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The main problem

Given an ideal / we want to compute a Grobner basis G of /.
m We want to do this fast and without much memory usage.

m We do not want to compute zero-reductions of
S-Polynomials as they do not give us any new information
about G, but cost time and memory.

= How do we detect such useless critical pairs/S-Polynomials?
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Faugere's |dea

(a) Connect the polynomials in K[x] with module elements in
K[x]™.

(b) Add new data received from this connection to each
polynomial investigated.

(c) Use this data to detect useless critical pairs/S-Polynomials
and delete them before they are reduced.

This is what the Grobner basis algorithm called F5 is all about.
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What this talk is about

(a) Understand the connection between polynomials and module
elements.

(b) Understand the way new data is added to a polynomial.

(c) State Faugere's Criteria to detect useless critical pairs using
this new data.

(d) Understand why these criteria work in a small example.
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Polynomial Basics

m K always denotes a field, K[x] is the polynomial ring over K
in the variables x = (x1,...,x,), < denotes a well-ordering on
K[x], 7 denotes the monoid of power products of x.
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m K always denotes a field, K[x] is the polynomial ring over K
in the variables x = (x1,...,x,), < denotes a well-ordering on
K[x], 7 denotes the monoid of power products of x.

mifp=>71aipi, ak e K,px €T forall ke {1,...,m}
where ai1p; < ... < ampm then we denote

m the head term of p HT(p) = pm,
m the head coefficient of p HC(p) = am,
m the head monom of p HM(p) = ampm.

m Let p1, p2 € K[x],

_ LOM(HT(py), HT(p2))
HT(pk)

then we denote the S-Polynomial of p;, p»

Uy for k € {1,2},

Spol(p1, p2) = HC(p2)u1p1 — HC(p1)uzpo.
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Polynomial Basics

m F=(f,...,fn) with f; # 0 € K[x] always denotes a
sequence of homogeneous polynomials.
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Polynomial Basics

m F=(f,...,fn) with f; # 0 € K[x] always denotes a
sequence of homogeneous polynomials.

m Let p € K[x] be a polynomial and P := {p1,...,pm} be a set
of polynomials in K[x]. Then we say that

n
p= Z Aipi Ai € K[x]
i—1

is an t-representation of p w.r.t. P if HT(\;p;) < t for all
ie{l,...,m}.
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Example

Consider the polynomial ring K[x, y], < a degree reverse
lexicographical ordering. Let p; = 3x%2 4y, p» = 2xy + 1. Then
LCM(HT(p1),HT(p2)) = x?y, u1 = y and up = x. We get

Spol(p1,p2) = 2yp1—3xp2
= 6x%y? + 2y° — 6x%y% — 3x
= 2y2 — 3x.
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Characterization of Grobner Bases

Theorem

Let G D {f,...,fm}. If for all p;,pj € G Spol(pi, pj) has a
t-representation for t = LCM(HT(p,-), HT(pj)) or Spol(pi, pj)
reduces to zero w.r.t. G then G is a Grébner basis of

= (fi,...,fm).
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Let G D {f,...,fm}. If for all p;,pj € G Spol(pi, pj) has a
t-representation for t = LCM(HT(p,-), HT(pj)) or Spol(pi, pj)
reduces to zero w.r.t. G then G is a Grobner basis of

= (fi,...,fm).

Proof.
See [BeWe]. O
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Let K[x]™ be an m-dimensional module with generators ey, ..., en
m We define the evaluation map vg : K[x]” — K such that
vr(ej) = fi forall i € {1,..., m}.
m We define a module term ordering <y on K[x]™:

tie; <r tje; <= (a) i>j, or
(b) i=jandt; <t
where t;, t; € 7. We denote the highest term of an element

g € K[x]™ w.r.t. <p the module head term MHT(g).

m For an element g = >"7 , gje; € K[x]™ we define the index
of g to be the lowest number k such that gx # 0 and denote
it by index(g). Thus we write g = > ™", gie; in the following.
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Example

Assume the sequence F = (fi,...,fy,), < the degree reverse
lexicographical ordering, x = (x,y).
Let

g1 = (X +xy)ex+x'yes,

g = xyer+yes,

g3 = e;+ xep.
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Example

Assume the sequence F = (f,..., fn), < the degree reverse
lexicographical ordering, x = (x,y).
Let

g1 = (X +xy)ex+x'yes,

g = xyer+yes,

g3 = e;+ xep.

(a) index(g 1ndex(g2) =2, 1ndex(g3) =1

(g1) =
(b) MHT(g;) = x? e2 as 2 < 4 and x? > xy. Similar we receive
MHT(gz) = X yes and MHT(g3) =e1.
)

(c) MHT( g1) <r MHT(g>) as both have the same index and
x? < x2y. MHT(g2) <r MHT(g3) as
index(g3) < index(gz).
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Labeling of a Polynomial

m A polynomial p is called admissible (w.r.t. F) if there exists
an element g € K[x]™ such that ve(g) = p.
m An admissible, labeled polynomial r is an element of
K[x]™ x K[x] defined by r = (S(r), poly(r)) where
m poly(r) € K[x] is the polynomial part,
m S(r) = MHT(g) such that ve(g) = poly(r) is the signature
of r.

m The index of r is defined to be index(r) = index(S(r)).

m For an admissible labeled polynomial r with S(r) = te, we
denote the term of the signature of r to be

r(S(r)=teT.
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Labeling of a Polynