the s-vector f — vg is not generated in INCF5.

Proof. Before entering INCF5 the next generator of the input ideal is reduced w.r.t. the
intermediate standard basis in Fs. So it follows that poly(f) is not in the input of INCFs.
This means that the reduction of f by vg must have been rejected, i.e. vg is detected by one
of Fs’s criteria. But then it is also detected, either when generating the critical pair (f,vg)
or before constructing f - vg. O

Lemma 6.5.11. If R satisfies Situation[6.5.5land f € Ry, then we find an element g € G such
that g is not redundant and 1t(g) | 1t(f).

Proof. If a reducer h of f is redundant, then there needs to exist another element g € G
such thatIt(g) |1t(h). Clearly, then alsolt(g) | 1t(f) holds. Due to the homogeneous input
of F5 we can go down this chain of reducers to the minimal degree, say d. At this point it
is left to show that there do not exist two polynomials g, h with deg(g) = deg(h) = d such
that Im(g) = Im(h).

Let us prove this by contradiction: Assume that g and h with the above properties exist
in G. It follows that the reduction of one by the other in SIGREDF5 was rejected. W.l.o.g.
we assume that ¢ was computed before 4, so the reduction of h by g was forbidden. There
are three possibilities:

226 6 Faugére’s F5 Algorithm

(1) Ifindex(g) < index(h), then the reduction of h by g would always take place and
S1GREDF5 could not reject it at all. So we can assume that index(g) = index(h).

(2) If gis rejected by the Fs Criterion, then g should not have been computed in the first
place.

(3) If g is rejected by the Rewritten Criterion, then there exists an element r € G such
that slt(r) | slt(g) and r has been computed after g. As F5 computes incrementally
on the degree of the homogeneous elements it follows that deg(r) = deg(g). Hence
slt(r) = slt(g) and due to the homogeneity of the elements r cannot be a predecessor
of g. Thus the computation of r would have been rejected by the Rewritten Criterion.

Thus Im(g) # Im(h). It follows that we arrive at a reducer, which is not redundant, after
finitely many steps. O

Using the above two lemmata we can prove the following main result concerning re-
dundancy in Fs:

Theorem 6.5.12. Let f and g be labeled polynomials computed in Fs. If (uf,vg) is an F5-
critical pair, then one of the following statements holds at the moment of creation of the cor-
responding s—vector uf —vg:

(1) upoly(f) —vpoly(g) has a standard representation w.r.t. poly(G).

(2) There exist an SB—critical pair (u'f',v'g"), a finite set W c {1,...,m} with m =
#(G), and terms t,, for allw € W such that

upoly(f) - vpoly(g) = u" poly(f") - v'poly(g') + Z;v twpoly(gw), (6.5.1)

where 7(f,g) = v(f', ¢'), and t(f', g') > t,, 1t(gw) forallw ¢ W.

Proof. Wlo.g. we assume that both f and g are redundant, the case where only one of
them is redundant is similar. By Lemma [6.5.11] there exists for f resp. g at least one re-
ducer f’ resp. g’ which is not redundant. By Lemma we can assume that d =

max {deg(f),deg(g)} < deg(uf —vg). Let
L)
le(f")
o 1t(g,) _
lt(g")
We know that poly(G) is a d—standard basis, thus we can represent

poly(f) = Apoly(f') + > tupoly(gu)s

uelU

poly(g) = apoly(g") +) t, poly(g,),
veV

6.5 Termination-ensured variants of Fs 227

where Alt(f") > t,1t(g,) forall u € U, alt(g") > t,1t(g,) forallv € V,and U,V c
{1,..., m}. By construction 7(f’, ¢") | 7(f, g), so there exists a term y € P such that

upoly(f) —vpoly(g) =y (u'poly(f') - v'poly(g')) + > twpoly(gw) (65.2)
weW
where W = Uu V,and t,, = (f.g) t,ifwe U\V, t, = (/.9) t,ifwe V\U,and ¢, =

1t(f) It(g)
Tl(t{fg)) ty — Tl(t{;) t, if w € U n V. In Equation [6.5.2] we must distinguish two cases:

(1) Ify >1,thendeg(u'f —v'g") < deg(uf —vg). Thus u’ f' —v'g’ is already computed
(or rewritten after detection by one of Fs’s criteria) using a lower degree computation,
which has already finished. It follows that there exists a standard representation of
u'poly(f") = v' poly(g’) w.r.t. poly(G), and thus also a standard representation of

upoly(f) —vpoly(g) w.r.t. poly(G).

(2) If y = 1, then two things can happen: Statement [(1)] holds if u'f" — v/’ is already
computed in INCFs, otherwise Statement[(2)]holds.

O

Remark 6.5.13.

(1) Theorem[6.5.12]implies that an F5—critical pair might not generate a redundant poly-
nomial, but it can be used to rewrite an SB—critical pair which is not computed. For
example, suppose that F5 adds f to G, where f is redundant, as there already exists
g € G such that ult(g) = 1t(f) for some term u € P. This means that the reduction
of f by ug was, for example, rejected by one of F5’s criteria. In the following it is
not uncommon that the algorithm encounters some h € G, h not redundant, such

_ meh) ., _ H(h)
that v = OO
is not computed, since it is rejected as vg is again detected by the very same crite-

rion ug was beforehand. Moreover, assume that It(f) | 7(g, h). Now it is possible
that (vg, wh) is necessary for the correctness of the standard basis poly(G) in the
end, but it is not computed as F5 renders it as useless under the assumption that
(v'f,w'h) exists.

and u | v. In this situation the SB-critical pair (vg, wh)

(2) Due to these facts, the notions of “necessary” and “redundant” critical pairs or la-
beled polynomials are somewhat ambiguous in F5. On the other hand, the notions
of F5— and SB-critical pairs are absolute and do not change during the ongoing com-
putations of Fs.

Let us state the situation, essential for the understanding of the necessity of Fs—critical
pairs, covered by Theorem
Situation 6.5.14. Let (uf,vg) be an Fs—critical pair. Suppose that all SB—critical pairs
(u'f',v'g") corresponding to Statement [(2)] of Theorem [6.5.12] are rejected by one of Fs’s
criteria, but lack a standard representation w.r.t. G.

Note that Situation [6.5.14]is possible, for example, the Rewritten Criterion can reject all
SB-critical pairs (' f’,v'g"). With this we can state the main observation made from our
discussion on F5- and SB-critical pairs:

228 6 Faugére’s F5 Algorithm

Corollary 6.5.15. In Situation[6.5.14]the computation of a standard representation of (uf,vg)
w.r.t. G is necessary for the correctness of Fs.

Proof. Since (u'f’,v'g") is an SB—critical pair rejected by at least one of F5s criteria and
u' poly(f")—v' poly(g’) has no standard representation w.r.t. poly(G), the only possibility
to receive a standard representation for u’ poly(f’) — v poly(g’) is to compute a standard
representation for uf — vg w.r.t. G and rewrite Equation O

Now our task is to use the information from the connection between F5— and SB—critical
pairs we have found in Theorem[6.5.12} Since we cannot rely on an expanding of the leading
ideal when adding new labeled polynomials to G in Fs, we use a similar starting point as
FsB and Fst, a degree bound dgg up to which computations in Fs are done. dgp stores the
maximal possible degree of an SB—critical pair found until that point of the computation.
By Theorem[6.5.12]we know that we need to include all SB—critical pairs in the computation
of dsg, not only the ones not detected by Fs’s criteria. The idea is to process new elements
until the minimal degree d of elements in the pair set P (i.e. the degree of the elements
in P’) is greater than dgg. At this point only Fs—critical pairs are left, thus no SB—critical
pair relies on their computations and reductions. The information stored in the Fs—critical
pairs left over is not relevant for G, thus we can terminate the computations of Fs.

In the following we describe how one has to adjust F5 to receive a variant incorporating
the above mentioned ideas and ensures termination. As we see in the presented pseudo
code the changes to be made are minimal, just adding a few more lines to the code. Based
on this we denote the variant Fs+, illustrating the little topping needed to achieve a solution
to the termination issue of Fs.

The motivation of Fs+’s attempt is that F5 knows that a labeled polynomial f is redun-
dant if a reduction of f in SIGREDFj5 is not processed due to one of Fs’s criteria. Thus Fs
knows that f is redundant at this point of the computation. Our aim is to ensure in Fs+
that the algorithm does not forget this fact. As long as this information remains available
to the algorithm, identifying F5— and SB—critical pairs is trivial.

We explain how to achieve this task presenting the differences in the pseudo code of
Fs5+’s implementation of INCF5 in Algorithm 57}

(1) Asafirst step we need to modify the data structure of a labeled polynomial f in order
to distinguish redundant and not redundant elements. For this we add a third entry,
a boolean flag b such that

- 1 iffis redundant,
o otherwise.

With this the data structure of a labeled polynomial handled in the kth iteration of
the algorithm changes to

f=(pb)eP"xPx{o1}.

The new input to the current iteration step of INCF5+ is assumed to be not redun-
danf¥, so it is initialized with b = 0 in Line[

9Tt is already reduced w.r.t. poly(G;_,) in Fs.

(2)

(3)

6.5 Termination-ensured variants of Fs 229

Having added the information about redundancy to the labeled polynomials we can
update the value of dsg whenever we are in the process of generating an SB—critical
pair. This happens at two different points of INCF5+: Once when initializing the
first batch of critical pairs (Lines g]and). There we know that one generator of
the critical pairs is always g;, which is assumed to be not redundant, thus checking
for redundancy is enough on the second generator. Later on, when having added a
new labeled polynomial r to G we again update the data structure when we recover
an SB-critical pair. Note that this time it is important to check both generators of
the pair for redundancy, since r could be a redundant element added to G (Lines[37]

and 33).

At this point it is left to set the redundancy flag correctly for the newly generated
element r. Clearly, this needs to be done during the reduction process. We illustrate
this in the pseudo code of F5+’s variant of SIGREDFs given in Algorithm[58] There we
initialize the redundancy flag b by o in Line@ From this on we only need to update
b’s value based on the execution of the reduction step:

> Whenever a reduction is rejected by F5’s criteria, or due to sig-unsafeness, we
set b to 1, the labeled polynomial is redundant at this moment (Line[18).

> If a reduction takes place, set b to o, the labeled polynomial is not redundant
at this point of the algorithm (Line[T3).

In the end, the returned element h gets the correct redundancy flag (Line[g).

Remark 6.5.16. Note that it is not necessary to set the redundancy flag for an s-vector
correctly at its initialization in Line3)in Algorithm[7 Not until r is returned by SIGREDF5
the redundancy flag b of r can be set. Being redundant is by Definition a question of
not allowed reductions and not based on the redundancy of the elements of which the

s—vector arises from.

With this we can give a more precise definition of our naming convention:

Definition 6.5.17. We denote the variant of F5 calling INCF5+, and SIGREDF5+ by F5+.

Let us show the main property of F5+, namely the fact that it is an algorithm:

Theorem 6.5.18. Let F = {f,,..., f,} ¢ P be a finite set of homogeneous polynomials, the
input of Fs+. If Fs+ terminates, then its result is a standard basis for I = (f,, ..., f;).

Proof. The statement is clear by the correctness of F5, which is proven in Theorem[6.1.13]

O

230 6 Faugére’s F5 Algorithm

Algorithm 57 Termination ensured incremental Fs step (INCF5+)

Input: f; a polynomial, G;_, = { Loree o gs_l} a set of labeled polynomials such that
poly(Gi_,) is a standard basis for (f;, ..., fi_1), S alist of lists of terms in P, R a list of
(i —1) lists of terms in P

Output: G a set of labeled polynomials such that poly(G) is a standard basis for

(fis..-, fi), Salist of i lists of terms in P, R alist of i lists of terms in P

B+« @,G < @,P <« @, P « @, R[i] < empty list, S[i] < empty list, dsy < 0,d < o

L<s

& < (ei fir0)

S[i] « addFsCrit (1t(g), S[i])

: G« {gl,...,gs

for (k=1,...,s—1) do

7w lo(gr) e

Im(g:)
8 V< IC(gs)—Tlfﬁjkk))
o if (gx not redundant) then
10: dsp = max {dsp, deg(ugi)}
w:if (INoNMINFs? (ug;, S) and | NONMINFsz (vgy, S)) then
12: P<Pu{(ug:vgr)}
13: while (P * Q) do
140 P’ < SeLECT(P) (critical pairs of minimal degree)
152 d < degree of critical pairs in P’
16: if (d < dsg) then

AV R R N R

17: while (P, * Q) do

18: Choose (uf,vg) from P’ with max- {usig(f),vsig(g)} minimal w.r.t. <.
19: if (! REWRITEF52(u, f, R) and ! REWRITEF52(v, g, R)) then
20: Pr— P\ {(uf,vg)}

21: I < max. {usig(f),vsig(g)}

22: R[i] < addRule(I, R[i])

r < (Lupoly(f) - vpoly(g))

24: poly(r) < Rebuck (poly(r), poly(Gi_,))

25: (r,P") < S1GREDF5+(7, G, S, R, s, P')

26: if (poly(r) # 0 and r not sig-redundant w.r.t. G) then
27: S[i] < addFsCrit(lt(r), S[i])

28: for (k=1,...,t)do

20: if (Im(gx) 4+ 1m(r)) then

30: u < lc(gr) Tli:’(gr"))

3 v < le(r) lrél'é:))

32: if (r and g; not redundant) then

33: dsp = max {dsp, deg(ugy)}

34: if (Im(u) siglm(r) # Im(v) sigim(gy)) then

35 if (! NoNMINFs? (ur,S) and | NONMINFs? (vgy, S)) then
36: P<Pu{(ur,vg)}

37: < t+1

38: gt < v

39: G+« Gu {gt}

40: else

410 break

42: return (G,S,R)

6.5 Termination-ensured variants of Fs 231

Algorithm 58 Fs’s semi—complete sig-safe reduction algorithm (SIGREDF5+)

Input: f alabeled polynomial, G = {g,..., ¢} a finite set of labeled polynomials, S a
list of lists of terms in P, R a list of lists of terms in P, s the index of the first labeled
polynomial of current index, P’ a set of critical pairs

Output: h alabeled polynomial sig-safe reduced w.r.t. G, P’ a set of critical pairs

rb<o

2 D {ge.... 0}

3 Bioy < {poly(&),...,poly(g-1)}

4 1 < siglm(f)

5. p < poly(f)

6: while (p # 0oand D, < {g e D|Im (poly(g)) |Im(p)} # @) do
72 Choose any g € D,,.

. 1t(p)
8 U T(poly(g)

9: if (INoNMiNFsz(ug, S) and | REWRITEF52(u, ¢, R)) then
10: if (Im(u)siglm(g) <) then

1 q < Repuck (upoly(g), Bi—y)
12: pP<=pP—q

13: b<o

14: else if (Im(u) siglm(g) >) then
s P e P'u{(ug, (sig(f), p. b))
16: b<1

172 else

18: b<1

19: h < (Sig(f),ﬁ), b)

20: return (h, P’

Theorem 6.5.19. For any given finite input F = { f,,..., f;} ¢ P of homogeneous polynomi-
als, Fs+ terminates after finitely many steps.

Proof. We need to show that a call of INCF5+ performs only finitely many steps until it
terminates.

We first claim that after generating new critical pairs for P INCF5+ satisfies #(P) < oo
throughout the algorithm’s ongoing. To prove this, we show that at any given degree d the
algorithm generates only finitely many labeled polynomials and critical pairs. We proceed
by induction on d: Certainly, at the beginning of INCF5+, when initializing the first bunch
of critical pairs, #(P) <s —1 < co. So it follows that #(P") < oo for the first call in Line[rg
Some of the critical pairs in P’ might be rejected by Fs’s criteria, others generate s—vectors,
which are reduced first w.r.t. G;_,, then sig-safe in SIGREDF5+. In SIGREDF5+ 3 different
cases must be distinguished:

(1) Clearly, the case where poly(r) = o after calling SIGREDFs5+ is trivial.

(2) If no reducer of p is found, 4 is returned and added to G. All new critical pairs have
a higher degree, so they are not added to P’. Moreover, only finitely many new pairs
are generated due to the fact that #(G) < oo.

232 6 Faugére’s F5 Algorithm

(3) If areducer ug of p is found and not detected by any of F5’s criteria two situations
are possible:

a) If usiglm(g) < I, then the reduction p := p — u poly(g) takes place. p is again
checked for reducers, but It(p) has decreased in this step.

b) If usiglm(g) > I, then the reduction does not take place directly, but the new
critical pair (ug, (sig(f), p, b)) isadded to P’. In this case p is kept for further
reduction checks. Note that only finitely many such reducers ug could lead
to new critical pairs. As uslm(g) is added to the rules list R when this new
critical pair is further processed in INCF5+. So the Rewritten Criterion implies
that ug is not chosen again as a reducer in the following. At degree d there are
only finitely many different signatures of current index, so only finitely many
new elements can be added in this way.

Thus only finitely many new labeled polynomials can be generated until P’ = @. All in all
it follows that the number of labeled polynomials as well as the number of critical pairs is
finite throughout INCF5+’s computations.

To finish the proof we have to show that after finitely many steps, only F5—critical pairs
are left in P. Generating labeled polynomials of SB-critical pairs have to be not redundant.
Since P is Noetherian, there can only be finitely many not redundant labeled polynomials.
It follows that also the number of SB—critical pairs is finite.

Thus Fs+ terminates after finitely many steps. O

From a computational point of view it is clear that F5 and F5+ have the very same per-
formance. Computing the degrees of the critical pairs when generating must be done either
way, so the only real overhead introduced by Fs+ is the following:

> Compare dgsp with the degree d of the actual SB-critical pairs to be generated.
> Keep the redundancy flag correct during the reduction steps in SIGREDF5+.

Clearly, thinking about the overall computations done during a run of Fs resp. Fs+ this
does not make any difference at all. Thus we do not present a table with timings here, since
those would be equal regardless of the example. The only real worthwhile information F5+
carries is the value of dsg. It turns out (see Table[6.7) that the values of dsg are mostly too
high, i.e. F5 terminates at a degree d which is smaller than dsp in nearly all examples we
have checked. So we can summarize our outcomes of F5+ thusly:

> Fs+ is a variant of Fs, whose termination is ensured. This property is obtained by
collecting data computed in Fs5 either way, no outer algorithm or source needs to be
used to get this information.

> Fs+ does not introduce any penalty on performance, the overhead is minimal.

> Having already a working implementation of Fs, transforming it to F5+ is done
adding very few lines of easy code.

6.5 Termination-ensured variants of Fs 233

The point is that one can see that the degree bound predicted in F5B, i.e. by Buchberger’s
2nd Criterion, is way better than dgg. So the question arises if one can combine the ideas
of F5+ and Fs5B to get an algorithm, which is possibly even faster than Fs.

We want to achieve a lower degree bound for Fs, without introducing computational
overhead by bookkeeping another set of critical pairs during the whole computation as it
is done in F5B. To reduce the degree we can use the following idea: Instead of covering the
maximal degree of all SB—critical pairs handled in Fs, we store only the degree dp, which is
the degree of all SB—critical pairs not detected by the Fs5 Criterion. It is clear that dg < dgp.
The problem is that we do not know if d is too low (see Conjecture[6.5.23at the end of this
section). Situation implies that this choice of a degree bound might be incorrect.
In this situation we drop in the idea FsB is based on: Perhaps some of the critical pairs
of degrees > d are needed for the correctness of the standard basis, but we cannot see
this with Fs’s criteria. Thus we use Buchberger’s 2nd Criterion once the algorithm exceeds
degree dp and check the remaining critical pairs. If Buchberger’s 2nd Criterion verifies that
all those critical pairs are not needed for the standard basis, we terminate the algorithm.
Otherwise we go on with the next degree step.

This differs in two important ways from FsB’s approach:

(1) Rather than checking all critical pairs with Buchberger’s 2nd Criterion, it checks
only SB-critical pairs that Fs5 also rejects as unnecessary. After all, it follows from
Theorem that Fs—critical pairs can be necessary only if they substitue for an
SB—critical pair.

(2) It checks the SB—critical pairs only once F5’s criteria suggest that it should terminate.

This leads to a way lower overhead in computational time as well as memory consumption.
We illustrate the implementation of this attempt in the pseudo code of Algorithm
The main changes to Algorithm [57]are:

(1) The degree bound dr is recomputed only if the corresponding SB—critical pair is not
detected by the F5 Criterion (Lines Il and[38).

(2) If a critical pair is rejected by the F5 Criterion, it is added to a second set of critical
pairs, P (Lines[5)and [42)).

(3) Whenever the computations exceed the degree dr the critical pairs of the current
degree in P are checked by Buchberger’s 2nd Criterion. Only if all elements of P
are rejected by Buchberger’s 2nd Criterion, the algorithm terminates. Otherwise the
computations go on (Line[g).

Definition 6.5.20. We denote the variant of F5 calling INCF5B+, and SIGREDF5+ by FsB+.

Whereas termination of F5B+ is a trivial corollary of Theorem[6.5.19] also its correctness
can be seen easily.

Theorem 6.5.21. Let F = {f,,..., f,} ¢ P be a finite set of homogeneous polynomials, the
input of FsB+. If FsB+ terminates, then its result is a standard basis for I = (f,,.. ., f;).

Proof. The statement follows from Buchberger’s 2nd Criterion, Lemma 3.4} O

234 6 Faugére’s F5 Algorithm

best average worst

Figure 6.5.1: Coloration of the results for termination variants of Fs

We implemented the presented variants of F5 in the SINGULAR kernel to compare per-
formance. The code is open source and publicly available at

git@github.com:ederc/Sources. gi@.

As already mentioned in Section [5.6] we use SINGULAR 3-1-3, revision 14,372 in the SVN
trunk available at

http://www.singular.uni-kl.de/svn/trunk/,

In Table [6.7] we compare timings and degree bounds for some examples. All systems
are homogeneous and computed over a field of characteristic 32003. The random systems
are generated using the function sparseHomogIdeal from random.1lib in SINGULAR;
generating polynomials with a sparsity of 85 — 90% and degrees < 6.

All examples where computed on a computer with the following specifications:

> 2.6.31-gentoo-16 GNU/Linux 64-bit operating system,
> INTEL® XEON® X5460 @ 3.16GHz processor,
> 64 GB of RAM, and

> 120 GB of swap space.

Remark 6.5.22. Note that due to the decisions made in Fst to start at some point computing
new elements without any criteria checks at all, it is clear that the timings of Fst are much
worse than those of Fs resp. F5+. As an implementation of Fst needs lots of costumizations

in an existing Fs5, we have abandoned to do so and do not add any computational results
of Fst to Table [6.7}

As in sections [5.6]and [6.4] we use colors to classify the timings. This time we compare,
similar to Section [6.4]only 3 different algorithms, Figure[6.5illustrates the coloration.

°You can get the git repository by typing git clone git@github.com:ederc/Sources.git.

git@github.com:ederc/Sources.git
http://www.singular.uni-kl.de/svn/trunk/

6.5 Termination-ensured variants of Fs 235

Algorithm 59 Termination ensured incremental Fs step (INCF5B+)

Input: f; a polynomial, G;—, = {g,...,g-.} a set of labeled polynomials such that
poly(G;_,) is a standard basis for (f,, ..., fi_,), S alist of lists of terms in P, R a list of
(i —1) lists of terms in P
Output: G a set of labeled polynomials such that poly(G) is a standard basis for
(fi>...» fi), Salistof i lists of terms in P, R alist of i lists of terms in P
B« @,G « @,P « @,P « @,P « @, R[i] « empty list, S[i] < empty list,
drp < o0,d <0
2 F<§
3 g < (e, fi,0)
4 S[i] « addFsCrit (1t(g), S[i])
5: G {g,.... 4}
6: for (k=1,...,5-1)do

7 e lo(gi) et

g v<lc(gs) —Tlgz’;:))

9 if (INONMINFsz (ug;,S) and | NONMINFsz? (vgy, S)) then
10: if (gx not redundant) then

1 dr = max {dg, deg(ugy)}

12: P Pu{(ug:,vge)}

130 else

14: if (gx not redundant) then

15 ﬁeﬁu(ugs,vgk)

16: while (P + @) do

172 P < SELECT(P) (critical pairs of minimal degree)

18: d < degree of critical pairs in P’

w: if ((d<dp) or (pe P not satifsying Buchberger’s 2nd Criterion)) then
20: while (P’ + @) do

21: Choose (uf,vg) from P’ with max. {usig(f),vsig(g)} minimal w.r.t. <.
22: if (! REWRITEF5?(u, f, R) and ! REWRITEF5?(v, g, R)) then
2 Pl P\{(uf,vg)}

24: I < max. {usig(f),vsig(g)}

25: R[i] < addRule(/, R[i])

26: r < (L,upoly(f) - vpoly(g))

27: poly(r) < Repuck (poly(r), poly(G;-,))

28: (r, P") < Si1GREDF5+(7, G, S, R, s, P')

29: if (poly(r) # o and r not sig-redundant w.r.t. G) then
30: S[i] < addFsCrit(lt(r), S[i])

31 for (k=1,...,t)do

32: if (Im(gx) 4+ 1m(r)) then

33 U <« lc(gk)q(n:‘—gk))

34: V<« lc(r)%

35: if (Im(u) siglm(r) # Im(v) siglm(gy)) then

36: if (! NoNMinNFs? (ur,S) and | NoNMINFs? (vgy, S)) then
37: if (r and gi not redundant) then

38: dy = max {dg, deg(ugy)}

39: P < Pu{(ur,vgr)}

40: else

4u: if (r and g; not redundant) then

42: ﬁeﬁu(ur,vgk)

43: t<—t+1

44: g < r

45 G+« Gu {gt}

46: else

47: break

48: return (G,S,R)

236 6 Faugére’s F5 Algorithm

Let us give a short overview of the values and results presented in Table[6.7}

(1) Thenotation (a, b, c) denotes a random system of a generators with maximal degree
b in a polynomial ring of ¢ variables generated with random.1ib in SINGULAR .

(2) dmax denotes the maximal degree in the resulting standard basis.

(3) dps denotes the observed degree of termination of Fs.

(4) dsp denotes the maximal degree of the SB—critical pairs taken into account in Fs.
(5) dp denotes the maximal degree estimated by Buchberger’s 2nd Criterion

(6) dr denotes the maximal degree of all SB—critical pairs not detected by the F5 Crite-
rion.

(7) dpr denotes the maximal degree of all SB—critical pairs not detected by the F5 Cri-
terion or the Rewritten Criterion.

In this series of tests we always compute in the respective polynomial ring over a field
of characteristic 32, 003 using the graded reverse lexicographical order <gp,.

Table [6.7] shows that the tests for FsB+ do not slow it down significantly. But this is
expected, since the modifications add trivial overhead, and rely primarily on information
that the algorithm already has available.

The computed degrees in Table [6.7]bear some discussion. We have implemented FsB+
in two different ways. Both are the same in that they estimate the maximum necessary
degree by counting the maximal degree dp of SB-critical pairs not discarded by the F5 Cri-
terion. However, one can implement a slightly more efficient FsB+ Algorithm by counting
the maximal degree drr only of those SB—critical pairs that pass the F5 Criterion and the
Rewritten Criterion. We denote the degree where the original F5 terminates by dgs, and
the maximal degree of a polynomial generated by dmaxge. Recall also that the maximal
degree estimated by F5B is dp.

It is always the case that dm.xgs < dgs; indeed, we will have dyaxgs < da for any al-
gorithm A that computes a standard basis for a homogeneous system incrementally by
degree.

On the other hand, it is always the case that max {dg, dgr } < dps; dps counts Fs—critical
pairs as well as SB—critical pairs, whereas dp, dpr count only SB-critical pairs that are
not rejected by one or both of Fs’s criteria. Thus F5B+ always starts its manual check for
termination no later than F5 would terminate, and sometimes terminates before Fs. For
example, the termination mechanisms activate for F-855-h, Eco-10-h, Eco-11-h, and
Cyclic-8-h, so F5B and F5B+ both terminate at lower degree than Fs5. With little to no
penalty, FsB+ terminates first, but F5B terminates well after Fs in spite of the lower degree!
Even in Katsura-9-h and Katsura-10-h, where dyaxgs = dp < dp = dpr = dps, the
termination mechanism of F5B+ incurs almost no penalty, so its timings are equivalent to
those of F5, whereas F5B is slower. In other examples, such as Cyclic-7-h and (4,5,12),
Fs and (therefore) F5sB+ terminate at or a little after the degree(s) predicted by dr and dgg,
but before reaching the maximal degree computed by dp.

We finish this section with a conjecture about the degree bound needed in Fs:

6.5 Termination-ensured variants of Fs 237

Conjecture 6.5.23. The F5 Algorithm can terminate once the maximal degree of all SB-
critical pairs not detected by any of F5’s criteria is exceeded.

Note that this conjecture is not a corollary of Theorem The conjecture implies
to drop the check with Buchberger’s 2nd Criterion in an implementation of FsB+. Proving
this conjecture could give a way lower degree bound and improve timings of Fs a lot.

Let us close with the following remark:

Remark 6.5.24. The changes that need to be done to get F5+ or F5B+ from F5 can be applied
to F5C or FsE without any modification. Thus algorithms like F5C+ and F5EB+ are clear
from a theoretical point of view. We abandon to give extensive pseudo codes due to the
clarity of how to achieve these variants.

| Examples Fs | FsB | FsB+ | Fs/FsB | Fs/FsB+ | dmax | dps | dsp | dp | dr | drr |

Katsura-9-h 39.951 40.231 0.74 0.99 13 16 21 13 16 16
Katsura-10-h | 1,145.473 1,136.437 0.80 1.00 15 18 26 15 18 18
F-855-h 9, 831.814 9,793.178 0.86 1.00 14 18 20 17 17 16
Eco-10-h 47.266 46.671 0.82 1.01 15 20 23 17 17 17
Eco-11-h 1,117.139 1, 072.472 0.82 1.04 17 23 26 19 | 19 19
Cyclic-7-h 6.243 6.217 0.67 1.00 19 23 28 | 24 | 23 21
Cyclic-8-h 3,791.548 3,772.668 0.77 1.00 29 34 41 33 | 32 30
(4,6,8) 195.455 195.691 0.95 1.00 22 36 42 | 34 | 34 34
(5,4,8) 45.103 45.123 0.96 1.00 20 22 35 23 | 20 | 20
(6,4,8) 46.180 . 46.247 0.99 1.00 20 20 | 34 | 22 | 20 | 20
(7,4,8) 0.827 0.780 . 1.06 1.00 14 19 27 | 14 | 17 15
(8,3,8) 122.972 123.000 0.97 1.00 22 37 35 26 | 31 29
(4,5,12) 4.498 4.590 0.79 0.98 29 33 37 | 42| 32 30
(6,5,12) 12.071 . 12.060 0.57 1.00 50 54 73 55 | 54 50
(8,4,12) 46.122 47.613 . 0.97 0.97 27 35 44 | 30 | 34 29
(12,4,12) 14.413 . 14.360 0.97 1.00 42 55 60 | 43 | 53 43
(4,3,16) 1.439 1.403 . 1.03 0.99 15 15 23 18 | 15 15
(6,3,16) 36.300 36.300 0.98 1.00 10 14 23 15 14 13
(8,3,16) 467.560 . 467.530 0.99 1.00 12 16 21 13 15 13
(12,3,16) 206.441 210.311 1.02 1.00 21 25 34 | 20 | 24 23
(4,3,20) 1.512 1.500 0.90 1.01 16 22 24 | 22 | 21 21
(6,4,20) 1,142.433 . 1,144.370 0.86 1.00 27 37 39 29 | 35 31
(8,4,20) 8.242 8.230 . 1.00 1.00 35 40 | 48 | 36 | 40 | 37
(12,3,20) 0.650 0.650 0.94 1.00 22 26 34 | 27 | 26 23
(16,3,20) 2.054 2.050 1.00 1.00 26 26 | 41 | 27 | 26 | 26

Table 6.7: Timings (in seconds) & degrees of F5, F5B, and F5B+

Q€T

WYILI03]y S $2423n0. 9

7 GENERALIZING SIGNATURE—BASED
ALGORITHMS

In this chapter we give some new approaches for using the ideas of signature-based
algorithms in a more general setting. The chapter is a mixture of various topics in the area
of standard basis computations. It should be understood and read in three different views:

(1) This chapter presents results of current research. All of them are not published any-
where else and unique to this publication.

(2) Due to the first point, some of the topics covered are still in the process of being
investigated and further developed, not only by the author, but also lots of other
people in the computer algebra community. In some sections we can only present
first results and give some discussion on future research.

(3) Other sections contain completey new results which are proven there in complete,
but which still lack implementation. This is due to different reasons, e.g. the com-
plexity of the implementation which needs more time, or the problem of not avail-

240 7 Generalizing signature-based algorithms

able features in SINGULAR , like a thread—safe memory manager, whose implemen-
tation must be done first.

In Section [7 we show how to generalize all signature-based algorithms to be capable
of inhomogeneous input, giving an in-depth discussion on selection strategies for critical
pairs and problems with the sig-safe reduction. Efficiently computing the ideal quotient
(fis---> fk) * finr is a property which is known for G2V. In Section [72] we do not only
explain how this is done, but show that all signature-based algorithms are capable of this.
Thereby we give a complete new proof of this feature, improving the computation of ideal
quotients even more. Following this we explain how to generalize the notion of a signature
which turns out to have various applications for standard basis computations, for example
in non-incremental signature-based algorithms (see Section[77)) or parallelization of those
(see Section[73). We finish this chapter with a new theoretical result, which uses signature—
based algorithms for the computation of standard bases for corresponding first modules
of syzygies in Section [7.6]

All in all this chapter gives a nice insight in what can be expected from the signature-
based world in the near future, not only in terms of optimizations and improvements, but
above all speaking about generalizing the algorithms to a wider field of systems they are
usable on.

7.1 SIGNATURE-BASED ALGORITHMS AND INHOMOGENEOUS
INPUT

In [[63] Faugere restricted F5 to work on homogeneous ideals in P only. Clearly, when-
ever one wants to compute a standard basis for an inhomogeneous ideal the ideas of Sec-
tion[ZZl can be used:

(1) Homogenize the inhomogeneous ideal I w.r.t. some new variable.
(2) Compute the standard basis G" for this homogeneous ideal I h,
(3) Cut down G" to a standard basis G for I.

The problem of this approach is that computing a standard basis for I" can be much harder
than the computations in the inhomogeneous casell Thus it is desired to compute standard
bases for inhomogeneous input with signature-based algorithms, too.

In Chapter g we have not restricted our discussion to the homogeneous case. All algo-
rithms presented in that chapter can be used in the inhomogeneous setting, too. This we
have also seen by the results of example computations given in Section[s5.6] The great fact is
that also F5 can compute standard bases for inhomogeneous input! After a discussion on

'In some cases it is even not possible to compute a standard basis in the homogenized setting.

7.1 Signature-based algorithms and inhomogeneous input 241

how Fs5 must be changed to achieve this property we give a short summary on the general
problems of signature-based algorithms and inhomogeneous input. This is a field of active
research these days.

What is really needed for the correctness of any signature-based algorithm? The ques-
tion is pretty easy, one must compute all critical pairs by increasing signatures, otherwise
criteria checks may corrupt data, and wrong pairs are marked to be useless. So whereas
this is ensured in SIGSTD and all its variants due to the fact we always take the next element
out of the pair set P with lowest possible signature, we must be more careful in F5: A closer
look to Algorithm INCFs5 (and its optimized variants) shows that Fs presorts a bunch of
elements of P in a second pair set P’ which consists of all critical pairs of minimal possible
degree, which are not detected to be useless by the F5 Criterion. In P’ then the element of
lowest possible signature is chosen. Two questions arise from this investigation:

(1) Does F5 compute new elements by increasing signature throughout the algorithm’s
working?

(2) If the answer to the first question is positive, does this also hold using inhomoge-
neous input?

To answer the first question we need to find a connection between the degree of a labeled
polynomial (i.e. the degree of the polynomial part of it) and its signature. For this we
assume homogeneous polynomial data as input of F5, and < to be a well-order on P. In
Section ZZwe have already seen the following nice property of homogeneous polynomials
when constructing s-vectors:

Let f and g be two homogeneous polynomials in P. Computing corresponding multi-
ples u and v such that ult(f) = v1t(g) we can construct their s-vector uf — vg. It clearly
holds that deg (u1t(f)) = deg (v1t(g)). As both f and g are homogeneous, uf and vg are
homogeneous, too. Thus for all terms ¢ € supp(f) it holds that

deg (ut) = deg (ult(f)) = deg(u) + deg(f).

A similar statement holds for the terms in supp(g).

With this in mind let us see how the signature and the degree of a labeled polynomial,
with homogeneous polynomial part, computed in Fs5 are related to each other. For this let
us assume the ith call of INCFs, i.e. there exists a module morphism

n: P (funfi)

ep = fr

for all 1 < k < i. Let us have a closer look at the labeled polynomials computed during the
actual call of INCFs.

> In the beginning a first current index labeled polynomial is initialized, g; = (e;, f;).
In this situation we know that

sig-deg (g;) = deg (g;) -

Note that this even holds if poly(g,) is inhomogeneous.

242 7 Generalizing signature-based algorithms

> The first critical pairs are generated by g, and elements g of lower index in G. Let u
and v be the corresponding multipliers such that u1t(g) = v1t(gx). Since g; and g
are both homogeneous the degree of the critical pair (ug;, vgy) and ug, — vgy is the
same. Moreover, reductions by homogeneous elements do not change the degree of
the s—vector. So whenever SIGREDFj returns a labeled polynomial r with poly(r) + o
deg(r) = deg(ug;—vgy) = deg(ug,). On the other hand, we know that sig(r) = ue;;
in other words

sig-deg(r) = deg (un(e;)) = deg(ug;) = deg(r).
Thus all labeled polynomials f constructed in this way fulfill sig-deg(f) = deg(f).

> Labeled polynomials derived from critical pairs (uf,vg) generated by elements f
and g of current index i are left to be investigated. By the above discussion we can
assume that

sig-deg(f) = deg(f) and sig-deg(g) = deg(g).

Wlo.g. let usig(f) > vsig(g). As deg(r) = deg(uf —vg) = deg(uf) for the corre-
sponding reduced labeled polynomial r after SIGREDF5 (assuming that poly(r) # o,
the other case is trivial), we see that also in this situation equality of the polynomial
degree and the signature degree holds:

sig-deg(r) = sig-deg(uf) = deg(u) + sig-deg(f) = deg(u) + deg(f) = deg(r).

We see that, assuming homogeneous input of a signature-based standard basis algo-
rithms, it is useless to presort the pair set P by increasing degree of the critical pairs and
later on sort the part P’ of pairs of minimal degree by the signature: The signature of any
s-vector corresponding to a critical pair in P’ is smaller than the signature of an s-vector
generated out of a pair from P.

It follows that we can remove this presorting in INCF5 without changing any compu-
tational step of Fs at all! This means that INCF5 can use exactly the same while loop as
INcS1GCRIT and differences between Fs5 and S1GSTD vanish more and more. We waive
stating the updated pseudo code of INCF5 implementing this change since it is trivial.

Next we need to look at the above discussed degree connections, this time under the
assumption that the underlying polynomial data is not homogeneous. In this situation the
connection between sig-deg and deg becomes more complicated:

> Clearly, for the initial labeled polynomial of the ith iteration step of F5 nothing
changes: g; = (e;, f;) with

sig-deg(gs) = deg(fi) = deg(gs).

> For critical pairs (ugs, vgx) generated by g, and lower index element gy € G it still
holds that the degree of the critical pair, deg (7(gs, gx))- is equal to sig-deg(ug;).
However, computing the s—vector and reducing it even further the degree can drop.

7.1 Signature-based algorithms and inhomogeneous input 243

So the reduced labeled polynomial r in the end only fulfills the much weaker in-
equality

deg(r) < sig-deg(r) = sig-deg(ug,) = deg(ugs) = deg (7(gs gx)) -

So from this point on for all current index labeled polynomials g, besides the initial
one g;, the degree of the polynomial part of g can be smaller than the degree of its
signature.

> This leads to the problem that at the moment we generate critical pairs (uf,vg)
of labeled polynomials computed during the current iteration step, again assuming

usig(f) > vsig(g),
deg (7(f, g)) < sig-deg(uf)

is possible. It is even way more likely than having an equality of those degrees. From
this point onwards it is clear that there is for any current index labeled polynomial
h no dependency between deg(h) and sig-deg(h) besides deg(h) < sig-deg(h).

From this we see that whereas it is still safe to compute by increasing signature in SIGSTD
and its variants, F5’s attempt to presort by the degree of the critical pairs can cause prob-
lems. Think about the following quite likely situation (e.g. in Eco-11 such a situation
happens hundreds of times):

Let (uf,vg)and (u'f’,v'g") be two critical pairs in P, again assuming that u sig(f) >
vsig(g) and u'sig(f’) > v'sig(g’). Moreover, assume that deg (uf) < deg (u’f’). In Fs
this means that once INCF5 has processed all critical pairs of degree < deg (uf), (uf,vg) is
added to P/, whereas (' f’,v'g") stays in P and its further computation is postponed to a
later point. In this constellation it is still possible that u sig(f) > u’sig(f"), but this would
mean that an element of higher signature is computed before an element of lower signature.
Doing computations by increasing signatures is of supreme importance in the signature—
based world, all proofs of correctness and even termination of the different algorithms are
based on this fact!

So it is not possible to ensure correctness and / or termination of a signature-based
algorithm, given inhomogeneous input, using a degree dependent preselection of critical
pairs. Fs is the only signature-based algorithm using this. We have seen that in the case of
homogeneous input this preselection is useless and does not change anything w.r.t. to the
order in which Fs handles its critical pairs. Thus one should always implement F5 without
a degree preselection due to the fact that this method

(1) does not change any computational aspect of F5 in the homogeneous case, and
(2) enables Fs5 to compute standard bases of inhomogeneous ideals.

Due to the equality between the polynomial degree and the degree of a signature for
homogeneous elements those algorithms are designed to handle standard basis compu-
tations in this setting very well, discarding lots of useless critical pairs, sorting them by
degree (which is a good selection as we have already seen in Section Z2Z), and having no
real downsides by sig-safe reductions besides the general constraint of sig-safeness, but
this is indispensable for the algorithms’ correctness.

244 7 Generalizing signature-based algorithms

We have already seen, also in SectionZ2} that one of the best possible choices of critical
pairs from the pair set is using the sugar degree (see Definition ZZ1). The nice fact is that
it coincides with the signature degree in signature-based algorithms.

Theorem 7.1.1. The degree of the signature of a labeled polynomial f, computed in a signature—
based standard basis algorithm, coincides to the sugar degree of the polynomial part of f, that
is

sig-deg(f) = s-deg (poly(f)).

Proof. Let f, g be two labeled polynomials computed in a signature-based standard basis
algorithm interreducing intermediate standard bases. Moreover, let f; € P be the input of
the next incremental step of the corresponding algorithm.

(1) For each such f; it holds that the initial labeled polynomial g; = (e;, f;) fulfills that
sig-deg(g:) = deg(gs).

(2) For any term ¢ € P it holds that sig-deg(tf) = deg(t) + sig-deg(f), if the corre-
sponding element is not detected by any (NM) resp. (RW) related criterion.

(3) Letu and v be terms in P such that ult(f) = v1t(g).

a) Assuming that index(f) = index(g) it follows that the signature degree of the
corresponding s-vector is given by

sig-deg(uf — vg) = max {sig-deg(uf), sig-deg(vg)}.

W.lo.g. let index(f) > index(g). Then it holds that sig-deg(f) > deg(f) and
sig-deg(g) = deg(g). Since deg(uf) = deg(vg) it holds that sig-deg(uf) >
sig-deg(vg). It follows that

sig-deg(uf —vg) = sig-deg(uf).

These are just the properties of the definition of the sugar degree given in Definition Zz1
O

This means that any signature-based algorithm, which depends on computing its data
by increasing signatures, computes new elements for the standard basis w.r.t. the sugar
degree. Thus by default a really good selection strategy is taken in these algorithms.

This discovery seems to be incompatible with the experimental results in Section [5.6]
There we have seen that the algorithms have problems computing standard bases of in-
homogeneous ideals, e.g. Eco—-11 cannot be computed, whereas Eco-11-h is not a prob-
lem at all. In Buchberger-like algorithms the problem is just the other way around! Ho-
mogenizing ideals and trying to compute a corresponding standard basis can be a much
harder problem than the computations in the inhomogeneous setting. So the question
arises where exactly the problems of signature-based standard basis algorithms lie w.r.t.
inhomogeneous input?

> The selection strategy is efficient as we have seen in Theorem 711}

7.1 Signature-based algorithms and inhomogeneous input 245

> Also the criteria detecting useless critical pairs work quite great in the inhomoge-
neous setting, discarding a lot more elements than the Gebauer-Moller implemen-
tation in most of the examples.

> So the only situation where problems can occur is the reduction process. In there we
can ignore the reducers of lower index, since they are handled without any difference
as in a Buchberger-like algorithm. So the reductions with current index labeled
polynomials seem to be left as a potential source of trouble.

Let us investigate this case a bit more carefully: Due to the fact that we lose the connec-

tion
deg(f) = sig-deg(f)

for all labeled polynomials f computed during an iteration step when switching from ho-
mogeneous to inhomogeneous input, forcing the reduction to be sig—safe can have really
bad impact on the algorithms behaviour. The problem is that in the given setting reduc-
tions are not only sig-unsafe because the signatures have the same degree, but differ. Now
it is even possible that a multiplied reducer has a signature of higher degree than the ele-
ment to be reduced! Thus a lot more reductions do not take place. This again means that
a bunch of new critical pairs are generated and tested and computed. But this time the
signatures of these critical pairs need not have the same degree. Let us give an example:
Assume a labeled polynomial f to be reduced by another labeled polynomial g € G, i.e.
there exists a term u € P such that It(f) = ult(g). The reduction itself is not allowed as
usig(g) > sig(f). So in the following a new critical pair (ug, f) with signature u sig(g)
is generated and later on computed. The problem is the “later on”: Whereas (ug, f) has
the same signature degree as f in the homogeneous setting, assuming polynomials to be
inhomogeneous it is possible that sig-deg(ug) > sig-deg(f). This means that the corre-
sponding data needed from the reduction step of f and ug cannot be used in the algorithm
at the time it really is needed. This triggers other reductions that would be helpful to take
place at an earlier point of the algorithm to be delayed. Allin all, correctness is still ensured,
but the overhead that is computed due to all these not allowed and postponed reduction
steps has a clear penalty on the performance of signature-based standard basis algorithms.

Using the same setting as in sections[5.6]and [6.4] we compare the corresponding imple-
mentations of AP and FsE, where we adjusted the selection strategy of critical pairs in F5E
as discussed above to ensure correcntess and termination of the computations for inhomo-
geneous input. We compare FsE to AP, as AP is the fastest algorithm of the ones presented
in Chapter [5] considering inhomogeneous input data.

There are two important observations:

(1) First of all, FsE allocates much less memory than AP. In most examples less critical
pairs are considered in FsE than in AP.

(2) On the other hand, AP can compute Eco-11, whereas F5E do not terminate on the
computer we use for the example sets in this thesis.

The performance differs quite a lot, sometimes F5E is way more efficient than AP, for
example for Cyclic-8. For the Eco-n examples the picture is just the other way around,
FsE is always slower than AP.

246 7 Generalizing signature-based algorithms
| Test case | Time (sec) | Memory (MB) | Zero reds | Crit. pairs | Red. steps | #(G) |
Cyclic-7 6.500 17.531 36 978 83,880 758
Cyclic-8 5,418.410 489.005 244 5,770 3,403,874 | 3,402
Eco-8 0.390 3.526 o) 404 24,887 187
Eco-9 14.970 32.079 o 918 24,7434 373
Eco-10 734.830 242.203 o 2,035 2,384,889 725
Eco-11 —-= —.= - - - -
F-633 0.000 0.035 o 54 290 60
F-744 9.540 25.092 o) 818 179,100 87
F-855 101.520 149.352 o 2,704 835,718 148
Katsura-8 0.050 1.500 o) 120 1,634 105
Katsura-9 0.490 6.000 o 247 5,371 202
Katsura-10 5.890 23.518 o 502 18,343 399
Katsura-11 70.100 92.098 o 1,013 63,194 784

Table 7.1: Computation for inhomogeneous input using FsE

Test case | Time (sec) | Memory (MB) | Zero reds | Crit. pairs | Red. steps | #(G) |
Cyclic-7 5.950 637573 36 914 93,742 658
Cyclic-8 14, 078.000 60, 444.643 244 20,086 49,444,223 | 2,611

Eco-8 0.080 12.026 o] 398 10,161 187
Eco-9 1.630 90.595 o 954 83,911 373

Eco-10 67.410 666.817 o 2,337 869,101 725
Eco-11-h 4,521.250 26,206.020 502 14,994 7,787,226 1,968

Eco-11 7,692.740 5,345.710 o] 228,450 9,623,810 1,455

F-633 0.000 0.535 o] 54 319 56
F-744 42.700 133.606 o] 899 249,228 87
F-855 182.390 1,228.474 o] 3,309 1,749,296 148
Katsura-8 0.050 8.000 o] 120 1,626 105
Katsura-9 0.440 41.000 o 247 5,309 202
Katsura-10 5.110 212.546 o 502 17,868 399
Katsura-11 66.590 1,133.735 o] 1,013 60,965 784

Table 7.2: Computation for inhomogeneous input using AP

7.2 Computing the ideal quotient 247

So the only practical conclusion we can get out of this comparison is that there is not the
one signature-based standard basis algorithm for inhomogeneous computations. Again,
more research needs to be done to get more insight in the inner structures and impacts of
inhomogeneous data on the algorithms.

To find optimizations or solutions to this problem is a point of the author’s current
research. We hope to get some more insight in the behaviour of the algorithms in the
inhomogeneous case. Right now it is, to the knowledge of the author, an open problem.

Remark 7.1.2.

(1) Clearly, removing the preselection of critical pairs of minimal degree in F5 implies
that one needs to change SIGREDFs5, too, due to the creation of new critical pairs
corresponding to sig-unsafe reductions there. It is obvious how to implement this
change, thus we do not illustrate this with pseudo code.

(2) Letusalso give some note onlocal monomial orders on P: Aslocal monomial orders
are to be taken into account only in the inhomogeneous setting it is clear that before
we can even think about how to handle such a setting we need to understand and to
improve the inhomogeneous situation w.r.t. global orders first. There is hope that by
getting more knowledge of the sig—safe reduction steps in the global inhomogeneous
situation counterparts of Moras normal form algorithm (see Algorithm [3) can be
achieved, too.

(3) Note that we know by the above disussion that the resulting data of F5E’s computa-
tions for the homogeneous examples do not change at all. The order in which the
critical pairs are chosen is exactly the same, independent of a pre-selection by de-
gree.

72 COMPUTING THE IDEAL QUOTIENT

As already mentioned in Section [55]signature—based algorithms can be easily modified
to compute not only a standard basis foranideal I = (f,, ..., f;), butalso the ideal quotients

(fir o fi) # S

This is a generalization of standard basis computations which was first noted for G2V in
[76]l, but can be applied to any signature—based algorithm presented in this thesis. We show
how to achieve the ideal quotient from S1GSTD, applying the generalizations to AP, G2V,
and Fs is straightforward. The statements and proofs of this sections are presented for the
first time ever in such a generality.

Convention. In the following we denote Iy = (f,,..., fy) forke {1,...,r—1}.

248 7 Generalizing signature-based algorithms

The main idea for constructing generators for ideal quotients as side products of incre-
mental standard basis computations can be found in the exact sequence given by

0 R/ (It : fir) — RIT 5 RI(fur o fins) — o

There ¢ is just a multiplication by fy,,, which is injective, and v is the canonical homomor-
phism between R/Ix and R/(f,, ..., fis.)- It clearly holds that ¢ (R/ (Ix : fis,)) = ker(y).

Any signature-based algorithm presented in this thesis with the dynamically updat-
ing (NM) criterion, i.e. an NoNMinz-like implementation, where a new element slt(g) is
added to the set S of all leading terms of elements of I whenever poly(g) has been reduced
to zero in SIGRED, can compute a basis for Iy : f.,. In fact, we have the following.

Proposition 7.2.1. In the setting presented in Chapter[3S is a basis for the ideal L(Iy. : fi,)
at the end of each iteration step, i.e. whenever INCSIGCRIT returns to SIGSTD.

Proof. Let us assume that the current index in INCSIGCRIT is s, i.e. 7(es) = fi4,. In other
words, fri, = psand Iy = (P, .. > Ps—1)-

(1) The initial elements of S are already in L(I}), thus they are clearly in L(Ij : p;). Any
element f computed during INCSIGCRIT such that SIGRED reduces poly(f) to zero
tulfills the following property:

label(f) = 3" gie;.
Since poly(f) = 71(label(f)) = o we have that
poly(f) =2 qipi =o

s—1
= qsps = Zqipi .
1=1
ely

This means that g, € Iy : fxy,, and moreover, 1t(g;) € L(Ix : fxy,). Thus S ¢ L(Iy :
fk+1)~

(2) Assume that there exists an element g € Iy : fi,, butlt(g) ¢ (S) when INCSIGCRIT
stops. This would mean that 1t(g) = slt(4) of some labeled polynomial & which has
not reduced to zero in SIGRED w.r.t. G. Then four situations are possible:

a) Either there is no reducer of poly(h) in poly(G), neither sig-safe nor sig-
unsafe. This means that we get a representation

s—1
= qsps =) qipi +poly(h).
i=1 —_——
—— (303
el
But then it would follow that q; = g ¢ Iy : fx+., which is a contradiction to our
assumption.

7.2 Computing the ideal quotient 249

b) Itis possible that a sig—unsafe reduction has not taken place, which could have
lead to a zero reduction. Then in the next round of critical pair creation h and
the corresponding sig—unsafe reducer build a new critical pair. This process of
creating new critical pairs (if sig—unsafe reductions take place) goes on until
we reach the zero reduction poly(h’) . Then g is not in Iy : fi,, by the same
argument as in Situation

c) The critical pair corresponding to the s—vector 4, which would reduce to zero,

is detected by NoNnMin?. But then there exists an element s € S such that
s | slt(h).

d) The critical pair corresponding to the s—vector h, which would reduce to zero,
is detected by REwRrITE?. Then there either exists a syzygy [€ P° such that
slt(1) =1t(g), i.e. there exists some element t € S with ¢ | slt(!) due to a previ-
ously computed zero reduction. Or there exists another s-vector not reducing
to zero, whose leading term of its signature divides 1t(g). But then the corre-
sponding critical pair h has a standard representation w.r.t. an ideal including
P1>- - > Ps—1 and at least poly (), whereas poly(h) ¢ Ix. Thus also g ¢ It : fis,.

O

Moreover, we can generalize the labels of labeled polynomials we have restricted our-
selves to in practice (see Section [£3): In theory we always assume a labeled polynomial
f = (1, p) such that 7(I) = p. Here we can require that for any labeled polynomial f we
store the part of highest index of the corresponding label in [.

Definition 7.2.2.

(1)

(2)

Assume INCSIGCRIT with input values G;_; = {p, ..., ps—1}, fi = ps. Letl e P*bea
complete label of a labeled polynomial f = (s, p) (whereas we think of I as the label
computed during INCSIGCRIT considering Algorithm[54)for sig-safe reductions); i.e.
7(1l) = p. We define the map

¢: P — P e, .., e5),
Zj:lpiei —> pseS)
where the p; € P and the e; are the canonical generators of P°. If u = ¢(1), then we

call f = (u, p) a curr-index labeled polynomial. By definition, a curr-index labeled
polynomial g = (v, q) with index(g) < shasv = o.

For a curr-index labeled polynomial f = (u, p) we can define the polynomial part
of its label u by pp(f) := pp(u) where
pp: P — P,
u=pses +——> Pps,

Example 7.2.3. Let us reconsider Example £:3.40 There we compute a slim labeled po-
lynomial g, = (ye;,—xz> + yz*). Considering the whole label during the sig-safe re-
duction step, i.e. using Algorithm 34, we end up with the full labeled polynomial g, =
((y+2)es —2%e, + (yz + 2%)e;, —x2* + y23). In this setting ¢ : P> - P?/(e,,). Thus

250 7 Generalizing signature-based algorithms

we receive a curr-index labeled polynomial g, = ((y+2z)e;, —xz* + yz3). Moreover,
pp(8s) =y +2.

In this sense we need to reconsider our initial definition of SIGRED given in Algo-
rithm 37t Instead of only reducing the polynomial part, we also need to reduce the label of

the curr-index labeled polynomials. This means, whenever we have an element f, and we

find a reducer g such that ¢ = % and sig(tg) < sig(f), then we need to compute

poly(f) = poly(f) - tpoly(g), and
label(f) =label(f) — tlabel(g).

Similar to the above approach computing the leading ideal of I : fi,, we would like to
have at the end of each iteration step that the elements of S generate I : fi,,. We illustrate
the needed changes in Algorithm

Algorithm 60 S1GSTD including ideal quotients(S1GSTDQ)

Input: F={p,,...,p,} afinite subset of P

Output: G a standard basis for (F) w.r.t. <, L alist of ideal quotients
1 L« H
2 G, + {Pl}

3 for (i=2,...,r)do

4 pi < Rebuce(p;,Gi-,)

5. if (p; # 0) then

6: (G,‘,Bi) <« INCSIGQ(p,‘,Gi_l)
7 L < Concat(L, B;)

8 else

9 Gi < Gi,

100 G« Gr

u: return (G, L)

It is important to store not only the leading terms of the elements from Gy, but the
whole polynomials in S (see Line[7). The elements in Gy are clearly in I; and thus also by
construction in Iy : fi4,-

Whenever a zero reduction of a labeled polynomial f = (I, p) happens, we have seen in
our previous discussions (see the comparison of F5 and G2V regarding the usage of the
non-minimal signature criterion) that it is advantageous to add siglt(f) to S. In our spe-
cial setting here, we need not only to add the term, but the whole polynomial part of the
signature, i.e. pp(f). This has changed, w.r.t. Algorithm [38]in Line[z3}

In the end, INcS1GQ returns not only the standard basis B of I as INCSIGCRIT, but also S,
which stores generators for Iy : fi.,.

This leads to a small change in SIGSTD, namely taking care of this second return value
of INcS1GQ. In Algorithm [60] we present the generalized variant of SIGSTD to store the
ideal quotients, too. SIGSTDQ returns not only the standard basis G, but also a list of ideal
quotients Iy : fiy, fork={1,...,r—1}.

7.2 Computing the ideal quotient 251

Algorithm 61 INcS1GCRIT with curr-index labeled polynomials (INcS1GQ)

Input: f; a polynomial, G;_, = {p,, ..., ps—,} a standard basis for (f, ..., fi-,)
Output: B a standard basis for (f, ..., fi) wrt. <

1:
2:

3

10:

11

12

13:
14:
15:
16:
17:
18:
19:
20:
21:
22!
23:
24:
25:
26:

27:
28:
29:
30:
31
32:
33:
34:
35

e Y v B

B+~ 3,G«~ @,P< o
S«

ps < fi

[

for (k=1,...,s-1)do

gk < (0, px)
S« Su{pi}
g+ (e ps)
G« {gl,...,gs}
for (k=1,...,s-1)do
7(8-8k)

u <« IC(gk)W

v« lc(gs) —Tlffzﬁk))

if (!NONMIN? (ugs,vgr,S) and | REWRITE? (ug;, Vg, G, P)) then

P < Pu{(ug:.vgr)}
while (P # @) do

Choose (uf, vg) from P with max. {usig(f),vsig(g)} minimal w.r.t. <.
if (!NoNMinz(uf,vg,S) and | REwriTE?(uf, vg, G, P)) then
P P\{(uf,vg)}
I < ulabel(f) — vlabel(g)
r < (Lupoly(f) - vpoly(g))
r < SIGRED(7, G)
if (poly(r) = o) then
S« Su{pp(r)}
else if (poly(r) # o and r not sig-redundant w.r.t. G) then
for (k=1,...,t)do
u le(gi) o)
V<< lc(r)%
if (usiglm(r) # vsiglm(gy)) then
if (! No~NMin? (ur, vg, S) and | REWRITE? (ur, vgy, G, P)) then
P PU{(ur,vgy))
t<1t+1
g <7
G+ Gu{g}
B < poly(G)

return (B,S)

It is left to give a statement of our approach:

Corollary 7.2.4. Let F = {f,,..., f;}, a finite subset in P, be the input of SIcSTDQ, I = (F)
an ideal. Then the algorithm returns a standard basis for I w.r.t. the underlying order on P

252 7 Generalizing signature-based algorithms

and a list of generators of the quotient ideals Iy, : fiy, for1 <k <r -1

Proof. The statement about the algorithmic behaviour of S1GSTDQ and its returning of a
standard basis for the input are clear by our previous discussions. The statement about the
list of ideal quotients can be restricted to proving that INcS1GQ stores the generators of
It : fr+: in S. But this is just clear by looking at the pseudo code of INcS1GQ and restating
the proof of Proposition [7zq without restricting to the leading ideal. O

Remark 7.2.5.

(1) Note that exchanging sparse labeled polynomials by curr-index labeled polynomials
has a huge impact on the performance. Not only that the algorithm needs much
more memory, the number of computations increases due to the fact that we have to
adjust the labels whenever we reduce with an element of current index in SIGRED.

(2) Even more, considering NoNMin? and REWRITE? the criteria checks get even harder,
as we first need to get the leading terms of the labels, which consumes some compu-
tational time, too.

7.3 GENERALIZING SIGNATURES

In this section we give the idea of generalizing the signature. This is mainly based on
some remark given in [126]. There complete syzygies are used to compute standard bases,
which has a bad impact on the performance of their algorithm, since it needs to take care of
a lot more data. They suggest to keep only some terms of the syzygies stored and use them
to detected useless critical pairs. We have already seen that signature-based algorithms are
just a very special implementation of the syzygy idea, using only the leading terms of the
corresponding module elements, the signatures. In this setting the idea of generalizing the
signatures means to not only take the leading term of a module element into account, but
also some more terms. With this one can interreduce some signatures, which could lead to
more rules detecting more useless critical pairs. Other ideas consider more flexible ways
of reducing sig-safe, which could also be very helpful in the inhomogeneous setting as we
have seen in Section [71}

Let us start generalizing the definition of a signature given in Definition T3}

Definition 7.3.1. Let F = {f,,..., fy} beafinite subsetin P, I = (F) be a finitiely generated
ideal in P, and let e,, .. ., e, be the canonical generators of Pk such that

m: PFo— 1
e +— fiforalli<i<k

is a surjective module homomorphism. Let < be a well-order on P*, and let g € I, h € P¥.

7.3 Generalizing signatures 253

(1) We define the signature of length j of h recursively by

sig(h,1) := sig(h),
sig(h, j) :=sig(h, j—1) + 1t (h —sig(h, j - 1)).

for2 < j < #(supp(h)).
(2) The (minimal) signature of length j of g is denoted

sig(g, j) = sig (minlabels(g), j).

(3) Moreover, let r = (1, p) € P* x P be a labeled polynomial. The signature of length j
of r is given by
sig(r, j) = sig(L, j)-

Convention. In the following we mostly speak of the signature of an element without ex-
plicitly noting the length of the signature. The reader may always think of the correspond-
ing signature of length 1 in these situations. Whenever a signature of some length greater
than 1 is supposed, we explicitly state the length.

Remark 7.3.2. Note that Definition [£:1.9] of a standard representation of labeled polynomi-
als also makes sense if we are interested in signatures of level j > 1: By definition, sig(r)
consists of the leading term of label(r) w.r.t. <. All j—1 summands added when construct-
ing sig(r, j) are smaller than sig(r). Thus the condition on sig(r) is enough to define a
standard representation of a labeled polynomial w.r.t. some given set G.

Let us give some facts about what needs to be updated in a signature-based standard
basis algorithm in order to use generalized signatures of a given length > 1. For this assume
that we are using signatures of length j > 1in the following. New implementations must be
done whenever a current index reduction of a labeled polynomial takes place. This happens
at two points of the incremental step of the algorithm:

(1) Whenever an s-vector is generated out of a critical pair it is no longer sufficient to
search for the maximum of the leading terms of the generalized signatures, but one
needs to compare all j terms of the corresponding signatures and construct a new
signature of length j for the s—vector out of the 2j terms in question.

(2) A very similar situation happens whenever a sig-safe reduction f — ug takes place:
This time we have already checked that It (sig(f, j)) > ult(sig(g, j)), but still we
need to compare all other j — 1 terms of sig(f, j) with the j terms of sig(g, j) and
recompute sig(f, j) possibly.

Remark 7.3.3.

(1) The second situation from above is completely new for signature-based algorithms:
Sig-safe reductions are defined exactly the way such that one only needs to compute
the reduction step on the polynomial part. In this generalized setting computations
with the signatures need to be done, although the reduction is sig-safe! This leads
to a huge computational overhead.

254 7 Generalizing signature-based algorithms

(2) Note that actions like criteria checking does not change at all, since they are based on
the leading terms of the generalized signatures only. From the computational point
of view a bit more overhead is generated due to the fact that one first needs to get the
leading term out of the generalized signature before checking them in the respective
implementation of (NM) and (RW).

(3) Be cautious, the memory consumption can increase quite a lot generalizing signa-
tures. Thinking about thousands of critical pairs that need to be stored, most of them
are useless, but they are possibly detected to be so with the respective implementa-
tion of (RW) first and thus are stored for the time being.

Having seen the amount of overhead generalizing the signatures introduces, let us dis-
cuss what are the benefits we can get. There are two advantages over a usual signature—
based standard basis algorithm:

(1) Having j terms stored in the signatures, but using only the leading term of them in
(NM) and (RW) would be quite foolish. The idea is to regularly check if one can
interreduce the set of signatures and get a new term, the leading term of the reduced
signature, for example as a new rule in F5. This is something one cannot do with
usual signatures.

(2) Thinking about the sig—safe reduction process, it is now possible to perform a reduc-
tion f — ug where It (sig(f, j)) = ult(sig(g, j)). In this situation only the leading
term cancels out, but there are (hopefully) enough terms of the signature sig(f, j) —
u sig(g, j) left to construct a new signature of f —ug. Thus a sig-unsafe reduction can
take place always besides the quite unusual situation where sig(f, j)—u sig(g, j) = o.
This could have a positive impact on computations in the inhomogeneous setting.

Although these benefits seem to be quite desirable it is clearly questionable how the
ratio of drawbacks and advantages when generalizing signatures. Up to now no working
algorithm including the ideas mentiond in this section is known, which is to the greatest
part due to the complexity of its implementation. The author is working on such an imple-
mentation, but it is too early to present faithful experimental results. Still it is an area of the
signature-based world that seems to be promising giving some nice new results improving
the computation of standard bases.

7.4 NON-INCREMENTAL SIGNATURE—BASED STANDARD BASIS
ALGORITHMS

One of the biggest drawbacks of all signature-based algorithms presented until now is
their dependency on incremental computations. If one wants to compute a standard basis
for an ideal I = (f,,..., f;) ¢ P in the signature-based world we compute the standard

7.4 Non-incremental signature-based standard basis algorithms 255

basis G, for (f,), then G, for (f,,), and so on until we reach G,, a standard basis for I. As
long as the number r of ideal generators is not too big, e.g. in complete intersections, this
is not a problem at all. Assuming r to be quite big (compared to the number of variables in
the polynomial ring the ideal is defined in) this tends to be a problem: When computing
a standard basis for (f,,..., fx) for 1 < k < r information stored in fi,,,..., f, cannot be
used as it is done in a non-incremental standard basis algorithm.

Some approach in the direction of non-incremental signature-based algorithms is al-
ready done:

(1) Arri and Perry presented a generalized variant of Fs in [7], which can be used in
an incremental fashion as well as in a non-incremental one. We have presented the
incremental version of this algorithm denoted AP in Section [5-3}

(2) Recently Gao, Volny, and Wang unveiled a generalization of the G2V Algorithm (see
Section 53), called GVW ([77]).

The author is preparing an implementation of a signature-based algorithm in SINGU-
LAR to be also working in a non-incremental way. This is not only a non-trivial approach,
but also the theory of this area is not really elaborated until now. Thus besides the aspects
of implementation a lot of research in this field of non-incremental signature-based com-
putations must be done.

In this section we straiten ourselves to a presentation of the general idea, the benefits
and drawbacks such an attempt can have, and how heuristics play an important role to
achieve a dynamically, auto-adjusting signature-based algorithm that can be used on a
wide class of inputs without introducing penalties in performance or memory usage.

The first thing to do is to review why all the signature-based standard basis algorithms
presented so far are tied to an incremental framework. In the prelude of Chapter [we
determined the following restriction for all our considerations: The monomial order on
the signatures is set to be <;. Let us review its definition:

mje;<ymje;j <= i< jor,

i=jand m; < m;

for monomials m;, m; € P. Due to the fact that we have at the same time defined a con-

nection between the finitely generated, free module P" with canonical generators e; and
theideal I = (f,, ..., f;), given by

n: P — 1
e +— fiforalli<i<r

this causes an incrementally working algorithm:

(1) On the one hand, any s-vector of a critical pair (uf,vg) with index(f) > index(g)
has the signature u sig(f).

(2) On the other hand, critical pairs are handled by increasing signature.

256 7 Generalizing signature-based algorithms

These two properties of signature-based algorithms evoke the matter of fact that, entering
INCSIG, for example, with two new initial elements g, = (e;, f;) and g; = (e}, fj) with
j > i no element which is generated by g; is taken into account before all possible critical
pairs generated by g; and lower index elements are processed. Thus the algorithm would
first compute a standard basis for (f,, ..., f;) before any impact of g; on the computation
takes place. Note that this does not only comprise critical pairs generated by g;, but g; in
general: No reduction in SIGRED with g; can take place since they are all sig-unsafe. To
the contrary, those sig-unsafe reductions generate new critical pairs whose signature has
index j, again an element clogging the pair set P and whose computation is postponed to
the point when a standard basis for (f;, . .., f;) is already computed.

Thus it is useless to start with all ideal generators at once as they are used in the com-
putation only one thing at a time. Still more, it introduces lots of disadvantages:

> The algorithm computes and stores critical pairs which are useless at that point of
the computations.

> Due to this lots of useless comparisons getting the element of smallest possible sig-
nature out of the pair set P have to be done.

> Even more, one must isolate g; such that it is not used as a reducer, since this would
end up with sig—unsafe reductions, generating even more, to be postponed critical
pairs.

So what can be done to enable the usage of the information stored in g, at the same
time as we compute with g;? Clearly, we cannot change the order in which critical pairs
are handled, those still need to be processed by increasing signatures. Thus the only weak
point left is the monomial order on the signatures. Instead of preferring the postion over
term order we could use <y, or the Schreyer order <j,,. The only real requirement on the
chosen monomial order on the signatures can be defined by the following lemma:

Lemma 7.4.1. Let < be the monomial order on the set of all signatures. If < is a well-order
correctness of all signature-based algorithms presented in this thesis remains.

Proof. This is clear since in all such proofs we only assumed that <; is a well-order and that
the critical pairs are processed by increasing signature. As long as these properties are still
valid for the chosen order <, no proof is corrupted. O

In [[7] Arri and Perry give their algorithm in a non-incremental fashion. As we have
already discussed in Section53} AP is, when using <; as monomial order on the signatures,
nothing else but F5 with an eased variant of F5’s Rewritten Criterion. Sadly, the authors of
the paper do not provide an implementation of their algorithm, the only publicly avail-
able implementation of AP is done by the author of this thesis, which is restricted to the
incremental structure.

In [77] Gao, Volny, and Wang present their algorithm GVW, a generalized implementa-
tion of G2V which can handle different monomial orders on the set of signatures. Besides
the module monomial orders defined in this thesis they give two more:

7.4 Non-incremental signature-based standard basis algorithms 257

Definition 7.4.2. Let m;e;, mje; be two monomials in P’, (fi, ..., f;) and 7 as defined
above.

)

mie;<g mje; <= deg(m;f;) > deg(m;f;) or,

deg(m;f;) = deg(m;f;) and m;e; <, mje;.

(2)

mie; <g, mjej == lm(m; f;) > lm(m;f;) or,

Im(m;f;) = lm(m;f;) and m;e; < mje;.

Their experimental results show that in a range of examples the choice of <, is way
better than choosing <; as default in the incremental setting. Besides way faster timings a
lot more useless critical pairs are detected in GVW using <g, compared to those discarded
by G2V.

Remark 7.4.3.

(1) Note that <,, is nothing else but the Schreyer order <, defined in Example 34
Checking m;e; <; mjej, whenever deg(m;f;) = deg(m;f;) holds, just reduces to
i<j.

(2) Two difficulties in their approach comparing the impact of the different order on the
set of signatures might be pointed out here:

a) Firstly, using <4, GVW is way slower than G2V. The problem is that they give
only 9 examples, which are quite standard. Thus there is no complete picture
of how different monomial orders influence the computations.

b) Secondly, the source code of their implementation is not available to the public.
Itis not clear from their description in [[77] if both, GVW and G2V are based on
the same C++-implementation they mention, i.e. differing only by dropping in
different monomial orders <. If those algorithms have two completely different
implementations a comparison cannot be made accurately at all.

It follows that a lot of research has to be done in this area of the signature-based world.
On the one hand, the benefits of well-chosen monomial orders on the signatures are quite
impressive. On the other hand, these tests are not prestigious at all. Lots of different sys-
tems need to be tested, especially randomized ones and those coming from non-complete
intersections.

Questions like the following need to be answered in the near future:

> Does it make sense to dynamically adjust < and < together as an generalization of
the ideas presented in Sections z7jand [2.8F

> How can one optimize the behaviour of signature-based standard basis algorithms
for inhomogeneous input by changing <?

258 7 Generalizing signature-based algorithms

> Using modern multicore processors in computers, one could start multiple compu-
tations for the same input with different orders on the signatures and take the first
that finishes.

> Can one give heuristics for predefining optimal monomial orders < for wide classes
of systems?

> Do different orders < have an influence on the “quality” of the resulting standard
basisﬁ like <j, and <q?

With this discussion the reader may get a feeling for the importance of research in this
area. Quite a lot of new results and improvements can be expected.

75 PARALLELIZATION OF SIGNATURE—-BASED ALGORITHMS

With modern multicore and multiprocessor computers available these days the ques-
tion of parallelization of signature-based algorithms comes up quite naturally. There are
two different ways of parallelizing:

(1) Speaking in terms of modular computations as presented in Section [z-g] paralleliza-
tion of signature-based algorithms can be achieved as for any other standard basis
algorithm: Computations in a polynomial ring over a ground field of characteristic o
can be modularized to several calculations over different ground fields of finite char-
acteristic, each being a prime which is lucky w.r.t. the respective setting. All we need
to ensure, to make use of the ideas of Section [z:9} is the computation of the reduced
standard bases. Thus we need to interreduce also after the last iteration step, which
can easily be done and is not interfering with the signature-based computations at
all. Getting a modular Fs5 is straightforward, even from the implementational point
of view, thus we leave out any further discussion on this and refer to Section [zg) for
more details on problems and pitfalls of this approach.

Another idea of distributing computations on several parallel computations can be
found in the incremental structure of the signature-based algorithmsﬁ

a) Once a standard basis for (f;, ..., fi) is computed one could start several calls
of the next incremental step with different initial input elements, say one com-
putes a standard basis for (f,,..., fi, f;), the other for (f; ..., fi, fx), and so
on. In the end we choose the one which finishes first and do this step recur-
sively. This approach is still in the process of being implemented and should
be available soon.

*>This is meant in terms of further applications of the computed standard basis.
*Note that this idea can be applied to any incremental algorithm in general.

(2)

7.5 Parallelization of signature-based algorithms 259

b) An even more sophisticated approach would be to completely divide the com-
putations and merge them back together step by step. Let us illustrate this:
Assume we want to compute a standard basis for I = (f;, ..., f;) ¢ P.

i. Then one could compute the ceiling k = [2] and start the computation

of standard bases for (f;,..., fx) and (fi11,-- ., fr). Depending on the
number of available processors resp. CPU cores this step can be done re-

cursively.

ii. So we end up with a couple of standard bases G, . . ., G,,, where m denotes
number of CPU cores available. Next we need to merge them together, i.e.
we can, in parallel compute standard bases of G, , = G;UG,, ..., Gpym =
G UG,.

iii. Again we do this step recursively and end up with a standard basis G for
(fir- o fo)-

Clearly, this idea can be easily combined with Approach|[(1)a} The main prob-
lem of this attempt is also its fundament: the incremental structure. The stan-
dard bases G; tend to have lots of elements, thus lots of incremental steps must
be done merging the bases together. This has very bad effects considering tim-
ings of the overall algorithm as we have already discussed in more detail in
Section[77} An idea would be to use at the point all G;s are computed a non-
incremental signature—based algorithm. Sadly, due to the fact of lacking a good
implementation we have not been able to test such situations until now.

c) Furthermore, note that all these ideas can also be combined with using different
monomial orders on the set of signatures in each segmented computation.

At the latest from this point on, it becomes clear that parallelizing in this vein is not
at all trivial. The main problem lies in the vast number of possibilities and combi-
nations. A good heuristic of when to use which approach can only be achieved by a
basis for test cases covering a wide range of different examples. Moreover, the basic
algorithms must be implemented in a comparable way as otherwise the results lack
validity.

Another way of parallelizing signature-based computations has not been covered
in this thesis until now. Instead of modularizing the computations using different
processes on a computer, one could also parallelize code in a subtler way using dif-
ferent threads in a single process. So we are not talking about parallelizing a whole
standard basis computation, but we want to parallelize only parts of it. Possible parts
are:

a) Critical pair generation,
b) Criteria checks,
¢) Reduction process.

Note that nearly all of this can be done in a Buchberger-like algorithm, too. Due to
the fact that SINGULAR is not thread-safe right now, we are not able to implement
any of these ideas in the near future.

260 7 Generalizing signature-based algorithms

Let us finish this section with some rather general notes on parallelization of standard
basis algorithms.

Remark 7.5.1.

(1) Parallelization of multiplication and division of polynomials is quite tricky and needs
lots of implementational tricks. MAPLE has done some steps in this direction, but
it took them more than one year to implement it ([128l[i29]]). Moreover, different
philosophies on how to achieve the best result for sparse and dense polynomials
are swirring around and no real winner of this competition has been found until
now. Regarding the afford and time needed to implement this in a computer algebra
system such a step should be deliberated.

(2) A more canonical approach on parallelizing the reduction process is to perform an
F4-like Gaussian Elimination. The matrix operations can be parallelized easily, even
using the huge amount of shaders on modern graphic cards. Faugere and Lachartre
have obtained some nice results in [69].

(3) Note that all ideas given under[(2)] really need to be implemented in a thread-safe
environment. The steps we want to parallelize are computed in a short amount of
time, but happen quite a lot and do (mostly) not depend on each other. Using differ-
ent processes as in the situation of the other presented ideas is not possible since the
communication between the processes may take longer than the computational step
itself. Thus a thread—safe memory management of SINGULAR is the next step before
we can start and implement our ideas on parallelizing signature-based algorithms.

7.6 COMPUTING SYZYGIES WITH GENERALIZED
SIGNATURE-BASED ALGORITHMS

With this section the wheel comes full circle in some sense. In Chapter[gwe started with
a discussion on syzygies and their computation, ending with SyzSTD (see Section [5-3), an
algorithm which uses information from syzygies to compute a standard basis for an ideal.
On the one hand, using information stored in the syzygies is quite good for detecting use-
less critical pairs in the algorithm. On the other hand, the general problem of this attempt
lies in the fact that storing, computing, and comparing all the data stored in the syzygies
slows down the standard basis computation, which is the main task.

In Chapter] we started improving the above mentioned idea by Méller, Mora, and
Traverso storing only those parts of the corresponding module elements which are relevant
for the detection of useless critical pairs, the leading terms. Those are denoted signatures,
the basic concept all signature-based standard basis algorithms have in common.

In Section[z3]we have seen that one can generalize the signatures to consist of more than
the leading terms of the corresponding module elements. Now we take this generalization

7.6 Computing syzygies with generalized signature-based algorithms 261

to a maximum, storing the whole syzygy resp. label of labeled polynomial in the algorithm.
In contrast to Section [33] our intention this time is not to use those generalized signatures
in a special way for the computation of a standard basis. We still use our signature-based
standard basis algorithms with their respective implementations of (NM) and (RW). What
we try to compute is a standard basis for the corresponding first module of syzygies.

So we have used ideas from syzygies and optimized their usage for standard basis com-
putations in what we call signature-based algorithms. Now we use these optimized algo-
rithms to improve the computation of syzygies.

In [10] Arsand Hashemi have already presented an algorithm to compute syzygies using
a signature-based algorithm. Rather imprecise they called their publication Computing
Syzygies by Faugeére’s F5 Algorithm, which is not completely correct: Instead of using Fs as
presented in Section [61]they simplify Fs by not performing any checks with the Rewritten
Criterion. Here we illustrate how to compute syzygies with a way improved version of this
simplified Fs5 using not only principal syzygies for detecting useless elements.

Remark 7.6.1. Note that the results we present here can be applied to any signature-based
algorithm presented in this thesis, even to FsE, the most aggressive and fastest of all such
algorithms. This is a huge improvement compared to the work of Ars and Hashemi and is
not published anywhere else before.

As in [10] we use the ideas of [155] to compute a basis for the first module of syzygies.
Thus we first need to present an algorithm based on F5, which computes syzygies, too. This
has to be in the vein of Algorithm z9]from Section 32} a variant of STD which also stores
syzygies discovered during the standard basis computation.

Convention. In this section we again assume F = {f,,..., f,}, a finite subset in P, as input
for our algorithm. We want to compute Syz(I) for I = (f;,..., f;). < always denotes a
well-order on P, whereas < means the order <; on P".

What is the main idea of computing Syz(I) using F5? On the one hand, Fs stores all
leading terms of the principal syzygies in S for its checks of the F5 Criterion. Thus we just
need to read this information off. On the other hand, we get the non—principal syzygies
by reducing s-vectors to zero during Fs’s incremental standard basis computations. We
present and explain the pseudo code of the algorithms in the following, again highlighting
changes w.r.t. the corresponding code of the basic F5 Algorithm.

In our previous considerations we have been interested in carrying as few as possible
data in our algorithms. We have found out that the leading term of the label of a polyno-
mial is enough to detect useless critical pairs in the signature-based world. For this we
introduced the notion of slim labeled polynomials in Definition f3.17 We agreed on the
fact that we always assume labeled polynomials to be slim in the pseudo codes given in
chapters[gland[6l We need to invert this attempt: Whenever we reduce an element to zero
in F5 we need to know the complete label, not only the corresponding signature! Thus
we use the idea of generalizing the signatures already mentioned in Section 73 and always
store the complete label of a labeled polynomial during the algorithm’s working.

Definition7.6.2. Letr = (I, p) bealabeled polynomial. r is called completeiff | € labels(p).

Looking at the code of Algorithm [62]we see that a new data structure is stored, namely
the set of elements in P, called T In Line 4] F5Syz returns not only the standard basis B

262 7 Generalizing signature-based algorithms

for I, but also T, which is a standard basis for Syz(I). As already mentioned above we can
distinguish in T principal and non-principal syzygies:

(1) Those which are added to T in Line[8lare the non-principal ones coming from the
incremental computations of Fs, which are now done in a variant of INCF5 called
INCF5Syz and described in Algorithm[63]

(2) In the end we can read off the principal syzygies of Syz(I) by just computing all
possible combinations of fje; — fiej, j < i (Line[3).

Note that we are no longer allowed to reduce the initial f;s before entering INCF5Syz. This is
due to the fact that whereas it is clear that those reduction steps would be sig-safe, this time
they have an impact on the labels of the corresponding elements. Note that these reductions
take place in SIGREDF5Syz later on, so there is no problem concerning the correctness of
the standard basis computation of the algorithm.

Algorithm 62 The F5Syz Algorithm(F5Syz)
Input: F={f,,...,f,} afinite subset of P
Output: B a standard basis for (F) w.r.t. <,T a standard basis for Syz(F)

G, < {(el’fl)}

: S = empty list

N

3 R = empty list

o T=0

5: for (i=2,...,r) do

6: if (fi # 0) then

7 G, S, R, T < INcF5Svz(f;, G-y, S, R)
8: T<TuT

9: else

10: Gi <—Gi,1

w for (i=2,...,7)do

12: for(jzl,...,i—l)do
13: T < Tu{fje,-—f,-ej}

140 B« pOly(G,)
15: return (B, T)

What is left is to see how the non-principal syzygies are computed in INCF5Syz. Clearly,
using complete labeled polynomials we get the non-principal part of Syz(I) as a side ef-
fect, by just taking the label of the polynomial that is reduced to zero in SIGREDF5SyZ (see
Line3)of Algorithm[63). However, we obtain this data only since we need to perform more
computations: we need to keep the label correct at every single reduction step! This leads
to one fundamental change compared to F5: We need to adjust the label even when reduc-
ing with lower index elements! Thus we cannot swap those reductions out of SIGREDF5Syz
as we have done this for SIGREDFs (see Line[g). Moreover, generating the s—vector out of
a not detected to be useless critical pair we also need to really compute the label and not
only take the maximum of the two signatures as done in INCFs5 (see Line[r7).

The main differences to the usual F5 implementation lie in the following facts:

7.6 Computing syzygies with generalized signature-based algorithms 263

(1) INcFsSyz does not use the Rewritten Criterion at all, but it uses some of its data by
adding corresponding criteria to S when a labeled polynomial reduces to zero (see

Line[33g).

(2) Due to this NoNMINFs? is used again in Line [[5] to check the critical pairs before
generating s—vectors out of them; the list of criteria could have been updated because
of an intermediate zero reduction.

Exactly this idea of actively using detected zero reductions makes our approach a huge
optimization of the attempt Ars and Hashemi give in [10].

This means that the true syzygy computation takes place in Algorithm [64} In contrast
to SIGREDF5 all reducers of G are taken into account here (see Line M of SIGREDF5SyZ).
Whenever a sig-safe reduction is allowed, we cannot prereduce the reducer u poly(g) with
elements of lower index as done in SIGRED, but we need to carry out all reductions step by
step (Line[g)). At the same time we reduce the polynomials, we need to adjust the corre-
sponding labels, too.

(1) In Linemolwe update the value of the current label computing label(f) — u label(g).
This must be done for any sig-safe reduction step.

(2) If a sig—unsafe reduction is detected, then a new critical pair corresponding to this
not processed reduction is added to the pair set P’. At this point we need to have
the labeled polynomial (label(f), p) as second generator, as label(f) is the current
label fitting to the polynomial data p at that exact moment of computations.

In Theorem [7.6.4] we show that making these changes in the code of Fs5 the resulting
algorithm F5Syz computes besides a standard basis for the input ideal also a standard basis
for the corresponding first module of syzygies.

Remark 7.6.3.

(1) Clearly, the idea of actively using zero reductions goes back to G2V and the results
of Section 51} especially Corollary[5.1.4} We have already integrated this idea in F5E.

(2) Note that performing a sig-safe reduction step one can reduce the polynomial part
and adjust the corresponding label quite easily in parallel on a multicore computer.
Those computations only share the multiplier u, all other data is completely inde-
pendent of each other during these steps.

Theorem 7.6.4. Let F = {f,,..., f,} be the input of F5Syz, I = (f,,.. ., f;). If the algorithm
terminates, then it returns

(1) a standard basis B for I w.r.t. <, and
(2) a standard basis T for Syz(F) w.r.t. <.

Proof. Part[(1)]is clear since we do not change the criteria checks and polynomial reduc-
tions compared to Fs.

So we need to show [(2)} It is clear that T c Syz(F). Assume there exists some s €
Syz(F)\T. Then s must come from a, in F5Syz not processed, zero reduction of a critical

264 7 Generalizing signature-based algorithms

pair (uf,vg). This means that (uf,vg) has been detected by the Fs Criterion. Assume
that the actual computation is the ith call of INCF5Syz, i.e. the current index of labeled
polynomials is i. Thus either a principal syzygy (corresponding to elements in the lists
S[1],...,S[i — 1] set in previous iteration steps of F5Syz) or a non-principal syzygy (cor-
responding to elements in S[i — 1] added to the list in the current iteration step whenever
a zero reduction appeared) s’ exists whose leading term divides the one of s.

Thus L(T) = L (Syz(F)), T is a standard basis for Syz(F) w.r.t. <. O

Let us close this section with a remark on the problems the Rewritten Criterion could
cause when computing Syz(F).

Remark 7.6.5. We have seen in Lemma that whenever a labeled polynomial uf is
detected by the Rewritten Criterion, then there exists a representation

upoly(f) = tpoly(h)+ > &;poly(g;)
gjeG,ng#h

such that
(1) heGorpoly(h) =o,
(2) forall g; with t; # o t;jsiglm(g;) < usiglm(f), and
(3) Im(u) sighn(f) = Im(¢) sighn (k).

What happens if poly(h) # 0? In this situation our proof of Theorem [7.6.4] does not work
any more, we know that (uf,vg) is useless for the computation of the standard basis for
I, but possibly the syzygy is needed for Syz(F). Since h has not reduced to zero, we do not
know if the corresponding syzygy is necessary for the set T being a basis for Syz(F).

Thus, using only those rules coming from zero reductions by adding the corresponding
signature leading terms to S ensures the correctness of F5Syz.

7.6 Computing syzygies with generalized signature-based algorithms 265

Algorithm 63 Incremental Fs5 step computing syzygies(INCF5Syz)

Input: f; a polynomial, G;—, = { G os gs,l} a set of labeled polynomials such that

poly(Gi_,) is a standard basis for (f;, ..., fi_1), S alist of lists of terms in P, R a list of
(i —1) lists of terms in P

Output: G a set of labeled polynomials such that poly(G) is a standard basis for

25:
26:
27:
28:
29:
30:
3L
32:
33:
34:
35:

AN S I

(fir---» fi), S alist of i lists of terms in P, R a list of i lists of terms in P, T a set
of elements in P”
B+ 3,G<+< @,P« @, P « @&, R[i] < empty list, S[i] < empty list, T < &
L<s
g < (ei fi)
S[i] « addFsCrit (1t(g;), S[i])
G« {gl,...,gs}
for (k=1,...,s-1)do

u < lc(gk)—Tl(lﬁs(ﬁk))

v < Ic(gs)—quﬁk))

if (! NoNMINFs? (ug;, S) and ! NONMINF5¢ (vgy, S)) then

P < Pu{(ugvgr)}

: while (P + @) do

P’ < SeLECT(P) (critical pairs of minimal degree)
while (P’ + @) do
Choose (uf,vg) from P’ with max. {usig(f),vsig(g)} minimal w.r.t. <.
if (! NoNMINFsz(u, f, R) and | NoNMINF52(v, g, R)) then
P’ P\ {(uf,vg))
I < ulabel(f) — vlabel(g)
r < (L upoly(f) - vpoly(g))
(r, P") < SIGREDF5Svz(r, G, S, R, s, P')
if (poly(r) # o and r not sig-redundant w.r.t. G) then
S[i] « addFsCrit(lt(r), S[i])
for (k=1,...,t)do
if (Im(gx) +1m(r)) then

u < le(gr) —TI(I;’(%)

-]

if (lm(u) siglm(r) # Im(v) siglm(gy)) then
if (! NoNMiNFs? (ur,S) and ! NoNMINFs? (vgy, S)) then
P<Pu{(ur,vg)}
< t+1
gt 1
G« Gu{g}
else
T « Tu {label(r)}
S[i —1] < addFsCrit(siglt(r), S[i — 1])
return (G,S,R, T)

266 7 Generalizing signature-based algorithms

Algorithm 64 FsSyz’s semi—complete sig—safe reduction algorithm (SIGREDF5Syz)

Input: f a labeled polynomial, G = {g,...,g:} a finite set of labeled polynomials, S a
list of lists of terms in P, R a list of lists of terms in P, s the index of the first labeled
polynomial of current index, P’ a set of critical pairs

Output: h alabeled polynomial sig-safe reduced w.r.t. G, P’ a set of critical pairs

: D« G

2 [< siglm(f)

3 p < poly(f)

4 while (p #oand D, « {g € D |1m (poly(g)) | lm(p)} + @) do
5 Choose any g € D).

. _l(p)
& U Tipoly()

7. if (! NoNMiNFs?(ug, S) and ! REwRITEF52(u, g, R)) then
8: if (lm(u) siglm(g) < 1) then

o p < p—upoly(g)

10: label(f) < label(f) — ulabel(g)
1 else if (lm(u) siglm(g) > l) then

12: P" < P'u{(ug, (label(f),p))}

13: h < (label(f), p)
14: return (h, P')

A EXAMPLES

In the following we give a complete list of all examples used in this thesis. The examples
are sorted by their names in increasing order. The code is given in the SINGULAR language
and is the exact data used for the computations done.

Note that “~h” at the ending of an example’s name indicates that the corresponding
ideal is homogeneous.

268

A Examples

Cyclic-7

Polynomial ring in 7 variables: x(0),x(1),x(2),x(3),x(4),%(5),x(6)

x(0) +x(1) +x(2) +x(3) + x(4) + x(5) +x(6)

x(0) -
x(0) -
x(0)
x(3)
x(4)
x(0)
x(0)
x(3)
x(0)
x(0)
x(0)
x(2)
x(0)
x(0)
x(0)
x(1)
x(0)

x(1) +x(1) -x(2) +x(2) - x(3) +x(3) - x(4) +x(4) -x(5)+
x(6) +x(5) -x(6)

~x(1)-x(2) +x(1) -x(2) - x(3) +x(2) - x(3) - x(4)+

-x(4) -x(5) +x(0) -x(1) -x(6) + x(0) - x(5) - x(6)+

-x(5) - x(6)

~x(1) - x(2) - x(3) +x(1) -x(2) - x(3) - x(4) +x(2) -x(3) -x(4) - x(5)+
-x(1)-x(2) -x(6) +x(0) -x(1) -x(5) - x(6) + x(0) - x(4) - x(5) - x(6)+
-x(4) -x(5) - x(6)

~x(1)-x(2) -x(3) -x(4) +x(1) -x(2) - x(3) - x(4) - x(5)+

-x(1) - x(2) -x(3) -x(6) +x(0) - x(1) - x(2) - x(5) - x(6)+

-x(1)-x(4) -x(5) -x(6) +x(0) -x(3) - x(4) - x(5) - x(6)+

-x(3) -x(4) -x(5) - x(6)

-x(1) - x(2) -x(3) -x(4) -x(5) +x(0) - x(1) - x(2) - x(3) - x(4) - x(6)+

~x(1) - x(2) -x(3) -x(5) -x(6) +x(0) - x(1) - x(2) - x(4) - x(5) - x(6)+

~x(1) - x(3)-x(4) -x(5) -x(6) +x(0) - x(2) - x(3) - x(4) - x(5) - x(6)+

-x(2) -x(3) -x(4) - x(5) - x(6)

~x(1) - x(2) -x(3) -x(4) -x(5) -x(6) - 1

269

Cyclic-8

Polynomial ring in 8 variables: x(0),x(1),x(2),x(3),x(4),x(5),x(6),x(7)

x(0) +x(1) +x(2) +x(3) + x(4) + x(5) +x(6) +x(7)
x(0) - x(1) +x(1) -x(2) +x(2) - x(3) + x(3) - x(4) + x(4) -x(5)+
x(5) - x(6) +x(0) -x(7) + x(6) - x(7)
i[3] = =x(0)-x(1)-x(2) +=x(1)-x(2) -x(3) +x(2) - x(3) -x(4)+
x(3) -x(4) -x(5) +x(4) -x(5) -x(6) + x(0) - x(1) - x(7)+
x(0) - x(6) - x(7) +x(5) -x(6) - x(7)
i[4] = =x(0)-x(1)-x(2)-x(3) +x(1) -x(2)-x(3) -x(4) +x(2) - x(3) - x(4) -x(5)+
x(3) - x(4) -x(5) -x(6) +x(0) - x(1) - x(2) - x(7) +x(0) - x(1) -x(6) - x(7)+
x(0) - x(5) -x(6) -x(7) +x(4) - x(5) - x(6) - x(7)
i[5] = =x(0)-x(1)-x(2)-x(3) -x(4) +x(1)-x(2) -x(3) -x(4) - x(5)+
x(2) - x(3) -x(4) -x(5) -x(6) +x(0) - x(1) - x(2) - x(3) - x(7)+
x(0) - x(1) -x(2) -x(6) - x(7) +x(0) - x(1) - x(5) - x(6) - x(7)+
x(0) -x(4) -x(5) -x(6) -x(7) +x(3) - x(4) - x(5) - x(6) - x(7)
i[6] = =x(0)-x(1)-x(2)-x(3) -x(4) -x(5) +x(1)-x(2) -x(3)-x(4) -x(5) -x(6)+
x(0) - x(1) -x(2) -x(3) -x(4) -x(7) +x(0) - x(1) - x(2) - x(3) - x(6) - x(7)+
x(0) - x(1) -x(2) -x(5) -x(6) -x(7) +x(0) - x(1) - x(4) - x(5) - x(6) - x(7)+
x(0) - x(3) -x(4) -x(5) -x(6) - x(7)+
x(2) -x(3) -x(4) -x(5) - x(6) - x(7)
i[7] = =x(0)-x(1)-x(2)-x(3)-x(4)-x(5) -x(6) +x(0) -x(1) -x(2) -x(3) - x(4) - x(5) - x(7)+
x(0) - x(1) -x(2) -x(3) -x(4) -x(6) - x(7) +x(0) - x(1) - x(2) -x(3) - x(5) - x(6) - x(7)+
x(0) - x(1) -x(2) -x(4) -x(5) -x(6) - x(7) +x(0) - x(1) - x(3) -x(4) - x(5) - x(6) - x(7)+
x(0) - x(2) -x(3) -x(4) -x(5) -x(6) - x(7)+
x(1)-x(2)-x(3) -x(4) -x(5) - x(6) - x(7)
i[8] = =x(0)-x(1)-x(2)-x(3)-x(4) -x(5) -x(6)-x(7) -1

270 A Examples

Eco-8

Polynomial ring in 8 variables: x(0),x(1),%(2),%(3),x(4),x(5),x(6),x(7)

[y

—
iR

[
Il

x(0) - x(1) -x(7) +x(1) - x(2) - x(7) +x(2) - x(3) - x(7)+

x(3)-x(4) -x(7) +x(4) -x(5) - x(7) +x(5) - x(6) - x(7)+

x(0)-x(7) -1

i[2] = =x(0)-x(2)-x(7)+=x(1) -x(3) -x(7) +x(2) -x(4) - x(7)+
x(3)-x(5) -x(7) +x(4) -x(6) - x(7) +x(1) -x(7) - 2

i[3] = x(0)-x(3)-x(7)+=x(1) -x(4) -x(7) +x(2) -x(5) - x(7)+
x(3)-x(6)-x(7) +x(2) - x(7) -3

i[4] = =x(0)-x(4)-x(7)+=x(1) -x(5) -x(7) +x(2) -x(6) -x(7)+

x(3)-x(7)-4

x(0) -x(5) -x(7) +x(1) -x(6) - x(7) +x(4) -x(7) -5

x(0) -x(6) -x(7) +x(5) -x(7) -6

x(6)-x(7)-7

x(0) +x(1) +x(2) +x(3) + x(4) +x(5) +x(6) +1

Polynomial ring in 9 variables:

x(0)
x(3)
x(0)
x(0)
x(3)
x(0)
x(3)
x(0)
x(3)
x(0)
x(0)
x(6) -

-x(1)
-x(4)
-x(7)
-x(2)
-x(5)
-x(3)
-x(6)
-x(4)
-x(7)
-x(5)
-x(6)

x(7)

Eco-8-h

-x(7) +x(2) -
-x(7) +x(5) -

-x(7) +x(2) -
-x(7) +x(1) -
-x(7) +x(2) -
-h-3-h"3

-x(7) +x(2) -

-x(7) +x(4) -
-h—-6-h"3

x(0),%(1),%(2),%(3),x(4),x(5),x(6),x(7),h

-x(7) +x(1) -x(2)
-x(7) +x(4) -x(5)
-h—h"3

-x(7) +x(1) -x(3)
-x(7) +x(4) -x(6)
-x(7) +x(1) -x(4)
-x(7) +x(2) -x(7)
-x(7) +x(1) -x(5)
-h—-4-h"3

-x(7) +x(1) -x(6)
-x(7) +x(5) -x(7)
—-7-h"2

x(3) - x(7)+
x(6) - x(7)+

x(4) -x(7)+
x(7)-h-2-h'3
x(5) - x(7)+
x(6) - x(7)+

x(7)-h-5-h"3

x(0) +x(1) +x(2) +x(3) +x(4) +x(5) +x(6) +h

271

272 A Examples

Eco-9
Polynomial ring in g variables: x(0),x(1),%(2),%(3),%(4),x(5),x(6),x(7),x(8)
i[1] = =x(0)-x(1)-x(8) +=x(1)-x(2) -x(8) +x(2)-x(3) -x(8)+

x(3) -x(4) -x(8) +x(4) -x(5) -x(8) + x(5) - x(6) - x(8)+
x(6) - x(7) -x(8) +x(0) - x(8) -1

i[2] = =x(0)-x(2)-x(8) +=x(1)-x(3) -x(8) +x(2) -x(4) -x(8)+
x(3) - x(5) -x(8) +x(4) -x(6) - x(8) + x(5) - x(7) - x(8)+
x(1)-x(8)-2

i[3] = =x(0)-x(3)-x(8)+=x(1)-x(4) -x(8) +x(2)-x(5)-x(8)+
x(3) - x(6) -x(8) +x(4) -x(7) -x(8) + x(2) - x(8) - 3

i[4] = =x(0)-x(4)-x(8)+x(1) -x(5) -x(8) +x(2)-x(6) -x(8)+

x(3)-x(7)-x(8) +x(3)-x(8) -4
i[6] = =x(0)-x(5)-x(8) +x(1) -x(6) -x(8) +x(2) -x(7)-x(8)+
x(4)-x(8) -5

i[6] = =x(0)-x(6)-x(8)+=x(1)-x(7)-x(8) +x(5)-x(8) -6
i[7] = =x(0)-x(7)-x(8) +x(6)-x(8)-7

i[8] = =x(7)-x(8)-8

i[9] = =x(0)+=x(1)+x(2) +x(3) +x(4) +x(5) +x(6) +x(7) + 1

273

Eco-9-h

Polynomial ring in 10 variables: x(0),x(1),x(2),%(3),%(4),x(5),x(6),%(7),x(8),
h

i[1] = =x(0)-x(1)-x(8) +x(1)-x(2) -x(8) +x(2) - x(3) -x(8)+
x(3) -x(4) -x(8) +x(4)-x(5) -x(8) + x(5) - x(6) - x(8)+
x(6) - x(7)-x(8) +x(0) -x(8) -h-h"3

i[2] = =x(0)-x(2)-x(8) +x(1)-x(3) -x(8) +x(2)-x(4) -x(8)+
x(3) - x(5) -x(8) +x(4) -x(6) -x(8) + x(5) - x(7) - x(8)+
x(1) - x(8) -h—2-h"3

i[3] = =x(0)-x(3)-x(8) +x(1)-x(4) -x(8) +x(2)-x(5) -x(8)+
x(3)-x(6) -x(8) +x(4) -x(7) -x(8) +x(2) -x(8)-h—3-h"3

i[4] = =x(0)-x(4)-x(8)+x(1) -x(5) -x(8) +x(2)-x(6)-x(8)+
x(3) - x(7)-x(8) +x(3) -x(8)-h-4-h"3

i[5] = =x(0)-x(5)-x(8) +x(1)-x(6) -x(8) +x(2)-x(7)-x(8)+

x(4) - x(8) -h—5-h"3

x(0) - x(6) -x(8) +x(1) - x(7) -x(8) +x(5) -x(8) -h—6-h"3
x(0) - x(7) -x(8) +x(6) -x(8) -h-7-h"3
x(7)-x(8)-8-h"2

x(0) +x(1) +x(2) +x(3) +x(4) +x(5) +x(6) +x(7) +h

274 A Examples

Eco-10

Polynomial ring in 10 variables: XEO;, x(1),%(2),%(3),%(4),%(5),x(6),x(7),x(8),
x(9

i[1] = x(0)-x(1)-x(9) +x(1)-x(2) -x(9) +x(2) - x(3) - x(9)+
x(3)-x(4) -x(9) +x(4) - x(5) - x(9) +x(5) - x(6) - x(9)+
x(6)-x(7)-x(9) +x(7) - x(8) - x(9) +x(0) -x(9) - 1

i[2] = x(0)-x(2)-x(9) +x(1)-x(3)-x(9) +x(2) - x(4) - x(9)+
x(3)-x(5)-x(9) +x(4) - x(6) - x(9) +x(5) - x(7) - x(9)+
x(6)-x(8)-x(9) +x(1)-x(9) -2

i[3] = x(0)-x(3)-x(9) +x(1)-x(4)-x(9) +=x(2) -x(5)-x(9)+
x(3)-x(6)-x(9) +x(4) - x(7) - x(9) +x(5) - x(8) - x(9)+
x(2)-x(9)-3

i[4] = x(0)-x(4)-x(9) +x(1)-x(5)-x(9) +x(2) -x(6) - x(9)+
x(3)-x(7)-x(9) +x(4) - x(8) - x(9) +x(3) -x(9) - 4

i[5] = x(0)-x(5)-x(9) +x(1)-x(6) -x(9) +x(2) - x(7) - x(9)+

x(3)-x(8)-x(9) +x(4)-x(9) -5
i[6] = x(0)-x(6)-x(9) +x(1)-x(7) -x(9) +x(2) -x(8) - x(9)+
x(5)-x(9)-6

i[7] = x(0)-x(7)-x(9) +x(1)-x(8)-x(9) +x(6)-x(9) -7

i[8] = x(0)-x(8)-x(9)+x(7)-x(9)-8

i[9] = =x(8)-x(9)-9

i[10] = =x(0)+=x(1) +x(2) +x(3) +x(4) +x(5) +x(6) +x(7) +x(8) + 1

275

Eco-10-h

Polynomial ring in 11 variables: x(0),x(1),x(2),%(3),x(4),%(5),x(6),x(7),x(8),
x(9),h

i[1] = x(0)-x(1)-x(9) +x(1)-x(2) -x(9) +x(2) - x(3) - x(9)+
x(3) -x(4) -x(9) +x(4) -x(5) -x(9) +x(5) - x(6) - x(9)+
x(6) - x(7)-x(9) +x(7) -x(8) - x(9) +x(0) - x(9)-h—h"3

i[2] = x(0)-x(2)-x(9) +x(1)-x(3) -x(9) +x(2) - x(4) - x(9)+
x(3) - x(5) -x(9) +x(4) -x(6) -x(9) +x(5) - x(7) - x(9)+
x(6) - x(8)-x(9) +x(1)-x(9)-h-2-h"3

i[3] = x(0)-x(3)-x(9) +x(1)-x(4) -x(9) +x(2) - x(5) - x(9)+
x(3) - x(6) -x(9) +x(4) -x(7) -x(9) +x(5) - x(8) - x(9)+
x(2)-x(9)-h—-3-h"3

i[4] = x(0)-x(4)-x(9) +x(1)-x(5) -x(9) +x(2) - x(6) - x(9)+
x(3) - x(7)-x(9) +x(4) -x(8) -x(9) +x(3) - x(9)-h—4-h"3

i[5] = x(0)-x(5)-x(9) +x(1) -x(6) -x(9) +x(2) - x(7) - x(9)+
x(3)-x(8) -x(9) +x(4) -x(9)-h-5-h"3

i[6] = x(0)-x(6)-x(9) +x(1) -x(7) -x(9) +x(2) - x(8) - x(9)+

x(5)-x(9)-h-6-h"3

i[7] = x(0)-x(7)-x(9) +=x(1)-x(8) -x(9) +x(6) -x(9)-h-7-h"3
i[8] = =x(0)-x(8)-x(9)+x(7)-x(9)-h-8-h"3

i[9] = =x(8)-x(9)-9-h"2

i[10] = =x(0)+x(1) +x(2) +x(3) +x(4) +x(5) +x(6) +x(7) +x(8) +h

Polynomial ring in 11 variables:

x(0)
x(3)
x(6)
x(0)
x(0)
x(3)
x(6)
x(0)
x(3)
x(6)
x(0)
x(3)
x(3)
x(0)
x(3)
x(0)
x(3)

= x(0)

-x(2)
-x(5)
-x(8)
-x(3)
-x(8)
-x(9)
-x(4)
-x(7)
-x(10) -4

-x(5) -x(10) + x(1)
-x(8) - x(10) + x(4)
-x(6) -x(10) + x(1)
-x(9) - x(10) + x(5)
-x(7) -x(10) + x(1)

A Examples

Eco-11

x(9),x(10)

x(1)-x(10) +x(1)
x(4) -x(10) + x(4)
x(7) -x(10) +x(7)
x(10) — 1

-x(10) + x(1)
-x(10) + x(4)
-x(10) + x(7)
-x(10) + x(1)
-x(10) + x(4)
-x(10) + x(2)
-x(10) + x(1)
-x(10) + x(4)

-x(2)
-x(5)
-x(8)

-x(3)
-x(6)
-x(9)

-x(10) + x(2)
-x(10) +x(5)
-x(10) +x(8)

-x(10) +x(2)
-x(10) + x(5)
-x(10) +x(1)
-x(4) - x(10) + x(2)
-x(7) - x(10) + x(5)
-x(10) -3

-x(5) - x(10) + x(2)
-x(8) - x(10) +x(5)

-x(6) - x(10) + x(2)
-x(9) - x(10) +x(4)
-x(7) - x(10) + x(2)
-x(10) - 6

-x(8) - x(10) + x(2)

x(0),x(1),%(2),%(3),x(4),x(5), x(6), x(7), x(8),

-x(3) - x(10)+
-x(6) - x(10)+
-x(9) - x(10)+

-x(4) -x(10)+
-x(7) - x(10)+
-x(10) - 2

-x(5) - x(10)+
-x(8) - x(10)+

-x(6) - x(10)+
-x(9) -x(10)+

-x(7) - x(10)+
-x(10) -5
-x(8) - x(10)+

-x(9) -x(10)+

x(6) -x(10) -7

i[8] = =x(0)-x(8)-x(10) +x(1)-x(9) -x(10) +x(7) -x(10) -8

i[9] = x(0)-x(9)-x(10) +x(8)-x(10) -9

i[10] = =x(9)-x(10)-10

i[11] = =x(0) +=x(1) +=x(2) + x(3) + x(4) +x(5) +x(6) + x(7) + x(8)+

x(9) +1

277

Eco-11-h

Polynomial ring in 12 variables: x(0),x(1),x(2),x(3),%(4),x(5),x(6),x(7),%(8),
x(9),x(10),h

i[1] = x(0)-x(1)-x(10) +x(1) -x(2) -x(10) +x(2) - x(3) - x(10)+
x(3) -x(4) -x(10) +x(4) -x(5) - x(10) + x(5) - x(6) - x(10)+
x(6) - x(7) -x(10) +x(7) - x(8) - x(10) + x(8) - x(9) - x(10)+
x(0)-x(10)-h-h"3

i[2] = x(0)-x(2)-x(10) +x(1)-x(3)-x(10) +x(2) - x(4) - x(10)+
x(3) - x(5) -x(10) + x(4) - x(6) - x(10) +x(5) - x(7) - x(10)+
x(6) - x(8) -x(10) +x(7) - x(9) - x(10) +x(1) -x(10) -h—2-h"3

i[3] = x(0)-x(3)-x(10) +x(1)-x(4)-x(10) +x(2) -x(5) - x(10)+
x(3) - x(6) -x(10) +x(4) - x(7) - x(10) +x(5) - x(8) - x(10)+
x(6) -x(9) -x(10) +x(2) -x(10) -h - 3-h"3

i[4] = =x(0)-x(4)-x(10) +x(1)-x(5)-x(10) +x(2) -x(6) - x(10)+
x(3) - x(7) -x(10) + x(4) - x(8) - x(10) +x(5) - x(9) - x(10)+
x(3)-x(10)-h-4-h"3

i[6] = x(0)-x(5)-x(10) +x(1)-x(6)-x(10) +x(2) -x(7) - x(10)+
x(3) - x(8) -x(10) +x(4) - x(9) - x(10) +x(4) -x(10) -h—5-h"3

i[6] = x(0)-x(6)-x(10) +x(1)-x(7)-x(10) +x(2) -x(8) - x(10)+
x(3) -x(9) -x(10) +x(5) -x(10) -h-6-h"3

i[7] = x(0)-x(7)-x(10) +x(1) - x(8) - x(10) +x(2) - x(9) - x(10)+

x(6)-x(10)-h-7-h"3

i[8] = x(0)-x(8)-x(10)+x(1)-x(9)-x(10) +x(7)-x(10)-h-8-h"3
i[9] = x(0)-x(9)-x(10) +x(8)-x(10)-h-9-h"3

i[10] = x(9)-x(10)-10-h"2

i[11] = x(0) +x(1) +x(2) +x(3) +x(4) + x(5) +x(6) + x(7) + x(8)+

x(9) +h

278

A Examples

F-633

Polynomial ring in 10 variables: U6,U5,U4,U3,U2,u6, u5, u4,u3, u2

i[1]
i[2]

[
if3]

RS
(%]

"
— — r— — —
~
i T

©

s

cub+2-ub+2-ud+2-u3+2-u2+1
-U6+2-U5+2-U4+2-U3+2-U2+1
-U5-u6+4-U4-u6+4-U3-u6+4-U2-u6-4-U6-ub+4-U4-ub+
-U3-ub+4-U2-ub-4-U6-u4-4-U5-u4+4-U3-u4+4-U2- -ud-
-U6-u3-4-U5-u3-4-U4-u3+4-U2-u3-4-U6-u2—-4-U5-u2-
cU4-u2-4-U3-u2+2-u6+2-ub+2-u4+2-u3+2-u2+1
-4.U5-u6-4-U4-u6-4-U3-u6-4-U2-u6+4-U6-ub-—
4.U4-u5-4-U3-u5-4-U2-ub+4-U6-ud+4-U5-ud—4-U3 -ud-
4.U2-u4+4-U6-u3+4-U5-u3+4-U4-u3-4-U2-u3+4-U6-u2+
4.U5-u2+4-U4-u2+4-U3-u2+2:-U6+2-U5+2-U4+2-U3+2-U2+1
U2-u2-1

U3-u3-1

U4-ud-1

U5-ub-1

U6-u6 -1

NN

F-633-h

Polynomial ring in 11 variables: U6, U5,U4,U3, U2, u6, u, u4,u3,u2,h

cub+2-ub+2-u4d+2-u3+2-u2+h
-U6+2-U5+2-U4+2-U3+2-U2+h
cUb-u6+4-U4-u6+4-U3-u6+4-U2-u6-4-U6-ub+4-U4 ub+
-U3-ub+4-U2-u6-4-U6-ud—-4-U5-u4+4-U3-ud+4-0U2-ud-
-U6-u3-4-U5-u3-4-U4-u3+4-U2-u3-4-U6-u2-4-U5-u2—-
cU4-u2-4-U3:u2+2-u6-h+2-ub-h+2-u4-h+2-u3-h+
-u2-h+h"2
—4.U5-u6-4-U4-u6-4-U3-u6-4-U2-u6+4-U6-ub—
4.U4-u6-4-U3-ub-4-U2-ub+4-U6-ud+4-U5-u4—-4-U3-ud-
4.U2-u4+4-U6-u3+4-U5-u3+4-U4-u3-4-0U2-u3+4-U6-u2+
4.U5-u2+4-U4-u2+4-U3-u2+2-U6-h+2-U5-h+2-U4-h+
2:U3-h+2-U2-h+h"2

U2-u2-h"2

U3:-u3-h"2

U4-ud-h"2

U5-ub-h"2

U6-u6—-h"2

DR R A AN

279

280 A Examples

F-744
Polynomial ring in 12 variables: U7,U6,U5,U4,U3,U2,u7, u6, ub, u4,u3,u2

‘u7+2-u6+2-ub+2-u4+2-u3+2-u2+1
cU7+2-U6+2-U5+2-U4+2-U3+2-U2+1
-U6-u7+8-U5-u7+8-U4-u7+8-U3-u7+8-U2-u7+8-U6-ub+
-U5-u6+8-U4-u6+8-U3-u6+8:-U2-u6+8-U5-ub+8-U4-ub+
-U3-ub+8-U2-ub+8-U4-u4d+8-U3-u4+8-U2-ud+8-U3-u3+
-U2-u3+8-U2-u2 - 17
-U7-u6+8-U6-u6+8-U7-ub+8:-U6-ub+8:-U5-ub+8-U7-ud+
-U6-ud+8-U5-u4+8-U4-ud+8-U7-u3+8-U6-u3+8-U5-u3+
-U4-u3+8:U3:u3+8:-U7-u2+8:-U6-u2+8:-U5-u2+8-U4-u2+
-U3-u2+8-U2-u2-17
i[5] = 16-U5-U3-u4+16-U5-U2-u4+16-U5-U2-u3 + 16-U4-U2-u3+
8-U5-u4+8-U5-u3+8-U4-u3+8-U5-u2+8-U4-u2+8-U3-u2+
18-U5+18-U4+18-U3+18-U2+ 11
i[6] = 16-U4-u5-u3+16-U4-ub5-u2+16-U3-ub5-u2+ 16-U3-ud - u2+
8-U4-ub+8-U3-ub+8-U2-ub+8-U3-u4+8-U2-u4+8-U2-u3+
18-ub+18-u4+18-u3+18-u2+ 11

0 0 00 00 0 0 00 0 N N

] = U6-u6-1
12] = U7-u7-1

i[7] = U2-u2-1
i[8] = U3-u3-1
i[9] = U4-ud-1
i[10] = U5-u5-1
[
(

281

F-744-h

Polynomial ring in 13 variables: U7,U6,U5,U4,U3,U2,u7,u6,u5,u4,u3,u2,h

i[1] = ‘u7+2-u6+2-ub+2-ud+2-u3+2-u2+h
i[2] = 2-U7+2-U6+2-U5+2-U4+2-U3+2-U2+h
i[3] = 8-U6-u7+8:U5-u7+8-U4-u7+8-U3-u7+8-U2-u7+8-U-ub+

-U5-u6+8-U4-u6+8-U3-u6+8-U2-u6+8-U5-ub+8-U4-ub+
-U3-ub+8-U2:ub+8-U4-u4+8-U3-u4+8-U2-ud+8-U3-uld+
-U2-u3+8-U2-u2-17-h"2
-U7-u6+8-U6-u6+8-U7-ub+8-U6-ub+8-U5-ub+8-U7-ud+
-U6-u4d+8-U5-u4+8-U4-u4+8-U7-u3+8-U6-u3+8-U5-uld+
+U4-u3+8-U3-u3+8-U7-u2+8:-U6-u2+8-U5-u2+8-U4-u2+
-U3-u2+8-U2-u2-17-h"2
i[5] = 16-U5-U3-u4+16-U5-U2-u4+16-U5-U2-u3 +16-U4-U2-u3+
8-U5-u4-h+8-U5-u3-h+8:-U4-u3-h+8-U5-u2-h+8-U4-u2-h+
8:-U3-u2-h+18-U5-h"2+18-U4-h"2+18-U3-h"2+18-U2-h"2+
11-h"3
i[6] = 16-U4-u5-u3+16-U4-ub-u2+16-U3-u5-u2+16-U3-ud u2+
8-U4-u6-h+8:-U3-ub-h+8-U2-ub-h+8-U3-ud-h+8-U2-ud-h+
8:-U2-u3-h+18-u5-h"2+18-u4-h"2+18-u3-h"2+18-u2-h"2+
11-h"3
= U2-u2-h"2
= U3-u3-h"2
U4d-ud-h"2
= U5-ub-h"2
U6-u6—h"2
= U7-u7-h"2

0 0 00 0 0 0 0 0 N N

© ~
= O
Il

I i e
——_——_ —_———
—
s
I

282

Polynomial ring in 14 variables:

[e e
B wW N -

NS
(é)]

He
0 ~

[y
©

=

nlsnlswisnisulsniraissniracisms)
0]

O e e e e

.
[y

i[11]

i[12]

i[13]

A Examples

F-855

U8,U7,U6,U5,U4,U3,U2,u8,u7,ub, ub,us, u3, u2

2-u8+2-u7+2-u6+2-ub+2-ud+2-u3+2-u2+1
2-U8+2-U7+2:-U6+2-U5+2-U4+2-U3+2-U2+1
U2-u2-1
U3-u3-1
U4-ud -1
U5-ub-1
U6-u6 -1
U7 -u7 -1
U8 -u8-1

|
N

-U2

ORI TN N NS N S N NN N

u2 +2

u8 +4-
u7 +4-
u6 —-4-
ub-4-
w4 -4-
u3-4-
u2-4-
cu8+2-u7+2-

U8
Us
Us
U8
Us
Us

U6
U6
u7
u7
u7
u7
u7

-u7 -4
-ub +4
-ub+4
-ud +4
cu3+4
‘u2+4
-U8+2-U7T+2-
-u8+4
-u7+4
-ub+4-
-ub -4
cud -4
cu3-4-
‘u2-4

u6 + 2 -

.U5 -
-US
Us-
.U6 -
.U6 -
U6 -
.U6 -

u7 -4-
u6 -4-
ub+4-
uéd +4-
ud+4-
u2+4-

U6 + 2

u8 +4-
-u7+4-
ué + 4 -
ub+4-
w4 -4-
u3-4-
u2-4-

Us
Us
U6
U6
U6
U6

U4

U4 -
U4 -
U4 -

Us
Us
Us

-u7 -4
-ub -4
-ub-4
‘ud +4
cu3+4
‘u2+4

-u8+4
u7 +4

ub+4
cud +4

‘u3-4-

cu2-4

ub +4-
-U3
-U3
u4 -
-U4

-U4
-U4
-U4
-US
-US
-US

-U3
-U3

U3

-U7-u8-4-U6-u8—-4-U5-u8-4-U4-u8-4-U3-u8—
-u8+4-
u7 +4-
ub +4-
ub+4-
ud +4-
ud+4-

-u7-4-
-u6—4-
-ub—-4-
cud -4
-u3+4-
‘u2+4-
cU5+2-U4+2-U3+2-U2+1
-u8+4-
-u7+4-
u6+4-
-ub+4-
cud+4-
ud+4-
cu2-4-

ub+2-ud+2-u3+2-u2+1
16-U6-U4-u5+16-U6-U3-ub+16-U6-U2-ub+ 16-U6-U3-ud+
16-U5-U3-ud +16-U6-U2-ud+16-U5-U2-ud + 16 -U6 - U2 - u3+
16-U5-U2-u3+16-U4-U2-u3+8-U6-ub+8-U6-ud +8-U5-ud+
8-U6-u3+8-U5-u3+8-U4-u3+8-U6-u2+8-U5-u2+8-U4 -u2+
8-U3-u2+26-U6+26-U5+26-U4+26-U3+26-U2+ 15
16-U5-u6-ud +16-U5-u6-ud3+16-U4-u6-u3d + 16-U4-ub-u3+
16-U5-u6-u2+16-U4-u6-u2+ 16-U3-u6-u2+ 16-U4-ub-u2+
16-U3-u5-u2+16-U3-u4-u2+8-U5-u6+8-U4-ub+8-U3-ub+
8-U2-u6+8-U4-u6+8-U3-ub+8-U2-u5+8:U3-ud+8-U2 -ud+
8-U2-u3+26-u6+26-ub+26-ud+26-u3+26-u2+15

U3
U3
U3
U3

U2
U2
U2
U2
U2
U2
U3

Lu7—
.u6—
.u5—
Lud—
U4 -
U4 -

u3-
u22+

.u8—
u7-
.ub—
-ub—
cud—
.u3-
-u2+

283

-2-U7-U5-u8-u6—-2-U7-U4-u8-u6—-2-0U7-U3-u8-ub—
-U7-U2-u8-u6-2-U7-U4-u8-ub—-2-U6-U4-u8-ub—-
-U7-U3-u8-ub-2-U6-U3-u8-ub—-2-0U7-U2-u8-ub—-
-U6-U2-u8-ub+2-U8-U6-u7-u5—-2-U6-U4-u7- -ub—
-U6-U3-u7-ub—-2-U6-U2-u7-ub—-2-0U7-U3-u8-ud-
-U6-U3-u8-u4—-2-U5-U3-u8-ud -2-07-U2-u8-ud-
-U6-U2-u8-u4—-2-U5-U2-u8-ud +2-U8-U6-u7 -ud+
-U8-U5-u7-u4-2-U6-U3-u7-u4d—-2-0U5-U3-u7-ud-
-U6-U2-u7-u4—-2-U5-U2-u7-ud+2-0U8:-U5-ub-ud+
-U7-U5-u6-u4—-2-U5-U3-u6-u4d —2-0U5-U2-ub-ud—
-U7-U2-u8-u3-2-U6-U2-u8-u3-2-U5-U2-u8-u3-
-U4-U2-u8-u3+2-U8-U6-u7-u3+2-0U8:-U5-u7- -u3d+
-U8-U4-u7-u3—-2-U6-U2-u7-u3-2-0U5-U2-u7- -u3—-
-U4-U2-u7-u3+2-U8-U5-u6-u3+2-0U7-U5-ub-u3d+
-U8-U4-u6-u3+2-U7-U4-u6-u3-2-0U5-U2-ub-u3—
-U4-U2-u6-u3+2-U8-U4-ub-u3+2-07-U4-ub-u3d+
-U6-U4-ub-u3-2-U4-U2-ub-u3+2-U8-U6-u7- -u2+
-U8-U5-u7-u2+2-U8-U4-u7-u2+2-0U8-U3-u7- -u2+
-U8-U5-u6-u2+2-U7-U5-u6-u2+2-0U8:-U4-ub-u2+
-U7-U4-u6-u2+2-U8-U3-u6-u2+2-07-U3-ub-u2+
-U8-U4-ub-u2+2-U7-U4-ub-u2+2-U6-U4-ub-u2+
-U8-U3-ub-u2+2-U7-U3-ub-u2+2-U6-U3-ub-u2+
-U8:-U3-ud-u2+2-U7-U3-ud-u2+2-U6-U3 ud- u2+
-U5-U3-u4-u2+U8-U6-u7+U8-U5-u7 +U8-U4 . u7+
-U3-u7+U8:-U2-u7+U8-U5-u6+U7-U5-u6+U8-U4-ub+
-U4-u6+U8-U3-u6+U7-U3-u6+U8-U2-ub +U7-U2 -ub—
-u8-u6+U8:-U4-ub5+U7-U4-u5+U6-U4-ub+U8-U3-ub+
-U3-ub+U6:-U3-u5+U8-U2-u5+U7-U2-ub+U6-U2-ub—
-u8-ub-U6-u8-ub—-U6-u7-ub+U8-U3-uéd +U7-U3-ud+
-U3-u4+U5-U3:-u4+U08-U2-ud +U7-U2-uéd +U6-U2- -ud+
-U2-u4-U7-u8-u4-U6-u8-u4 —U5-u8-uéd —U6-u7- -ud—
cu7-u4-U5-u6-u4+U08-U2-u3+U7-U2-u3+U6-U2- -u3+
-U2-u3+U4:-U2:-u3-0U7-u8-u3-U6-u8-u3-U5-u8-u3—
-u8-u3-U6-u7-u3-U5-u7-u3-U4-u7-u3-U5-u6-u3—
cu6-u3-U4-u5-u3-0U7-u8-u2-U6-u8-u2—-U5-u8-u2—-
-u8-u2-U3:-u8:-u2-U6-u7-u2-U5-u7-u2—-U4-u7- -u2—-
-u7-u2-U5-u6-u2-U4-u6-u2-U3-u6-u2—-U4-ub-u2—
-ub-u2-U3:-ud -u2

NNNNDNDNNDNDNMNDNNDNDNNNDNDNDNDDNDDNDDNDDNDDND

cocgcggoggaggogaoaacagogaag
W W oo NN NN

284

NNNNNDNNDNNDNDNNMNNNNDMNMNNONNDNDMNDNDNDNDNDNDNDND

cgagcggoccocaocgocgogocgagaagcacg
W Wb PO NN NN

-U7
-U7
-U7
-U6
-U6
-U6
-U6
-U8
-U6
-U7
-U7
U4 -
-U8
U4 -
-U8
U4 -
-U6
-U8
-U8
-U7
-U8
-U8
-U8
-UbS

-U3
- U4
-u8
-U3
-u8
-U3
-U2
-u7
-U2
-u8
-ub
-u8
-u7
-ub

-UbS
-U2
-U3
-U2
-U3
-U3
-U2
-UbS
-U2
-U5S
-U2

U2

U2

U2

-u6 -U8-U3

-u8
-u8
-u8
-u8
-u’7
-u8
-u8
-u’7
-u’7
-ub
-u8
-u8
U4 -

u7

-u7

u6

-ub
U4 -
-Ub
- U5
U4 -
U4 -
-U3
-U3
-U3

ub

-u7
-ub

u6
ub

-ub
-uéd
cud -

cub +2-
cub+2-
-ub+2-
cub-2-
-ub+2-
cud +2-
‘ud +2-
cud +2-
‘ud +2-
‘ud +2-
ud3+2-
‘u3-2-
‘u3+2-
‘u3 -2
‘u3-2-
‘u3-2-
u3+2-
‘u2-2-
‘u2-2-
‘u2-2-
‘u2-2-
‘u2-2-
‘u2-2-

uT7 -
U7 -
U6 -
Us-
U6 -
Us-
Us-
U6 -
Us-
Us-
U6 -
Us-
U6 -
Us -
U7 -
Us-
U4 -
Us-
U7 -
U8 -
U7 -
U7 -
U7 -

U4 -
u4 -
-u8
-u7
-u’7
-u8
-u8
-u’7
-u7
-ub
-u8
-u’7
-u7
-ub
U4 -
U4 -
-ub
U4 -
-ub
-ub
U4 -
-ub
Lud -

U3
U6
U2
U3
U2
U3
U2
U3
U2
U6
U2
Us

U2

Us
U3

U3
U3

Examples

u8
u8

u6b
ub

u7

ub

cub + 2
-ub+ 2
-ub+ 2
-ub+2
-ub+ 2
cud + 2
cud -2
cud +2
cud -2
cud + 2
cu3+2
u3 -2
cud +2
u3 -2
cud3 +2
u3 -2
u3 -2
cu2 -2
cu2 -2
cu2 -2
cu2 -2
cu2 -2
u2 -2

-U7
-U6
-U7
-U6
-U7
U7
-U8
-US
-U8
-US
-US
-U8
-US
U7
-US
U7
-U8
-U8
-U8
-U7
-U6
-U6
-U6

-U3-u8-
-U4-u8-
-U2-u8-
-U4 - u7-
-U3-u8-
-U2-u8-
-U6 - u7 -
-U3-u7-
-U5-ub-
-U2-ub-
-U2-u8-
-U5 - u7-
-U2-u7-
-US5-ub-
-U2-ub-
-U4-ub-
-U6 - u7 -
-U3-u7-
-U4 - ub -
-U3-ub -
-U4 - ub-
-U3-ub-
-U3-u4-

ub+
ub+
ub+
ub+
ud+
ud+
ud—
ud+
ud—
ud+
u3+
u3-
u3d+
u3—-
u3d+
u3-
u2-
u2-
u2-
u2—
u2-
u2-
u2—

u2-U8-U6-u7-U8-U5-u7-U8-U4-u7-
-u7 -U8-U2-u7 -U8

-u6-U8-U4-

-ub - U6-U3
-ub +U6-u8

-u4 -U5-U3-
-u4 +U7-u8-

-u4 +U5-ub
-u3 -U4-U2
-u3 + U6 - u7
-u3+U4-ub

cu2+0U3-u8-

-u2+Ub5-ub

cu2+U3-u4d-

-u6 - U7

ub - U7

-ub-U8-
-ub + U6
u4 - U8 -

ué + U6

-ud - U8
-u3 + U7
-u3 + U5
-u3d + U7

u2 + U6

u2

-Ub
-U3
U4 -

U2

-u’7

U2

.u8 -
-U2
.u8 -
-u7
-u8
-u7
-u2+U4-

u6é

-u6 - U7
-u6 — U8
ub - U6
-ub —-U7
-ub -U8
-ud - U7
u4 + U5
-u3 -U7
u3 + U6

-u3 +U4-
-u8
-u7
-u2+U3-

-u2 + U6
-u2+ U5

-U5
-U2
- U4
- U2
-U3
- U2
-u8
-U2
-u8

u7

u6é

-u6-U8-U4-
-u6-U7-02-
-ub-U8-U3-
cub-U6-U2-
-u4 -U7-U3-
cud-U6-U2-
-ud +U6-u7-
-u3-U6-U2-
-u3+U5-u8-
cu3+U5-ub-
-u2+U5-u8-
cu2+U4-u7-
cu2+U04-ub-

ub—
ub+
ub—
ub+
ud—
ud—
ud+
u3—-
u3d+
u3d+
u22+
u2+
u2+

Polynomial ring in 15 variables:

O W N

© 00 ~

R e i i e e i e
— —_ —_— — —1 — — —1 — —
I

[y

i[11]

i[12]

i[13]

F-855-h

U8,U7,U6,U5,U4,U3,U2,u8,u7,ub,ub,u4,u3,u2,h

2-u8+2-u7+2-u6+2-ub+2-u4+2-u3+2-u2+h
2:-U8+2-U7+2-U6+2-U5+2-U4+2-U3+2-U2+h
-u2-h"2
-u3-h"2
-u4 —h"2
-ub-h"2
-u6—h"2
-u7 -h"2
-u8 - h"2
-U7-u8-4-U6-u8—-4-U5-u8-4-U4-u8—-4-U3 -u8—

U2
U3
U4
Us
U6
u7
Us

|
NS

ORI TN NN NV N RN NN NS N N NS

16-U5-u6-ud + 16 -
16-U5-u6-u2 + 16 -
16-U3-ub-u2+16-
8-U3-u6-h+8-U2-
8-U3-u4-h+8-U2-

-U2
-U2
.U2-
-U2
-U2
-U2
-U3
-U3
-U7
-U8
-U8
-U8
-U8
-U8
-U8
-u8
-u2

cu8+4-
-u7+4-

u6 +4-

-ub+4-
cud+4-
u3+4-
‘u2+2-
-h+2-U2-h+h"2
-u8+4-
-u7 +4-
-u6—4-
-ub-4-
ud -4
-u3-4-
‘u2-4-
-h+2-u7-h+2-u6-h+2-ub
-h+h"2
16-U6-U4-ub + 16 -
16-U5-U3-ud + 16 -
16-U5-U2-u3 + 16 -
8-U5-u4-h+8-U6-
8-U5-u2-h+8-U4-

Us-
U8 -
Us-
Us-
U8 -
U8 -
Us-

U6 -
U6 -
U7 -
U7 -
U7 -
U7 -
U7 -

u7 -4-
ub +4-
ub+4-
ud +4-
ud+4-
u2+4-

u8+4-
u7 +4-
u6 +4-
ub-4-
ud -4-
u3-4-
u2-4-

U6
u7

u7
u7
u7

Us
Us
Us
U6
U6
U6
U6

u7 -

-u7 -4
-u6 -4

-ud +4
u3+4
cu2+4

-u8+4
-u7 +4
-ub +4
-ub+4
-ud -4
-u3 -4
‘u2-4

U6-U3-ub+ 16

ub+4-

-U5-u7-4-
-US5-u6-4-
U-ub—-4-
-U6-ud +4-
-U6-u3+4-
-U6-u2+4-
h+2-U7-h+2-U6-h+2-U5

-U4-u8+4-
-U4-u7+4-
-U4-u6+4-
-U4-ub+4-
-U5-ud +4-
-U5-u3-4-
-U5-u2-4-
‘h+2-u4-h+2-u3-h+

U4 -
u4 -
u4 -
-ud -4
cu3+4
‘u2+4
‘h+2-U4-h+

Us
Us
Us

U3
U3
U3
U3
U3

-u8+4
-u7+4
cub+4
-ub+4
‘ud +4
u4 -
u4 -

u7 -4
u6 -4
ub-4-

ud+4
u2-4-

-U3
-U3
U3-
-U3
-U4
-U4

-U2
-U2
-U2
-U2
-U2
-U2

U3

cu7-—
-ub—

ub-

cud-—
. 113—
su2+

. 118—
cu7-—
. 116—
. 115—
-ud—
. 113—
su2+

-U6-U2-ub+16-U6-U3 - ud+
U6-U2-ud+16-U5-U2-ud + 16 -U6-U2-u3+
U4-U2-u3+8:-U6-ub-h+8-U6-ud-h+
u3-h+8-U5-u3-h+8-U4-u3-h+8-U6-u2-h+
u2-h+8-U3-u2-h+26-U6-h"2+26-U5-h"2+
26-U4-h"2+26-U3-h"2+26-U2-h"2+ 15-h"3
U5-u6-u3+16-U4-u6-u3d +16-U4-ub-u3+
U4-u6-u2+16-U3-u6-u2+16-U4-ub-u2+
U3-u4-u2+8-U5-u6-h+8-U4:-ub-h+
u6-h+8-U4-u5-h+8-U3-ub-h+8-U2-ub-h+
ud-h+8-U2-u3-h+26-u6-h"2+26-u5-h"2+
26-u4-h"2+26-u3-h"2+26-u2-h"2+15-h"3

285

286

i[14]

A Examples

-2-U7-U5-u8-u6-2-U7-U4-u8-u6—-2-U7-U3-u8-ub-

NNNNDNDNNDNDNDNDNNDNDNNDNNDNDNDNDNDDNDDNDDNDDND

[e R o e R e e P e e e N = T = I = R = == R e}
W W N oo oo NN NN 00 0

-U7
-U7
-U6
-U6
-U6
-U6
-U8
-U6
-u7
U7
.U4 -
-U8
-U4
-U8
U4 -
-U6
-U8
-U8
-U7
-U8
-U8
-U8
-Ub
.U3-
.U4 -
.U2-
U4 -
.U3-
.u8-
.U3-
.U2-
.u8-
.16 -
.U2-
.u8-
a7 -
.u8-
.u8-
a7 -
.u5 -

-U2
-U3
-U2
-U3
-U3
-U2
-US
-U2
-US
-U2

-U4
-US
-US
-U4
U4 -
-U3
-U3
-U3

U2

U4 -
-U2
U4 -

U2

u7
u6
u6é
ub
ub
ub

u3
u3
u3
u2
u2
u2
u2

u4 -
u4 -
u4 -
u4 -
-h+U4.
+h-U4.
-ub
-u8
-u7
-ub
-ub

-u8-ub —
-u8-ub -
cu8-ub+2
-u7-ub -
-u8-u4 -
cu8-u4 —
-u7-ud -
-u7-uéd -
cu6-ud —
-u8-u3 -
cu8-u3 +2
u7-u3 —
-u7-u3 +2
u6-u3 + 2
cub6-u3d + 2
-ub-u3 -
-u7-u2+ 2
cub-u2+ 2
cu6-u2+2
ub-u2 +2
cub-u2+2
cud-u2+2
-ué4-u2 + U8
-U2
- U4
-U2
U4 -
-U2
-u8
-U3
-U2
-u8
-U2

-h+U8
-h+U7
-h+ U7
-h+U6
-h +U8
-h-U6
h+U6
h+ U6
h-U5
h+U8

-h-TU5
-h-U6
-h-TU6
-h-TU5
-h-U3

2
2

2
2
2
2
2
2
2

2

2

U2
u8

-U7
-U6
-U8
-U6
-UbS
-US
-U6
-UbS
-U5S
-U6
-U8
-U6
-U8
-U7
-U8
U4 -
-U8
-U7
-U8
-U7
-U7
-U7

-U6
-u7
-ub
-ub
ub
-ub
-ub

.u4 -

-u4d

.u4 -

-u3
-u3
-u3
-u3
-u2
-u2
-u2
-u2

-U4-u8
-U3-u8
-U6 - u7
-U2-u7
-U3-u8
-U2-u8
-U3-u7
-U2-u7
-U3-ub
-U2-u8
-U6 - u7
-U2-u7
-U5-ub
-U4 -ub
-U4-ub

-U4 -u7
-U5-ub
-U3-ub
-U4 -ub
-U3-ub
-U3-u4d

U2-ub

.u5_
.u5_
.ub —
.u5_
'114—
cud +2-
'114—
‘ud +2-
-u4d —
'113—
‘u3+2-
cu3 —
ud3+2-
cu3 —
‘u3+2-
cu3+2-
‘u2+2-
‘u2+2-
‘u2+2-
‘u2+2-
‘u2+2-
‘u2+2-

-u7-h+U8

-h +U8
-h +U8
-h-TU7
-h +U8
-h +U7
-h-TU6
h+U5
-h+ U5
h-U6
-h+ U7
-h-TU7
-h-TU6

-h-U4-

-h-TUb
-h-U5

-h-U4-
cud -

-h-U3

-U5
-U3
-u8
-U3
-U2
-u’7
-U3
-U2
-u7
- U2
-u8
-u7
u6é
-u8
-u7
u6é

2.
2.
2.
2.
2.

2.

2.
2.

2.

2.

-U5
-ub
-ub
-ub
-ub
-ub
-ub
Lud -
Lud -
Lud -
-u3
-u3
-u3
-u3
-u2
-u2
-u2

u2

U6 -U4 -
U7 -02
U6 -U4 -
U7-03
U7 -02
U8 -U6
U5-U3
U8 -U5
U5-U2
U5-02
U8 -U5
U5-U2
U7 -Ub
U5-U2
u7-U4-
U8 -U6
U8-U3
U8-U4 -
U7-03
U6-U4 -
U6-U3
U6 -U3

-u8

-u8
-u8
-u7
-u’7
-ub
-ub
-u8
-u7
-u7
-ub
-ub

-u’7
-u’7

-ub

-ub
.ud-

u8

u7

ub

u6b

ub

-u7-h+U8

-h+0U7
-h+7U7
-h+U8
-h+0U7
-h +U6
-h+U8
h+U8
h-U7
h-U5
-h+U6
-h-U6
-h-U5

-h-U4-

-h-U4

-h-U4-

-h-U3
-h

-US
-U3

-U3
-U2
-U3
-U2
-u8
-u7
-U2
-u8
-u7
ub
-u8
u7
-ub

. u5_
. u5_
-ub—
. u4_
. u4_
cud+
. u4_
cud+
cud-—
. u3_
cu3+
cu3-
-u3+
cu3-
cu3+
su2+
cu2+
cu2+
su2+
cu2+
cu2+

u22+

.U4 -
.u6 -
.ub -
ub -
.ub -
-ub-
.Ul -
.Ul -
.ud -
.Ul -
.u3-
.u3-
.u3-
.u3-
.u2-
.u2-
.u2-

u7

-h+

i[15]

NNNNNDNNDNNDNDNNMNNDNNDMNMNNNNDNDMNDNDNDNDNDNDNDND

cgcgggocaocgoggogocgggaocaocaocgagg
W W N 000NN NN 0 0

-U7
-U7
U7
-U6
-U6
-U6
-U6
-U8
-U6
-U7
U7
U4 -
-U8
-U4
-U8
U4 -
-U6
-U8
-U8
U7
-U8
-U8
-U8
-US

-U3

U4 -

-U2

-U3
-u8
-U3
-U2
-u8
-ub
-U2
-u8
-u7
-u8
-u8
-u’7
-ub

U2-

U4 -
U2
U4 -

U2-

-u7
u6
-ub
ub
-ub
-ub

.u4d -
-ud -
.u4d -
.u4d -

-u3
-u3
-u3
-u2
-u2
-u2
-u2

u8 - ub + 2
u8-ub + 2
u8-ub+2
u8 - ub —
u7-ub+2
u8-u4 +2
u8-ué + 2
u7-ud +2
u7-uéd +2
u6-ué + 2
u8-u3 +2
u8-u3 —
u7-u3+2
u7-u3 -
u6 - u3 —
u6 - u3 —
ub-u3 +2
u7-u2 -
u6 - u2 —
u6 -u2 -
ub-u2 -
ub-u2 -
u4 - u2 —
ud - u2 -
-U2
- U4
-U2
U4 -
-U2
-u8
-U3
-U2
-u8
-U2
-U2
-h+U4.
-ub
-u8
-u7
-ub
-ub

-h-U8
-h-U7
-h-U7
-h -U6
-h-U8
-h +U6
h-U6
h-U6
h+U5
h-U8
-h-U4

-h+U5
-h +U6
-h+U6
-h+U5
-h +U3

2

2

2
2
2

2
2
2
2
2
2
U8

u8

-U7
-U7
-U6
-U8
-U6
-Ub
-Ub
-U6
- U5
-Ub
-U6
-U8
-U6
-U8
-U7
-U8
.U4-
-U8
-U7
-U8
-U7
-U7
-U7
.U6 -
.uT7 -
. ub -
.ub -
ub -
-ub-
.ub -
.Ul -
.ud -
.Ul -
.u3-
.u3-
.u3-
.u3-
.u2-
.u2-
.u2-
Su2-

-U4 -u8
-U4 -u8
-U3-u8
-U6 - u7
-U2-u7
-U3-u8
-U2-u8
-U3-u7
-U2-u7
-U3-ub
-U2-u8
-U6 -u7
-U2-u7
-U5-ub
-U4 - ub
-U4 -ub

-U4 -u7
-U5-ub
-U3-ub
-U4 -ub
-U3-ub
-U3-u4d
u7-h-1U8

U2-ub

h-U8
h-U8
h+ U7
h-U8
h-07
h+U6
h-U5
h-U5
h+U6
h-07
h + U7
h+U6

h + U5
h+U5

h+7U3

h+U4-

h+U4-
cud-

-U5
-U3
-u8
-U3
-U2
-u’7
-U3
-U2
-u7
- U2
-u8
-u7
u6é
-u8
-u7
u6é

cub+2-
cub+2-
~ub+2-
ub+2-
~ub+2-
cud+2-
'1147
cud+2-
'1147
ud+2-
‘u3+2-
'1137
‘u3+2-
'113—
‘u3+2-
'1137
'113—
'1127
'1127
'112—
'1127
'1127
'112—

2.

2.

2.

2.

2.
2.
2.
2.
2.
2.
2.
2.

-U5
-ub
-ub
-ub
-ub
-ub
-ub
Lud -
Lud -
cud -
-u3
-u3
-u3
-u3
-u2
-u2
cu2
u2 -

U7-U3
U6 -U4-
U7 -02
U6-U4 -
U7-03
U7 -02
U8 -U6
U5-U3
U8 -U5
U5-U2
U5-02
U8 -U5
U5-U2
U7 -Ub
U5-U2
U7 -U4-
U8 -U6
U8-U3
U8-U4 -
U7-03
U6-U4 -
U6-U3
U6 -U3

-h -U7
-h-U7
-h —-U8
-h -U7
-h -U6
-h —-U8
h-U8
h+ 07
h+U5
-h-U6
-h +U6
-h +U5

-h+U4-

-h +U4

-h+U4-

-h +U3

-u8

-u8

-u8
-u8
-u7
-u’7
-ub
-ub
-u8
-u7
-u’7
-ub
-ub

-u’7
-u’7

-ub

-ub
Lud -
-u7-h-U8-
.U5 -
.U3-
.U4 -
.U3-
.U2-
.U3-
.U2-
.us-
.u7-
.U2.-
.us-
a7 -
ub -
.us-
u7 -
.u6 -

u8

u7

ub

u6é

ub

cub+
-ub+
-ub+
-ub+
cud+
cud+
cud—
cud+
cud-—
cud+
-u3d+
cu3—
cu3+
. 113—
cu3+
cu3—
. 112—
cu2—
cu2—
. 112—
cu2—
cu2—

u2—-

U4 -
u6b -
u6b -
ub -
ub -
ub -
u4 -
u4 -
u4 -
u4 -
u3-
u3-
u3-
u3-
u2 -
u2 -
u2 -

287

288 A Examples

Gonnet-83-h

Polynomial ring in 18 variables: a(0),a(2),2(3),a(4),a(5),b(0),b(1),b(2),b(3),
b(4),b(5),c(0),¢c(1),c(2),c(3),c(4),c(5),h

i[1] = a(5)-b(5)

i[2] = a(5)-b(4)+a(4)-b(5)

i[3] = a(4)-b(4)

i[4] = a(5)-b(3)+a(3)-b(5)

i[5] = a(5)-b(3)+a(3):b(5)+2-a(5) b(5)

i[6] = a(3)-b(3)+a(5)-b(3)+a(3) -b(5)+a(5) b(5)

i[7] = 2-a(3)-b(3)+a(5)-b(3)+a(3) b(5)

i[8] = a(4)-b(2)+a(2) -b(4)

i[9] = a(2)-b(2)

i[10] = a(5)-b(1)+a(4)-b(3)+a(3)-b(4)+b(5)-h

i[11] = a(4)-b(1)+b(4)-h

i[12] = a(2)-b(1)+b(2)-h

i[13] = a(0)-b(1)+a(4)-b(1)+a(3) -b(2)+a(2) -b(3)+b(0) -h+
2:b(1)-h+b(4)-h+c(1)-h

i[14] = a(5)-b(0) +a(5)-b(1)+a(4) b(3)+2a(3)-b(4)+2-a(5) -b(4)+
a(0)-b(5)+2-a(4)-b(5)+b(5)-h+c(5)-h

i[15] = a(4)-b(0)+a(4)-b(1)+a(5) -b(2)+a(0) -b(4)+2-a(4)- -b(4)+
a(2)-b(5) +b(4) -h+c(4)-h

i[16] = a(3)-b(0)+2-a(3)-b(1)+a(5) -b(1)+a(0) -b(3)+
a(4)-b(3)+a(3)-b(4)+2-b(3)-h+b(5)-h+c(3)-h

i[17] = a(3)-b(0) +a(5)-b(0) +a(3) -b(1) +a(5)-b(1) +a(0)-b(3)+
a(4)-b(3) +a(3)-b(4) +a(5)-b(4) +a(0)-b(5)+a(4)-b(5)+
b(3)-h+b(5)-h+c(3)-h+c(5)-h—h"2

i[18] = a(2)-b(0) +a(2)-b(1)+a(0) -b(2)+a(4) -b(2)+a(2) -b(4)+
b(2)-h+c(2)-h

i[19] = a(0)-b(0)+a(4)-b(0)+a(0)-b(1)+a(4) -b(1)+a(3) -b(2)+

a(5) -b(2) +a(2)-b(3) +a(0) -b(4) +a(4) -b(4) +a(2) -b(5)+
b(0)-h+b(1)-h+b(4) -h+c(0)-h+c(l)-h+c(4)-h

Katsura-8

Polynomial ring in g variables: x(0),x(1),%(2),%(3),%(4),x(5),x(6),%(7),x(8)

x(0)+2-x(1)+2-x(2) +2-x(3) +2-x(4) +2-x(5) +2-x(6)+

2.x(7) -1

2(0)2+2-x(1)"2+2-%(2)"2+2-%(3)°2 + 2 - x(4)"2+
2-x(5)"2+2-x(6)'2+2-x(7)"2-x(0)
2-x(0)-x(1)+2-x(1) - x(2) +2-x(2) -x(3) +2-x(3) - x(4)+
2-x(4)-x(5) +2-x(5) - x(6) +2-x(6) - x(7) - x(1)
x(1)"2+2-x(0)-x(2) +2-x(1) -x(3) +2-x(2) - x(4)+
2-x(3)-x(5)+2-x(4) -x(6) +2-x(5) - x(7) — x(2)
2-x(1)-x(2) +2-x(0) - x(3) +2-x(1) - x(4) +2-x(2) - x(5)+
2-x(3)-x(6) +2-x(4)-x(7) —x(3)

x(2)"2+2-x(1)-x(3) +2-x(0) -x(4) +2-x(1) -x(5)+
2-x(2)-x(6) +2-x(3) - x(7) —x(4)

2-x(2) - x(3) +2-x(1) - x(4) +2-x(0) - x(5) + 2-x(1) - x(6)+
2-x(2)-x(7) - x(5)

x(3)"2+2-x(2)-x(4) +2-x(1) -x(5) +2-x(0) - x(6)+
2-x(1)-x(7) - x(6)

289

290 A Examples

Katsura-8-h

Polynomial ring in 10 variables: x(0),x(1),%(2),%(3),%(4),%(5),x(6),x(7),x(8),
h

i[1] = =x(0)+2-x(1)+2-x(2)+2-x(3)+2-x(4) +2-x(5) +2-x(6)+
2-x(7)-h

i[2] = %(0)°2+2-x(1)°2+2-x(2)"2+2-x(3)"2+2-x(4)"2+
2-x(5)"2+2-x(6)"2+2-x(7)"2-x(0) -h

i[3] = 2-x(0)-x(1)+2-x(1)-x(2)+2-x(2)-x(3) +2-x(3) -x(4)+
2-x(4)-x(5)+2-x(5)-x(6) +2-x(6) - x(7) —x(1) -h

i[4] = =x(1)"2+2-x(0)-x(2)+2-x(1) -x(3)+2-x(2) -x(4)+
2-x(3)-x(5)+2-x(4)-x(6) +2-x(5) -x(7) —x(2) -h

i[6] = 2-x(1)-x(2)+2-x(0) -x(3)+2-x(1)-x(4) +2-x(2) -x(5)+
2-x(3)-x(6) +2-x(4) -x(7) -x(3)-h

i[6] = =x(2)'2+2-x(1)-x(3)+2-x(0)-x(4)+2-x(1)-x(5)+
2-x(2)-x(6) +2-x(3) - x(7) —x(4) -h

i[7] = 2-x(2)-x(8)+2-x(1) -x(4)+2-x(0)-x(5) +2-x(1) -x(6)+
2-x(2)-x(7) -x(5)-h

i[8] = =x(3)"2+2-x(2)-x(4)+2-x(1) -x(5)+2-x(0) -x(6)+

2-x(1)-x(7)-x(6)-h

Katsura-9

Polynomial ring in 10 variables: x(0),x(1),%(2),%(3),%(4),%(5),x(6),x(7),%(8),

x(9)

x(0)+2-x(1)+2-x(2) +2-x(3) +2-x(4) +2-x(5) +2-x(6)+
2-x(7)+2-x(8) -1
x(0)'2+2-x(1)"2+2-x(2)"2+2-%(3)"2 + 2 x(4) 2+
2-x(5)2+2-x(6)"2+2-x(7)"2+2-x(8)"2-x(0)

2-x(0) - x(1) +2-x(1) - x(2) +2-x(2) - x(3) + 2-x(3) - x(4)+
2(' x)(4) -x(5)+2-x(5)-x(6) +2-x(6) - x(7) +2-x(7) -x(8)-
x(1

x(1)"2+2-x(0)-x(2) +2-x(1) - x(3) +2-x(2) - x(4)+

2(' x)(3) -x(5)+2-x(4) -x(6)+2-x(5)-x(7) +2-x(6) -x(8)—
x(2

2-x(1)-x(2) +2-x(0) - x(3) +2-x(1) - x(4) + 2-x(2) - x(5)+
2-x(3)-x(6) +2-x(4) -x(7) +2-x(5) - x(8) — x(3)
x(2)"2+2-x(1)-x(3) +2-x(0) - x(4) +2-x(1) - x(5)+
2-x(2) - x(6) +2-x(3) - x(7) +2-x(4) - x(8) — x(4)
2-x(2)-x(3)+2-x(1) -x(4) +2-x(0) -x(5) +2-x(1) - x(6)+
2-x(2) - x(7) +2-%(3) - x(8) —x(5)

x(3)"2+2-x(2)-x(4) +2-x(1) -x(5) +2-x(0) - x(6)+
2-x(1)-x(7) +2-x(2) -x(8) — x(6)

2-x(3) x(4) +2-x(2) - x(5) +2-x(1) - x(6) +2-x(0) - x(7)+
2-x(1) -x(8) - x(7)

201

292 A Examples

Katsura-9-h
Polynomial ring in 11 variables: x(0),x(1),%(2),%(3),x(4),x(5),x(6),x(7),%(8),
x(9),h

i[1] = =x(0)+2-x(1)+2-x(2)+2-x(3)+2-x(4) +2-x(5) +2-x(6)+
2-x(7)+2-x(8)-h

i[2] = x(0)'2+2-x(1)"2+2-x(2)"2+2-x(3)"2+2-x(4)" 2+
2-x(5)"2+2-x(6)"2+2-x(7)"2+2-x(8)'2-x%(0) -h

i[3] = 2-x(0)-x(1)+2-x(1) -x(2)+2-x(2)-x(3) +2-x(3) - x(4)+
2(- x)(4) -x(5)+2-x(5)-x(6) +2-x(6) - x(7) +2-x(7) - x(8)—
x(1)-h

i[4] = =x(1)"2+2-x(0)-x(2)+2-x(1) -x(3)+2-x(2) -x(4)+
2-x(3)-x(5)+2-x(4) - x(6) +2-x(5) -x(7) +2-x(6) - x(8)—
x(2)-h

i[6] = 2-x(1)-x(2)+2-x(0) -x(3)+2-x(1)-x(4) +2-x(2) -x(5)+
2-x(3)-x(6)+2-x(4)-x(7) +2-x(5) -x(8) —x(3) -h

i[6] = =x(2)"2+2-x(1)-x(3)+2-x(0) -x(4)+2-x(1) -x(5)+
2-x(2)-x(6) +2-x(3) - x(7) +2-x(4) -x(8) —x(4) -h

i[7] = 2-x(2)-x(3)+2-x(1)-x(4)+2-x(0)-x(5) +2-x(1) -x(6)+
2-x(2)-x(7) +2-x(3)-x(8) —x(5) -h

i[8] = =x(3)"2+2-x(2)-x(4)+2-x(1)-x(5)+2-x(0) -x(6)+
2-x(1)-x(7) +2-x(2) -x(8) —x(6) -h

i[9] = 2-x(3)-x(4)+2-x(2) -x(5)+2-x(1)-x(6) +2-x(0) - x(7)+

2-x(1)-x(8)-x(7)-h

Katsura-1o

Polynomial ring in 11 variables: x(0),x(1),x(2),%(3),x(4),%(5),x(6),x(7),x(8),

x(9),x(10)

x(0)+2-x(1)+2-x(2) +2-x(3) +2-x(4) +2-x(5) +2-x(6)+
2-x(7)+2-x(8)+2-x(9) -1
2(0)2+2-x(1)"2+2-%(2)"2+2-%(3)°2 + 2 x(4) 2+
2-x(5)2+2-x(6)"2+2-x(7)"2+2-x(8)"2+2-%(9)"2 - x(0)
2-x(0)-x(1)+2-x(1) - x(2) +2-x(2) -x(3) +2-x(3) - x(4)+
2-x(4) - x(5)+2-x(5)-x(6) +2-x(6) - x(7) +2-x(7) - x(8)+
2-x(8)-x(9) -x(1)

x(1)'2+2-x(0)-x(2) +2-x(1) -x(3) +2-x(2) - x(4)+
2-x(3)-x(5) +2-x(4) -x(6) +2-x(5) - x(7) +2-x(6) - x(8)+
2-x(7)-x(9) -x(2)

2-x(1)-x(2)+2-x(0) - x(3) +2-x(1) -x(4) +2-x(2) - x(5)+
2(- x)(3) -x(6) +2-x(4) -x(7) +2-x(5) - x(8) +2-x(6) - x(9)—
x(3

x(2)"2+2-x(1)-x(3)+2-x(0) -x(4) +2-x(1) -x(5)+

2(- x)(2) -x(6) +2-x(3)-x(7) +2-x(4) - x(8) +2-x(5) - x(9)—
x(4

2-x(2)-x(3)+2-x(1) -x(4) +2-x(0) - x(5) +2-x(1) - x(6)+
2-x(2) - x(7)+2-x(3) - x(8) +2-x(4) - x(9) - x(5)
x(3)"2+2-x(2) -x(4) +2-x(1) -x(5) +2-x(0) - x(6)+
2-x(1)-x(7)+2-x(2) - x(8) +2-x(3) - x(9) — x(6)

2-x(3) - x(4) +2-x(2) - x(5) +2-x(1) - x(6) +2-x(0) - x(7)+
2-x(1)-x(8) +2-x(2) - x(9) — x(7)

x(4)"2+2-x(3)-x(5) +2-x(2)-x(6) +2-x(1) - x(7)+
2-x(0)-x(8) +2-x(1) -x(9) — x(8)

293

294

A Examples

Katsura-10-h

Polynomial ring in 12 variables: x(0),x(1),x(2),x(3),x(4),x(5),x(6),x(7),%(8),

x(9),%(10),h

x(0)+2-x(1)+2-x(2) +2-x(3) +2-x(4) +2-x(5) +2-x(6)+
2-x(7)+2-x(8)+2-x(9)-h
2(0)2+2-x(1)"2+2-%(2)"2+ 2 %(3)°2+ 2 - x(4) 2+
2.%(5)2+2-x(6)"2+2-x(7)"2+2-%(8)"2 + 2 x(9)"2—
x(0)-h

2-x(0) - x(1) +2-x(1) - x(2) +2-x(2) - x(3) + 2-x(3) - x(4)+
2-x(4) - x(5)+2-x(5)-x(6) +2-x(6) - x(7) +2-x(7) - x(8)+
2-x(8)-x(9) -x(1)-h

x(1)"2+2-x(0)-x(2) +2-x(1) -x(3) +2-x(2) - x(4)+
2-x(3)-x(5)+2-x(4) -x(6) +2-x(5) - x(7) +2-x(6) - x(8)+
2-x(7)-x(9) -x(2)-h

2-x(1)-x(2) +2-x(0) - x(3) +2-x(1) - x(4) + 2-x(2) - x(5)+
2-x(3)-x(6) +2-x(4) - x(7)+2-x(5) - x(8) +2-x(6) - x(9)-
x(3)-h

x(2)"2+2-x(1)-x(3) +2-x(0) - x(4) +2-x(1) - x(5)+
2-x(2)-x(6) +2-x(3) - x(7) +2-x(4) - x(8) +2-x(5) - x(9)-
x(4)-h

2-x(2) - x(3) +2-x(1) - x(4) +2-x(0) - x(5) + 2-x(1) - x(6)+
2-x(2) x(7)+2-%(3) - x(8) +2-x(4) - x(9) —x(5) -h
x(3)"2+2-x(2)-x(4)+2-x(1)-x(5) +2-x(0) - x(6)+
2-x(1) - x(7)+2-x(2) - x(8) +2-x(3) - x(9) —x(6) -h
2-x(3) - x(4) +2-x(2) - x(5) +2-x(1) - x(6) +2-x(0) - x(7)+
2-x(1)-x(8) +2-x(2)-x(9) —x(7)-h
x(4)"2+2-%(3)-x(5) +2-x(2) -x(6) +2-x(1) - x(7)+
2-x(0)-x(8)+2-x(1)-x(9) —x(8) -h

Katsura-11

Polynomial ring in 12 variables: x(0),x(1),x(2),x(3),%(4),x(5),x(6),x(7),%(8),

x(9),x%(10),x(11)

x(0)+2-x(1)+2-x(2) +2-x(3) +2-x(4) +2-x(5) +2-x(6)+
2-x(7)+2-x(8)+2-x(9) +2-x(10) -1
2(0)2+2-x(1)"2+2-x(2)"2+ 2 %(3)°2 + 2 x(4) 2+
2.%(5)2+2-x(6)"2+2-x(7)"2+2-x(8)"2 + 2 x(9)"2+
-x(10)"2-x(0)

-x(0)-x(1)+2-x(1) - x(2) +2-x(2) -x(3) +2-x(3) - x(4)+
-x(4)-x(5)+2-x(5)-x(6) +2-x(6) -x(7) +2-x(7) - x(8)+
-x(8)-x(9) +2-x(9) - x(10) - x(1)

(1)'2+2-x(0)-x(2) +2-x(1) -x(3) +2-x(2) - x(4)+
-x(3)-x(5) +2-x(4)-x(6) +2-x(5) -x(7) +2-x(6) - x(8)+
-x(7)-x(9) +2-x(8) - x(10) — x(2)

-x(1)-x(2) +2-x(0) - x(3) +2-x(1) -x(4) +2-x(2) - x(5)+
-x(3)-x(6)+2-x(4) - x(7) +2-x(5) -x(8) +2-x(6) - x(9)+
-x(7) -x(10) = x(3)

x(2)"2+2-x(1)-x(3) +2-x(0) - x(4) +2-x(1) - x(5)+
2-x(2) - x(6) +2-x(3) - x(7) +2-x(4) - x(8) +2-x(5) - x(9)+
2-x(6) -x(10) — x(4)

2-x(2) - x(3) +2-x(1)-x(4) +2-x(0) - x(5) +2-x(1) - x(6)+
2-x(2) - x(7)+2-%(3) - x(8) +2-x(4) -x(9) +2-x(5) - x(10)-
x(5)

x(3)"2+2-x(2) -x(4) +2-x(1) -x(5) +2-x(0) - x(6)+
2-x(1) - x(7) +2-x(2) - x(8) +2-x(3) - x(9) + 2-x(4) - x(10)-
x(6)

2-x(3) - x(4) +2-x(2) - x(5) +2-x(1) - x(6) +2-x(0) - x(7)+
2-x(1)-x(8) +2-x(2) -x(9) +2-x(3) - x(10) — x(7)
x(4)"2+2-%(3)-x(5) +2-x(2)-x(6) +2-x(1) -x(7)+
2-x(0)-x(8) +2-x(1) -x(9) +2-x(2) - x(10) — x(8)
2-x(4)-x(5)+2-x(3)-x(6) +2-x(2) - x(7) +2-x(1) - x(8)+
2-x(0)-x(9) +2-x(1)-x(10) — x(9)

NNDNNDNDNMDNDNDNDN

295

296

A Examples

Katsura-11-h

Polynomial ring in 13 variables: x(0),x(1),x(2),x(3),x(4),x(5),%(6),x(7),x(8),

x(9),%(10),x(11),h

x(0)+2-x(1)+2-x(2) +2-x(3) +2-x(4) +2-x(5) +2-x(6)+
2-x(7)+2-x(8)+2-x(9) +2-x(10) -h
x(0)2+2-x(1)"2+2-%(2)"2+2-%(3)°2 + 2 - x(4)"2+
2.%(5)2+2-x(6)"2+2-x(7)"2+2-%(8)"2 + 2 x(9) 2+
-x(10)"2-x(0) -h

+x(0)-x(1)+2-x(1) - x(2) +2-x(2) -x(3) +2-x(3) - x(4)+
-x(4)-x(5)+2-x(5)-x(6) +2-x(6) - x(7) +2-x(7) - x(8)+
-x(8)-x(9) +2-x(9) -x(10) - x(1) -h

(1)'2+2-x(0)-x(2) +2-x(1) -x(3) +2-x(2) - x(4)+
-x(3)-x(5)+2-x(4)-x(6) +2-x(5) - x(7) +2-x(6) - x(8)+
-x(7)-x(9) +2-x(8) - x(10) - x(2) -h

+x(1)-x(2) +2-x(0) - x(3) +2-x(1) -x(4) +2-x(2) - x(5)+
-x(3)-x(6)+2-x(4) - x(7) +2-x(5) -x(8) +2-x(6) - x(9)+
-x(7)-x(10) - x(3) -h

x(2)"2+2-x(1)-x(3) +2-x(0) -x(4) +2-x(1) - x(5)+
2-x(2)-x(6) +2-x(3) - x(7) +2-x(4) - x(8) +2-x(5) - x(9)+
2-x(6)-x(10) —x(4)-h

2-x(2)-x(3) +2-x(1) - x(4) +2-x(0) - x(5) + 2-x(1) - x(6)+
2-x(2) x(7)+2-%(3) - x(8) +2-x(4) - x(9) + 2-x(5) - x(10)-
x(5)-h

x(3)"2+2-x(2)-x(4) +2-x(1) -x(5) +2-x(0) - x(6)+
2-x(1) - x(7) +2-x(2) - x(8) +2-x(3) - x(9) + 2-x(4) - x(10)-
x(6)-h

2-x(3) - x(4) +2-x(2) - x(5) +2-x(1) -x(6) + 2-x(0) - x(7)+
2-x(1)-x(8) +2-x(2)-x(9) +2-x(3) -x(10) = x(7) -h
x(4)'2+2-%(3)-x(5) +2-x(2)-x(6) +2-x(1) -x(7)+
2-x(0)-x(8) +2-x(1)-x(9) +2-x(2) - x(10) —x(8) -h
2-x(4)-x(5)+2-x(3)-x(6) +2-x(2) - x(7) +2-x(1) - x(8)+
2-x(0)-x(9) +2-x(1)-x(10) = x(9) -h

NNDNNDDNDNMDNDDNDDNDN

Schrans-Troost-h

Polynomial ring in g variables: x(1),x(2),x(3),%(4),x(5),x(6),x(7),%(8),h

-x(1)"2+8-x(1) -x(2) +8-x(1) - x(3) - 8-x(2) - x(3)+
-x(1)-x(4)+2-x(1)-x(5)+2-x(1) - x(6) -2-x(5) - x(6)+
-x(1)-x(7)-2-x(4)-x(7) —x(1) -h
-x(1)-x(2)+8-x(2)"2-8-x(1) - x(3) +8-x(2) - x(3)+
-x(2) - x(4)+2-x(2)-x(5) +2-x(2) - x(6) —2-x(4) -x(6)+
-x(2)-x(7)-2-%(5)-x(7) —x(2) -h

-8-x(1)-x(2) +8-x(1)-x(3) +8-x(2) -x(3) +8-x(3)"2+
2-x(3)-x(4)+2-x(3) - x(5) —2-x(4) -x(5) +2-x(3) - x(6)+
2-x(3)-x(7)-2-%(6) - x(7) —x(3) -h

2-x(1) -x(4) +2-x(2) - x(4) +2-x(3) - x(4) + 8-x(4)"2-

2

2

NN 00NN

-x(3)-x(5)+8-x(4)-x(5)-2-%(2) - x(6) +2-x(4) -x(6)—
-x(1)-x(7)+2-x(4) - x(7) +6-x(4) -x(8) - 6-x(5) - x(8)-
x(4)-h
-2-x(1)-x(4)-2-x(2)-x(5) -2-x(3) - x(6) +2-x(1) - x(7)+
2-x(2) - x(7)+2-x(3) - x(7) +2-x(4) - x(7) +2-x(5) - x(7)+
8-x(6)-x(7)+8-x(7)2-6-x(6) - x(8) +6-x(7) - x(8)-
x(7)-h
-2-x(2)-x(4)-2-x(1)-x(5) +2-x(1) -x(6) +2-x(2) - x(6)+
2-x(3)-x(6)+2-x(4)-x(6) +2-x(5) -x(6) + 8-x(6)"2—
2-x(3)-x(7)+8-x(6) - x(7) +6-x(6) -x(8) =6 - x(7) - x(8)—
x(6)-h
-2-x(3)-x(4)+2-x(1)-x(5) +2-x(2) -x(5) +2-x(3) - x(5)+
8-x(4)-x(5)+8-x(5)"2-2-x(1) - x(6) +2-x(5) - x(6)—
2-x(2) - x(7)+2-x(5) - x(7) - 6-x(4) - x(8) +6-x(5) - x(8)-
x(5)-h
-6-x(4)-x(5)-6-%(6)-x(7) +6-x(4) -x(8) +6-x(5) -x(8)+
6-x(6)-x(8)+6-x(7)-x(8) +8-x(8)'2-x(8) -h

297

(2]

BIBLIOGRAPHY

ApAMS, W. W,, AND LOUSTAUNAU, P. An Introduction to Grobner Bases. Graduate
Studies in Mathematics, AMS, 1994.

ALBRECHT, M. Algorithmic Algebraic Techniques and their Application to Block Ci-
pher Cryptanalysis. PhD thesis, Royal Holloway, University of London, 2010.

ALBRECHT, M., AND PERRY, . F4/5. http://arxiv.org/abs/1006.4933.

AMRHEIN, B., GLOOR, O., AND KucHLIN, W. On the Walk. Theoretical Computer
Science 187 (1997), 179-202.

ArNoLD, E. A. Computing Grobner bases with Hilbert Lucky Primes. PhD thesis,
University of Maryland, College Park, MD, 2000.

ArNoLD, E. A. Modular algorithms for computing Grobner bases. Journal of Sym-
bolic Computation 35 (April 2003), 403-419.

ARrI, A, AND PERRY, . The Fs Criterion revised.
http://arxiv.org/abs/1012.3664v3.

300

(8]

(11]

[12]

[13]

[14]

[17]

(18]

[19]

Bibliography

ARSs, G. Applications des bases de Grobner a la cryptographie. PhD thesis, Université
de Rennes I, 2005.

ARs, G., AND HasHEMI, A. Extended Fs Criteria. Journal of Symbolic Computation,
MEGA 2009 special issue 45, 12 (2010), 1330-1340.

Ars, G., AND HasHEMI, A. Computing Syzygies by Faugere’s F5 Algorithm. Results
in Mathematics, Springer 59 (2011), 35-42.

ASTRELIN, A. V., GOLUBITSKY, O. D., AND PANKRATIEV, E. V. Grobner Bases and
Involutive Bases. Walter Gruyter, pp. 49-55.

At1vAH, M. E, AND MAacDoNALD, I. G. Introduction to Commutative Algebra.
Addison-Wesley, London, 1969.

AuersacH, R. L. The Grobner fan and Grobner walk for modules. Journal of Sym-
bolic Computation 39 (2005), 127-153.

BARDET, M. Etude des systémes algébriques surdéterminés. Applications aux codes
correcteurs et d la cryptographie. PhD thesis, Université Paris 6, 2004.

BARDET, M. On the Complexity of a Grébner Basis Algorithm. INRIA Algorithms
seminar 2002-2004.

BARDET, M., FAUGERE, J.-C., AND SALVY, B. Asympotic Expansion of the Degree of
Regularity for Semi-Regular Systems of Equations. Manuscript downloaded from
www-calfor.lip6.fr/~ jcf/Papers/BFS05.pdf.

BAYER, D., AND STILLMAN, M. On the complexity of computing syzygies. Journal of
Symbolic Computation 6, 2-3 (1988), 135 — 147.

BECKER, T., WEISPFENNING, V., AND KREDEL, H. Grobner Bases. Graduate Texts in
Mathematics, Springer Verlag, 1993.

BETTALE, L., FAUGERE, J.-C., AND PERRET, L. Cryptanalysis of Multivariate and
Odd-Characteristic HFE Variants. In Public Key Cryptography - PKC 2011 (2011), D.
Catalano et al., Ed., vol. 6571 of Lecture Notes in Computer Science, Springer-Verlag,
PP. 441-458.

BigatTI, A. M. Computation of Hilbert-Poincaré series. Journal of Pure and Applied
Algebra 119 (1997), 237-253.

BigatTi, A. M., CABOARA, M., AND ROBBIANO, L. On the computation of the
Hilbert-Poincaré series. AAECC Journal 2 (1991), 21-33.

BigaTTi, A. M., ConTi, P, ROBBIANO, L., AND TRAVERSO, C. On the computation
of the Hilbert-Poincaré series.

Bing, D., AND PaN, V. Improved parallel division and its extensions. In Foundations
of Computer Science (1992), vol. 33, pp. 131-136.

[24]

[25]

[26]

[27]

(28]

[29]

[32]

(33]

(34]

(36]

[37]

Bibliography 301

Brinkov, Y. A., AND GERDT, V. P. Involutive bases of polynomial ideals. Mathematics
and Computers in Simulation 45 (1998), 519-541.

Brinkov, Y. A., AND GERDT, V. P. Minimal involutive bases. Math. Comput. Simul.
45 (March 1998), 543-560.

BrLiNkoV, Y. A., AND ZHARKOV, A. Y. Involution approach to investigating polyno-
mial systems. Math. Comput. Simul. 42 (January 1996), 323-332.

BoGART, T, JENSEN, A. N., SPEYER, D., STURMFELS, B., AND THOMAS, R. R. Com-
puting tropical varieties. Journal of Symbolic Computation 42, 1-2 (2007), 54 — 73.
Effective Methods in Algebraic Geometry (MEGA 2005).

BorosH, I. Exact solutions of linear equations with rational coefficients by congru-
ence techniques. Mathematics of Computation 20, 107-112.

Bosma, W., CANNON, J., AND PravousT, C. The Magma algebra system. I.
The user language. Journal of Symbolic Computation 24, 3-4 (1997), 235-265.
http://magma.maths.usyd.edu.au/magma/.

BRICKENSTEIN, M. Neue Varianten zur Berechnung von Gréobner Basen. Diploma
thesis, University of Kaiserslautern, 2004.

BRICKENSTEIN, M. Slimgb: Grobner bases with slim polynomials. Revista
Matematica Complutense 23, 2 (2010), 453-466. the final publication is available
at www.springerlink.com.

BRICKENSTEIN, M., AND DREYER, A. PolyBoRi: A framework for Grébner basis
computations with Boolean polynomials. Journal of Symbolic Computation 44, 9
(September 2009), 1326-1345.

BUCHBERGER, B. Grobner Bases: An Algorithmic Method in Polynomial Ideal The-
ory. 184-232.

BUCHBERGER, B. Ein Algorithmus zum Auffinden der Basiselemente des Restklassen-
ringes nach einem nulldimensionalen Polynomideal. PhD thesis, University of Inns-
bruck, 1965.

BUCHBERGER, B. A criterion for detecting unnecessary reductions in the construc-
tion of Grobner bases. In EUROSAM ’79, An International Symposium on Sym-
bolic and Algebraic Manipulation (1979), vol. 72 of Lecture Notes in Computer Science,
Springer, pp. 3-21.

CaBARCAS, D. An Implementation of Faugere’s F4 Algorithm for Computing

Grobner Bases. Master’s thesis, University of Cincinnati, Engineering, 2010.

CABARCAS, D., AND DING, J. Linear Algebra to Compute Syzygies and Grobner
Bases. In ISSAC 2011: Proceedings of the 2011 international symposium on Symbolic
and algebraic computation (2011), pp. 67-74.

302

(38]

(39]

[42]

[43]

[44]

[45]

[46]

(47]

(48]

[49]

Bibliography

CABOARA, M. A Dynamic Algorithm for Grébner basis computation. In ISSAC’93
(1993).

CABOARA, M., DE DoMmiNicIs. G, AND RoBBIANO, L. Multigraded Hilbert Functions
and Buchberger Algorithm. In ISSAC’96, Ziirich, Switzerland (1996).

CALMET, J., HAUSDORF, M., AND SEILER, W. M. A Constructive Introduction to
Involution. pp. 33-50.

CANIGLIA, L., GALLIGO, A., AND HEINTZ,]. Some New Effectivity Bounds in Com-
putational Geometry. In Proceedings of the 6th International Conference, on Ap-
plied Algebra, Algebraic Algorithms and Error-Correcting Codes (London, UK, 1989),
Springer-Verlag, pp. 131-151.

CANIGLIA, L. AND GALLIGO, A. AND HEINTZ,]. Equations for the projective closure
and effective Nullstellensatz. Discrete Appl. Math. 33 (October 1991), 11-23.

CAYLEY, A. On the theory of elimination. Mathematical Journal 3 (1848), 116-120.

COLLART, S., KALKBRENER, M., AND MALL, D. Converting Bases with the Groebner
Walk. Journal of Symbolic Computation 24 (1997), 265-469.

CoLLINS, G. E., AND ENCARNACION, M. J. Efficient Rational Number Reconstruc-
tion. Journal of Symbolic Computation 20 (1994), 287-297.

Cox, D. A., LITTLE, J., AND O’SHEA, D. Using Algebraic Geometry, 2nd ed. Graduate
Texts in Mathematics, Springer Verlag, 2008.

Cox, D. A, LITTLE, J., AND O’SHEA, D. B. Ideals, Varieties, and Algorithms, 3rd ed.
Undergraduate Texts in Mathematics, Springer, 2007.

DE KLEINE, J., AND MONAGAN, M. A Modular Method for computing Grébner bases.

DECkER, W,, GREUEL, G.-M., PFISTER, G., AND SCHONEMANN, H. SIN-
GULAR 3-1-3 — A computer algebra system for polynomial computations, 2011.
http://www.singular.uni-kl.de.

DECKER, W., AND LossEN, C. Computing in Algebraic Geometry - A Quick Start in
SINGULAR. ACM 16, Springer Verlag, 2006.

DECKER, W., AND SCHREYER, E-O. Varieties, Grobner Bases, and Algebraic Curves.
Springer Verlag, tbc.

DELLACA, R. D. Grébner Basis Algorithms. PhD thesis, California State University,
Fullerton, 2009.

Dusg, T. W. The Structure of Polynomial Ideals and Grobner Bases. SIAM Journal
of Computation 19, 4 (1990), 750-773.

EBERT, G. L. Some comments on the modular approach to Grébner-bases. ACM
SIGSAM Bulletin 17 (1983), 28-32.

[55]

[56]

[57]

[59]

[60]

[61]

[62]

[64]

[65]

[66]

[67]

(68]

Bibliography 303

EDER, C. A new attempt on the F5 Criterion. The Computer Science Journal of
Moldova 16 (2008), 4-14.

EDER, C. On the criteria of the F5 Algorithm. preprint math.AC/0804.2033 (2008).

EDER, C., GASH, |, AND PERRY,]. Modifying Faugere’s F5 Algorithm to ensure ter-
mination. ACM SIGSAM Communications in Computer Algebra 45, 2 (2011), 70-89.
http://arxiv.org/abs/1006.0318.

EDER, C., AND PERRY, . F5C: A Variant of Faugére’s F5 Algorithm with reduced
Grobner bases. Journal of Symbolic Computation, MEGA 2009 special issue 45, 12
(2010), 1442-1458. dx.doi.org/10.1016/j.jsc.2010.06.019.

EDER, C., AND PERRY, J. Signature-based Algorithms to Compute Grébner Bases.
In ISSAC 2011: Proceedings of the 2011 international symposium on Symbolic and al-
gebraic computation (2011), pp. 99-106.

E1sENBUD, D. Commutative Algebra: with a View Toward Algebraic Geometry, 3rd ed.
Graduate Texts in Mathematics, Springer Verlag, 2008.

FAUGERE, J.-C. A new efficient algorithm for computing Grobner bases (F4). Journal
of Pure and Applied Algebra 139, 1-3 (June 1999), 61-88.

FAUGERE, J.-C. A new efficient algorithm for computing Grébner bases without
reduction to zero (F5). 75-83.

FAUGERE, J.-C. A new efficient algorithm for computing Grébner bases
without reduction to zero Fs. In ISSAC’02, Villeneuve d’Ascq, France
(July 2002), pp. 75-82. Revised version from http://fgbrs.lip6.fr/
jcf/Publications/index.html.

FAUGERE, J.-C. Algebraic cryptanalysis of HFE using Grobner bases. INRIA Re-
search Report, n 4738.

FAUGERE, J.-C. Interactions between computer algebra (Grébner bases) and cryptol-
ogy. In ISSAC ’09: Proceedings of the 2009 international symposium on Symbolic and
algebraic computation (New York, NY, USA, 2009), ISSAC 09, ACM, pp. 383-384.

FAUGERE, J.-C. FGb: A Library for Computing Grébner Bases. In Mathematical
Software - ICMS 2010 (Berlin, Heidelberg, September 2010), Fukuda, Komei and
Hoeven, Joris and Joswig, Michael and Takayama, Nobuki, Ed., vol. 6327 of Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, pp. 84-87.

FAUGERE,].-C., GIANNI, P. M., LAZARD, D., AND MoRra, T. Efficient Computation
of Zero-Dimensional Grobner Bases by Change of Ordering. Journal of Symbolic
Computation 16, 4 (1993), 329-344.

FAUGERE, J.-C., AND Joux, A. Algebraic Cryptanalysis of Hidden Field Equation
(HFE) Cryptosystems Using Grobner Bases. 44-60.

304

[69]

[70]

(71]

[72]

[73]

[74]

(81]

(82]

Bibliography

FAUGERE, J.-C. AND LACHARTRE, S. Parallel Gaussian Elimination for Grobner bases
computations in finite fields. In Proceedings of the 4th International Workshop on
Parallel and Symbolic Computation (New York, NY, USA, July 2010), M. Moreno-
Maza and J.L. Roch, Ed., PASCO ’10, ACM, pp. 89-97.

FAUGERE, J.-C. AND Mou, C. Fast Algorithm for Change of Ordering of Zero-
dimensional Grébner Bases with Sparse Multiplication Matrices. In ISSAC 2011:
Proceedings of the 2011 international symposium on Symbolic and algebraic computa-
tion (New York, NY, USA, 2011), ISSAC ’11, ACM, pp. 115-122.

FAUGERE, J.-C. AND "SAFEY EL DIN”, M. AND SPAENLEHAUER, P.-]. Grobner Bases
of Bihomogeneous Ideals Generated by Polynomials of Bidegree (1,1): Algorithms
and Complexity. Journal of Symbolic Computation 46, 4 (2011), 406-437. Available
online 4 November 2010.

FROBERG, R. An Introduction to Grébner Bases. John Wiley & Sons, 1997.

Fukupa, K., JENSEN, A. N., LAURITZEN, N., AND THOMAS, R. The generic Grébner
walk. Journal of Symbolic Computation 42, 3 (2007), 298-312.

Fukupa, K., JENSEN, A. N., AND THOMAS, R. R. Computing Grobner fans. Mathe-
matics of Computation 76 (2007), 2189—-2212. PRO 060522.

Furton, W. Introduction to Toric Varieties. Princeton University Press, 1993.

GAo, S., GuaN, Y., AND VoLNY IV, E. A New Incremental Algorithm for Computing
Groebner Bases. Journal of Symbolic Computation - ISSAC 2010 Special Issue 1 (2010),

13-19.

Gao, S., VoLNY IV, E, AND WANG, D. A new algorithm for computing Groebner
bases. 2010.

GasH, J. M. On efficient computation of Grobner bases. PhD thesis, University of
Indiana, Bloomington, IN, 2008.

GATHEN, J. VON ZUR, AND GERHARD, J. Modern Computer Algebra, 2nd ed. Cam-
bridge University Press, Cambridge, England, 2003.

GEBAUER, R., AND MOLLER, H. M. Buchberger’s algorithm and staggered linear
bases. In Proceedings of the fifth ACM symposium on Symbolic and algebraic compu-
tation (New York, NY, USA, 1986), SYMSAC ’86, ACM, pp. 218-221.

GEBAUER, R., AND MOLLER, H. M. On an installation of Buchberger’s algorithm.
Journal of Symbolic Computation 6, 2-3 (October/December 1988), 275-286.

GERDT, V. P. On an Algorithmic Optimization in Computation of Involutive Bases.
Program. Comput. Softw. 28 (March 2002), 62-65.

[83]

[84]

[85]

(86]

[87]

(88]

[91]
[92]

[93]

[95]

[96]

[97]

(98]

Bibliography 305

GERDT, V. P, AND YANOVICH, D. A. Implementation of the FGLM Algorithm and
Finding Roots of Polynomial Involutive Systems. Programming and Computer Soft-
ware 29 (2003), 72-74.

GERDT, V. P, AND YANOVICH, D. A. Parallel computation of Janet and Grébner bases
over rational numbers. Program. Comput. Softw. 31 (March 2005), 73-80.

GIOVINI, A., MORA, T., NiEs1, G., RoBBIANO, L., AND TRAVERSO, C. “One sugar
cube, please” or selection strategies in the Buchberger algorithm. In ISSAC’91 (1991),

Pp- 49-54.

GriusTi, M. A Note on the Complexity of Constructing Standard Bases. In European
Conference on Computer Algebra (2) (1985), pp. 411—412.

GrusTi, M. Complexity of standard bases in projective dimension zero. In EURO-
CAL (1987), pp- 333-335.

Grusti, M. Complexity of Standard Bases in Projective Dimension Zero II. In
AAECC (1990), pp. 322-328.

GoLuBITSKY, O. D. Converging term order sequences and the dynamic Buchberger
algorithm.

GORDAN, P. Neuer Beweis des Hilbertschen Satzes {iber homogene Funktionen.
Nachrichten Kionig. Ges. der Wiss. zu G tt. (1899), 240-242.

GRABE, H.-G. On lucky primes. Journal of Symbolic Computation 15 (1994), 199-209.

GRABE, H.-G. The Tangent Cone Algorithm and Homogenization. Journal of Pure
and Applied Algebra 97 (1994), 303-312.

GRABE, H.-G. The SymbolicData Project — Tools and Data for Testing Computer Al-
gebra Software, 2011. http://wuw.symbolicdata.org.

GRASSMANN, H., GREUEL, G.-M., MARTIN, W., NEUMANN, W., PFISTER, G., PoHL,
W., SCHONEMANN, H., AND SIEBERT, T. Standard Bases, Syzygies and their imple-
mentation in SINGULAR. Beitréige zur angewandten Analysis und Informatik, Aachen
(1994), 69-96.

GRAUERT, H. Uber die Deformation isolierter Singularititen analytischer Mengen.

Inventiones Mathematicae 15, 3 (1972), 171-198.

GREUEL, G.-M., AND PFISTER, G. Advances and Improvements in the Theory of
Standard Bases and Syzygies. Archiv der Mathematik 66 (1996), 163-176.

GREUEL, G.-M., AND PFISTER, G. A SINGULAR Introduction to Commutative Algebra,
and ed. Springer Verlag, 2007.

GROBNER, W. Uber die algebraischen Eigenschaften der Integrale von linearen Dif-
ferentialgleichungen mit konstanten Koefhizienten. Mohatsh. der Mathematik, 47
(1939), 247-284.

306

[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

Bibliography

HaRRis, J. Algebraic Geometry — A first course, 3rd ed. Graduate Texts in Mathema-
tics, Springer Verlag, 2010.

HARTSHORNE, R. Algebraic Geometry, 8th ed. Graduate Texts in Mathematics,
Springer Verlag, 1997.

HiroNaka, H. Resolution of Singularities of an Algebraic Variety over a Field of
Characteristic Zero: 1. Annals of Mathematics 79, 1 (1964), 109-203.

HironNaka, H. Resolution of Singularities of an Algebraic Variety over a Field of
Characteristic Zero: II. Annals of Mathematics 79, 2 (1964), 205-326.

IDREES, N., PFISTER, G., AND STEIDEL, S. Parallelization of Modular Algorithms.
Journal of Symbolic Computation 46 (2011), 672-684.

JANET, M. Sur les systemes dequations aux Dérivées Partielles. Gauthier-Villars,
Paris (1920).

JENSEN, A. N. Gfan, a software system for Grébner fans and tropical varieties. Avail-
able at http://www.math.tu-berlin.de/ jensen/software/gfan/gfan.html.

Joux, A., AND VITSE, V. A Variant of the F4 Algorithm. In Topics in Cryptology -
CT-RSA 2011, Kiayias, Aggelos, Ed., vol. 6558 of Lecture Notes in Computer Science.
Springer Berlin / Heidelberg, 2011, pp. 356-375.

KALKBRENER, M. On the complexity of Grobner Bases Conversion. Journal of Sym-
bolic Computation 28 (1999), 265-273.

KosavasHI, H., MORITSUGU, S., AND HOGAN, R. W. Solving Systems of Algebraic
Equations. In Proceedings of the International Symposium ISSAC’88 on Symbolic and
Algebraic Computation (London, UK, 1989), ISAAC ’88, Springer-Verlag, pp. 139-
149.

KOLLREIDER, C., AND BUCHBERGER, B. An improved algorithmic construction of
Grobner-bases for polynomial ideals. SIGSAM Bull. 12 (May 1978), 27-36.

KorNERUP, P, AND GREGORY, R. T. Mapping integers and hensel codes onto Farey
fractions. BIT Numerical Mathematics 23 (1983), 9—20. 10.1007/BF01937322.

KREUZER, M., AND RoBBIANO, L. Computational Commutative Algebra 2, 1st ed.
Springer Verlag, 2005.

KREUZER, M., AND RoBBIANO, L. Computational Commutative Algebra 1, 2nd ed.
Springer Verlag, 2009.

KUHNLE, K., AND MAYR, E. W. Exponential space computation of Grobner bases. In
Proceedings of the International Symposium on Symbolic and Algebraic Computation,
ISSAC 96, Ziirich, July 24-26 (1996), pp. 63-71.

(114]

[115]

[116]

(117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Bibliography 307

Lazarp, D. Grobner bases, Gaussian elimination and resolution of systems of al-
gebraic equations. In EUROCALS3, European Computer Algebra Conference (1983),
J. A. van Hulzen, Ed., vol. 162 of Springer LNCS, pp. 146-156.

LazARrD, D. Algebre linéaire sur K[x,, . .., x, | et élimination. Bull. Soc. Math. France
105 (1977), 165-190.

LazaRrp, D. Systems of algebraic equations. In EUROSAM (1979), pp. 88-94.

LAZARD, D. Resolution des Systemes d'Equations Algebriques. Theor. Comput. Sci.
15 (1981), 77-110.

LazARD, D. Solving zero-dimensional algebraic systems. Journal of Symbolic Com-
putation 13, 2 (1992), 117-131.

Macautay, E S. On some Formula in Elimination. Proceedings of the London
Mathematical Society 33,1 (1902), 3-27.

MacauLay, E S. The algebraic theory of modular systems. Cambridge University
Press, 1916.

MacauLay, E S. Some Properties of Enumeration in the Theory of Modular Systems.
Proceedings of the London Mathematical Society, 26 (1939), 531-555.

MANDACHE, A. M. The Grébner basis algorithm and subresultant theory. In IS-
SAC’94 Proceedings (1994), pp. 123-128.

Marc GrusT1. Some Effectivity Problems in Polynomial Ideal Theory. In EU-
ROSAM (1984), no. Computation, pp. 159-171.

MAYR, E. W. Some complexity results for polynomial ideals. Journal of Complexity
13, 3 (1997), 303-325.

MOLLER, H. M., AND MoRA, T. Upper and lower bounds for the degree of Grobner
bases. In EUROSAM 84, Cambridge, July 9-11, 1984 (1984), pp. 172-183.

MOLLER, H. M., MoRra, T., AND TRAVERSO, C. Grobner bases computation using
syzygies. In ISSAC 92: Papers from the International Symposium on Symbolic and
Algebraic Computation (1992), pp. 320-328.

MONAGAN, M., GEDDES, K. O., HEAL, K. M., PEARCE, R., LABAHN, G., VORKOETTER,
S. M., McCARRON, J., AND DEMARCO, P. Maple 15 Programming Guide. Maplesoft,
Waterloo ON, Canada, 2011.

MoONAGAN, M., AND PEARCE, R. Parallel Sparse Polynomial Multiplication Using
Heaps. In ISSAC 2009 (2009), pp. 295-315.

MONAGAN, M., AND PEARCE, R. Parallel Sparse Polynomial Division Using Heaps.
In PASCO 2010 in Grenoble, France (2010), pp. 105-111.

308

[130]

[131]

[132]

[133]

[134]

[135]

[136]

(137]

[138]

[139]

[140]

[141]

[142]

[143]

Bibliography

Mora, T. An Algorithm to Compute the Equations of Tangent Cones. EUROCAM
82, Lecture Notes in Comp. Sci.

Mora, T. Solving Polynomial Equation Systems I1I:Macaulay’s Paradigm and Grobner
Technology: Macaulay’s Paradigm and Grobner Technology: v. 2 (Encyclopedia of Ma-
thematics and its Applications). Cambridge University Press, 2005.

Mora, T. The FGLM Problem and Méller’s Algorithm on Zero-dimensional Ideals.
in Grobner Bases, Coding, and Cryptography, Springer, 1 (2009), 27-45.

Mora, T., AND RoBBIANO, L. The Grébner fan of an ideal. Journal of Symbolic
Computation, 6 (1988), 183-208.

Noro, M. An Efficient Implementation for Computing Grébner Bases over Al-
gebraic Number Fields. In Mathematical Software - ICMS 2006, Iglesias, A. and
Takayama, N., Eds., vol. 4151 of Lecture Notes in Computer Science. Springer Berlin /
Heidelberg, 2006, pp. 99-109.

Noro, M. Modular Algorithms for Computing a Generating Set of the Syzygy
Module. In Computer Algebra in Scientific Computing, Gerdt, V., Mayr, E., and
Vorozhtsov, E., Eds., vol. 5743 of Lecture Notes in Computer Science. Springer Berlin
/ Heidelberg, 2009, pp. 259-268.

PaN, V. Y., AND WANG, X. On Rational Number Reconstruction and Approximation.
SIAM]. Comput. 33 (February 2004), 502-503.

PAUER, E On lucky ideals for Grobner basis computations. Journal of Symbolic
Computation 14, 5 (1992), 471 — 482.

PFISTER, G. On Modular Computation of Standard Basis. Analele Stiintifice al Uni-
verstitatii Ovidius, Mathematical Series XV, 1 (2007), 129 - 137.

PoMMARET, J. F. Systems of Parital Differential Equations and Lie Pseudogroups.
Gordon ¢ Breach, New York (1978).

Rau, J. Tropical intersection theory and gravitational descendants: Intersections of
tropical cycles and applications to enumerative geometry. Stidwestdeutscher Verlag
fiir Hoschulschriften, 2010.

SALA, M., MORA, T., PERRET, L., SAKATA, S., AND TRAVERSO, C., Eds. Grobner Bases,
Coding, and Cryptography. Springer Verlag, 2009.

Sasaxi, T., AND TakeEsHIMA, T. Modular Method for Grobner-basis Construction
over Q and Solving System of Algebraic Equations. Journal of information processing
12, 4 (1989), 371-379.

ScuwaRrTZ, N. Stability of Grébner bases. Journal of Pure and Applied Algebra, 53
(1988), 171-186.

[144]

[145]

[146]

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

Bibliography 309
STEGERS, T. Faugere’s F5 Algorithm revisited. Master’s thesis, Technische Univeritat
Darmstadt, revised version 2007.

STURMFELS, B. Grobner Bases and Convex Polytopes. University Lecture Series, No.
8, 1996.

STURMFELS, B. Solving Systems of Polynomial Equations, 2002.

STURMEFELS, B. Combinatorial Commutative Algebra. Graduate Texts in Mathema-
tics, Springer Verlag, 2004.

SuN, Y., AND WANG, D. A New Proof of the F5 Algorithm. CoRR abs/1004.0084
(2010).

SuN, Y., AND WANG, D. A generalized criterion for signature related Grobner ba-
sis algorithms. In ISSAC 2011: Proceedings of the 2011 international symposium on
Symbolic and algebraic computation (2011), pp. 337-344-

SYLVESTER, . . Collected Mathematical Papers of James Joseph Sylvester. Cambridge
University Press, Cambridge, England, 1912.

THOMAS,]. Differential Systems. American Mathematical Society, New York (1937).

TrAN, Q.-N. A fast algorithm for Grébner basis conversion and its applications.
Journal of Symbolic Computation 30, 4 (2000), 451-467.

TRAVERSO, C. Grobner Trace Algorithms. In ISSAC’88 (1988).

TrAVERsO, C. Hilbert Functions and the Buchberger Algorithm. Journal of Symbolic
Computation 22, 4 (1996), 355-376.

WALL, B. On the computation of syzygies. ACM SIGSAM Bulletin 23 (1989), 5-14.

WANG, P. S. Parallel polynomial operations on SMPs: an overview. Journal of Sym-
bolic Computation 21 (1996), 397-410.

WANG, P. S., Guy, M. J. T., AND DAVENPORT, J. H. P-adic reconstruction of rational
numbers. ACM SIGSAM Bulletin 16 (May 1982), 2-3.

WANG, X., AND PaN, V. Y. Acceleration of Euclidean algorithm and rational number
reconstruction. SIAM Journal on Computing 32 (2003), 548-556.

WicHMANN, T. Der FGLM-Algorithmus: verallgemeinert und implementiert in
SINGULAR. Diploma thesis at the university of Kaiserslautern (1997).

WINKLER, E. A p-adic approach to the computation ofGrobner bases. Journal of
Symbolic Computation 6 (December 1988), 287-304.

YaNovicH, D. A. Parallelization of an Algorithm for Computation of Involutive
Janet Bases. Program. Comput. Softw. 28 (March 2002), 66-69.

310 Bibliography

[162] ZHARKOV, A. Y. Solving zero-dimensional involutive systems. Birkhauser Verlag,
Basel, Switzerland, Switzerland, 1996, pp. 389-399.

[163] ZoBNIN, A. I. Generalization of the Fs5 algorithm for calculating Grobner bases
for polynomial ideals. Programming and Computer Software 36 (2010), 75-82.
10.1134/S0361768810020040.

addFsCrit,
AP 62l

basis of a module,[7]
bijective
ring homomorphism, 8]
Buchberger’s 1st Criterion,
extended version,
Buchberger’s 2nd Criterion, 57|
Buchberger’s Algorithm, 37

canonical basis of a module,[4]
Chain Criterion, 51
characteristic,

of a field, @@

of a ring,
coeflicient,

311

INDEX

coefficient growth, [88
coefficient of a polynomial, I
complete intersection, [73]
complete labeled polynomial, 261
complete sig-safe reduction, [132]
complex, 2l

exact sequence,

of modules,
complexity classes, 7]
complexity of an algorithm, (7]
complexity of standard basis computations,

Z8

constant, [l
convex polyhedral cone,[79]

dimension,

dual,

face,[79]

312

facet, [79]
critical pair, 57
normal, [163]
of labeled polynomials,
sig-equivalent, 133
useless, [43]
curr-index labeled polynomial,
polynomial part of the label, 279
cyclic module, [

degree

of a module monomial,

of a monomial, @

of a polynomial,

of a signature, [[30

weighted, [71
degree of a variable, I
dehomogenization of a polynomial,
Dickson’s Lemma, [[7]
divisibility

of monomials, 7]

involutive monomial, [98]

of module monomials, 211
dual of a convex polyhedral cone,[7g
dual pairing,
dynamic Grobner basis algorithm, [77]

ecart
module element, Z1
polynomial, 7]
weighted, [71]
Euclidean algorithm,
exact sequence,
extended Product Criterion,
extended version of Buchberger’s 1st Cri-
terion,

F4 Algorithm, 56} 57
Gaussian elimination, [56]
improved version, [64]
reduction process,[60l [67]
simplifying reduction, [68
symbolic preprocessing, 57}

Fs Algorithm, 184,185
computing syzygies, [262]

Index

normalized critical pair,
normalized element,

rule, 97

rules,[[97]
Fs5 Criterion,

Fs+ Algorithm,

Fs—critical pair, z23]

FsB Algorithm, 73]

F5C Algorithm, 507

Fst Algorithm,

face of a convex polyhedral cone, [79]
facet,

facet,

fan,

Farey fractions, 89|

Farey rational map, 89,91

Fas,[62]

FGLM Algorithm, [83} 87,

finitely generated module, 7]

free module, 4

free resolution, [o7]
of finite length,

free resolution of a module, 12l

G2V, 168l
super top-reduction,
Gauss basis, 107
Gauss generating set, [T07]
Gaussian elimination, 26l 53} [56]
Gebauer-Moller implementation, [53
GFAN, [83]
global monomial order,
Grobner basis, 26 see also standard basis
change of order, [77} 83} [85]
dynamic algorithm, [77]
FGLM Algorithm, [85}[87]
Grober fan, 82
Grobner cone, [82]
Grobner walk, 83
staggered linear basis,
Grobner cone, [82]
Grobner fan,[77}[82]
convex polyhedral cone,
fan,
Groébner trac algorithm

Index

Grobner trace reconstruction algorithm,
95
modular,[g7]
Grobner trace,
Groébner trace algorithm,
Grobner trace,[97]
Grobner trace reconstruction algorithm,
95
modular,[57]
Groébner trace reconstruction algorithm,
95
Grobner walk, [83]
Grobner cone, [82]
Grobner fan,[32]
graded lexicographical monomial order,
graded module,z21
homogeneous element, 221
inhomogeneous element,
graded reverse lexicographical monomial
order, 3]
graded ring, 22
homogeneous element, 22
inhomogeneous element,
greatest common divisor,

height of a prime ideal,

height of an ideal,

Hilbert function, 7]

Hilbert polynomial, 75} 25

Hilbert-driven standard basis computa-

tion, [72} 74

Hilbert-lucky prime number,

Hilbert-Poincaré series,
Hilbert-driven standard basis compu-

tation, [72]
Hilbert-Samuel function,
homogeneous

standard basis,
homogeneous element,
homogeneous ideal,
homogeneous module, 221
homogeneous polynomial, 23]
homogenization of a polynomial, 23]
homomorphism

313

module homomorphism,[7]
ring homomorphism, 7]

ideal,[3
height of,[73
initial, 81
leading ideal, z7]
maximal ideal, g
primary ideal, [
prime ideal,[g]
principal, [
quotient, @]
radical of an ideal,[g
saturation, [4]
vanishing set,
variety, [73]
zero—dimensional,
ideal quotient,[4]
image
of a module homomorphism,[§]
of a ring homomorphism, [§
improved F4 Algorithm, [64} 65
symbolic preprocessing,
improved version of the F4 Algorithm
simplifying reduction,
IncFs, [[o7]
INcFs5+,[230]
INCF5B+,[233]
INncF5C, z10l
INCFsE, 215
INCF5Svz, 265
incremental standard basis computation,
13/]
INcS1G, 138
INCSIGCRIT, [154]
INcS16G2V, [72]
index
of a labeled polynomial,
index of a module element, [Ig]
induced homogenized order, 23
inhomogeneous element,
initial ideal, [81]
initial monomial, [§1]
injective
module homomorphism,

314

ring homomorphism,
interreduced standard basis, 28
involutive autoreduced set,[99]
involutive basis, 99

autoreduced set,

involutive set,[99]

monomial divison, [98}

normal form,
involutive monomial division, [98] 99
involutive normal form, g9
involutive set,[99]
isomorphism, [§]

kernel
of a module homomorphism, [§
of a ring homomorphism, [§

label
of a labeled polynomial, (28]
labeled polynomial, 128]
coeflicient of the signature, 130
complete, 261]
critical pair
normal, [163]
critical pair sig—equivalent, 33
curr—-index,
polynomial part of the label, 279
degree,[[30]
degree of signature, 130
index of,
label, 28]
leading coeflicient,
leading monomial, [T30]
leading monomial of the label,[T30]
leading term, [130]
least common multiple, [[30]
monomial part of the signature, T30
non-minimal signature criterion, [I57]
polynomial part, 28]
redundant, Zz1
rewritable signature criterion, [I51]
sig-redundant,
signature of, [128]
slim, 73]

standard representation, [[3]

Index

term of the signature, [30]
labels of a polynomial, [27]
leading coefficient

module element, 211

polynomial, 7]
leading ideal, z7

boundary of, [83]

edges of, [85]

monomials not reducible by, 85

sides of,[85]
leading monomial,[17]

module element, Z1
leading submodule, 27
leading term

module element, Z11

polynomial, 7
least common multiple,
lexicographical monomial order, i3]
line segment between two vectors, [81
local monomial order, 53]
local ring,

Hilbert-Samuel function,
localization of polynomial ring,[17]
localization of the polynomial ring, I3
lucky prime number,

Macaulay matrix, [56]
MAGMA,[62]
MAPLE,
maximal ideal, [
mixed monomial order, [I5]
modular Grobner trace algorithm, g7 97
modular standard basis computation, [89}
92
Farey fractions, [§9]
Farey rational map, [89]
Grobner trace algorithm,
Hilbert-lucky prime number,
lucky prime number,
parallelization,
module, 3]
basis, 7
canonical basis, 7]
cyclic,[@
finitely generated module,]

free module, @
generators of an module, 7]
graded, 221
greatest common divisor,
Hilbert function, 27
Hilbert polynomial,
Hilbert-Poincaré series,
homomorphism, 7]
leading submodule,[27]
monomial order,
monommial, 9]
Noetherian,
quotient module,[5]
rank of a module,[4]
regular sequence, [74]
residue class, 5]
scalar multiplication, [3]
submodule,[3]
term, [I9]
module element
divisibility, z1
ecart, 21
leading coefficient, &1
leading monomial, Z11
leading term, 11
least common multiple, 33
monic, 211
monomial support,
s—vector, 4l
support,[19]
tail, z1
module homomorphism, 7]
image,[§
injective,
kernel, 8]
preimage, [
module monomial order,
monic
module element, 211
polynomial, 7]
monoid module, see monomodule
monomial
degree,mm
degree of a variable, 1
divisibility,]

315

in amodule over a polynomial ring,[19]
in a polynomial ring, @
monomial order, 4]
Dickson’s Lemma, [[7]
global,
graded lexicographical,
graded reverse lexicographical,
induced homogenized, 23]
lexicographical,
local,
mixed, [I5]
negative graded lexicographical,
negative graded reverse lexicographi-
cal,m3]
negative lexicographical,
product,[16]
refinement, [82]
weight,
monomial support
of a module element,
monomodule,[3
Noetherian,
multiplicatively closed set,[[7]

natural order,[[4]
negative graded lexicographical monomial
order, [[3]
negative graded reverse lexicographical
monomial order,
negative lexicographical monomial order,
Noetherian
module, [6]
monomodule,
Noetherian ring,
non-minimal signature criterion, [I5]
NONMIN?, [155]
NoNMINAP:,[164]
NoNMInFsz,[187]
NoNMING2V?,[[70]
normal critical pair,
normal form, 28]
global, 31
local, 33
reduced, 30} [31]

316

standard representation,
weak,
normalized critical pair, 186
normalized element, 188]

order

global,

local,

mixed,

module monomial,

monomial, [[4]

natural,]

partial, [[4]

refinement of a weight vector order,[82]

strict partial,

strict total,

total, 4]

well-order, 4]
ordered list,[27]

pair set,[37]
critical pair, 57
parallel modular standard basis compu-
tation,
partial order, 4]
PoLyBoRi1,[6d
polynomial,
coeflicient of a, [

constant, [

degree of,[
dehomogenization of,
ecart, [17]

greatest common divisor, 35
homogeneous, 23]
homogenization of, 23]
initial monomial, 81l
labels, z7]

leading coeflicient, [r7]
leading monomial, [I7]
leading term, [I7]

least common multiple, [35]
monic, 7]

monomial support, Iz
s—polynomial, 36|
support, 12l

Index

tail,[7]
total degree of, 2
w-homogeneous, 8]
weighted degree, [71]
polynomial ring,
localization, [[3, [I7]
monomial, {1
polynomial,
term, @
preimage
of a module homomorphism, [§
of a ring homomorphism, [
primary ideal, [
prime ideal,[4]
height of,[73]
principal ideal, @
principal ideal ring, @
principal syzygy,
Product Criterion,
extended version,
product monomial order,16]

quotient map,[9]
quotient module,[3]
quotient ring,]

radical of an ideal, [

rank of a module, [

reduced standard basis,

reduction, 281 34]
top-reduction, 37

redundant labeled polynomial, zz1

refinement of a weight vector order,[82]

regular sequence, [74]

Replace? in SlimGB, [70]
Coeflicient-elimination strategy,
Coeflicient-length strategy, [69]
Elimination strategy, [69]

Length strategy, [69]
Property, [69]

residue class, 5]

rewritable signature criterion, [[51]

REWRITE?, [156]

REWRITEAP?,[165|

REWRITEG2V?, [I77]

REWRITEMMz?,[167]
Rewritten Criterion, [92]
ring, 2l
graded, 221
homomorphism, 7]
local, 2
Noetherian,
principal ideal domain,[]
principal ideal ring, [
quotient ring,
subring, 2
ring homomorphism, 7]
bijective, [8]
image, 8
injective,
isomorphism, 8
kernel,[§]
preimage, 8§
quotient map, [9]
surjective, [§

s—polynomial
least common multiple, 33
s—vector, 261 33} 36
least common multiple, 33
of labeled polynomials, [37]
saturation of an ideal,[]
SB—critical pair, Z23]
scalar multiplication,
selection strategy
normal,[77]
sugar, [48]
semi-complete sig-safe reduction,
sequence, Z7]
set of generators,[d]
sig—equivalent critical pair, [[33]
sig-redundant labeled polynomial,
sig-safe reduction, ;32
complete, [[32]
semi-complete, [32]
sig-standard basis,
sig—unsafe reduction,
signature
of a labeled polynomial, 128
coefficient,

Index

317

degree,
generalized, 253
labeled polynomial,
leading monomial,
monomial part,[130]
non-minimal, 151
NoONMIN?, [155]
NoONMINAP:?, [164]
NoNMinFsz?,[187]
of a module element, [[27]
of a polynomial, 128]
of length j,[253
rewritable, 151
REWRITE?, [156]
REWRITEAPz?,
REWRITEMMz?,[167]
set of all signatures of a polynomial,
1281
sig-safe reduction, [[32]
sig-unsafe reduction, [[37]
term, [I30]
SIGRED, [139]
S1GREDF5,[189]
SIGREDF5+,[231]
SIGREDF5SyZ, 266
S1IGREDG2V, [169]
S16STD,[136
SIGSTDQ,[250]
SIGSTDRED, [I59]
simplifying reduction,
SINGULAR , 5511661 [07]
slim labeled polynomial, {73
SlimGB, 69
Replace?,
SlimNE A o]
SlimNE[67] 70
staggered linear basis, [[04} [[05} 110
staggered linear basis algorithm, 108
initial version, 108l
normal form, 110
revised version,
standard basis
sig—[163]
standard basis, @ 28] 27
normal form,

318

Buchberger’s 1st Criterion,

Buchberger’s 2nd Criterion, 5]

Buchberger’s Algorithm, 57

Chain Criterion, 5J]

coeficient growth, [88]

complexity, @1

critical pair, 57

dynamic algorithm, [77

extended Product Criterion,

extended version of Buchberger’s 1st Cri-
terion, 50]

F4 Algorithm, [56]

F5 Algorithm,

FGLM Algorithm, [85} [87} mo0]

Gebauer-Moller implementation,

Grobner basis, 27]

Groébner fan, [77]

Grobner trace algorithm,

Grobner walk, [83]

Hilbert-driven, 72} [74]

homogeneous,

improved F4 Algorithm, [64]

incremental computation, [[37]

interreduced, 28

leading ideal, z7]

leading submodule, 27

modular computation, [89] g2

non-minimal signature criterion, [I5]]

normal form,

normal selection strategy, {7]

of degree d,

pair set,[37]

parallelized computations, [92

Product Criterion,

product criterion,

reduced, 28]

reduced normal form, 30|

reduction, [34]

regular sequence, [74]

rewritable signature criterion, [I51]

s—polynomial, 36|

s—vector, 261 [36]

S16STD, [13G

SIGSTDQ,[250]

SIGSTDRED, [159]

Index

SlimGB,
SlimNE, 53}
standard representation, [3o} [36]
sugar selection strategy, 48|
SyzNE, 9]
SyzStD, 118
syzygy-based computation, 118]
top-reduction, 37
useless critical pair, [43]
standard grading, [Z3
standard representation,
of a labeled polynomial, 137
s—vector, 36|
strict partial order,
strict total order,[13]
submodule,[3]
subring,
sugar degree,[48]
super top-reduction,
support
monomial support of a polynomial,
of a module element,
of a polynomial,
surjective
ring homomorphism, [§
Sylvester matrix, [56]
symbolic preprocessing, 57} 59,
Syz1,[g)
Syz2,
SyzNF, 119
SyzStp, 118
Syzygy, o3}
matrix, [IT7]
principal,
syzygy algorithms, [[T4}
Syz1,[[14
Syza,
Syzygy matrix, [I17]
syzygy module,

tail
module element, 211
polynomial, 7]
term
in a module, g

Index

in a polynomial ring, @
top-reduction, [34]
toric geometry, [81]
total degree of a polynomial,
total order,[I4]

useless critical pair,

vanishing set

complete intersection,
vanishing set of an ideal,
variety

complete intersection, [73]
variety of an ideal,[73]
vector space,[3]

w-homogeneous polynomial, 81l

weight
ecart, [77]
weight order, [16]

weighted degree of a polynomial, [71]
weighted ecart, [71]
well-order, [I4]

319

WISSENSCHAFTLICHER WERDEGANG

2002
seit 04/2002
12/2005

seit 04/2008

2002

since 04/2002

12/2005

since 04/2008

Abitur am Carl-Bosch-Gymnasium, Ludwigshafen
Studium der Mathematik an der TU Kaiserslautern
Diplom in Mathematik, TU Kaiserslautern

Doktorand bei Prof. Dr. Gerhard Pfister,
TU Kaiserslautern

CURRICULUM VITAE

Abitur at the Carl-Bosch-Gymnasium, Ludwigshafen

Study of mathematics at the University of Kaiserslautern,
Germany

Diplom in Mathematics, University of Kaiserslautern

Ph.D. studies with Prof. Dr. Gerhard Pfister,
University of Kaiserslautern

	Preface
	An introduction to standard bases
	Rings, ideals, and modules
	Polynomial rings
	Monomial orders on polynomial rings
	Monomial orders on free P–modules
	Gradings
	Hilbert–Poincaré series and dimensions
	Normal forms and standard bases
	The basic standard basis algorithm
	On the complexity of standard basis computations

	Ways to improve standard basis computations
	The problem of zero reductions
	Selection strategies for critical pairs
	Buchberger's criteria
	The Gebauer–Möller implementation
	Normal form computations and their relation to Gaussian elimination
	Picking a good reducer
	Using the Hilbert–Poincaré series
	Going the indirect way
	Modular standard basis computations
	Involutive bases
	Concluding remarks

	Syzygy modules and standard bases
	Staggered linear bases
	Syzygies and free resolutions
	Computing standard bases using syzygies

	An introduction to signature–based standard basis algorithms
	Basic ideas behind signatures and labeled polynomials
	A generic signature–based standard basis algorithm
	Some remarks on sig–safeness

	Signature–based criteria to detect useless critical pairs
	Generic criteria based on signatures
	Reducing computational overhead in `39`42`"613A``45`47`"603ASigStd
	An explicit choice in (RW)
	A variant of `39`42`"613A``45`47`"603AAP using sparser polynomials
	`39`42`"613A``45`47`"603AG2V – Complete reduction, weakened (RW)
	Experimental results

	Faugère's `39`42`"613A``45`47`"603AF5 Algorithm
	Faugère's initial presentation of `39`42`"613A``45`47`"603AF5
	`39`42`"613A``45`47`"603AF5C – `39`42`"613A``45`47`"603AF5 using reduced bases
	Classifying `39`42`"613A``45`47`"603AF5 in the signature–based world
	Experimental results
	Termination–ensured variants of `39`42`"613A``45`47`"603AF5

	Generalizing signature–based algorithms
	Signature–based algorithms and inhomogeneous input
	Computing the ideal quotient
	Generalizing signatures
	Non–incremental signature–based standard basis algorithms
	Parallelization of signature–based algorithms
	Computing syzygies with generalized signature–based algorithms

	Examples
	Index

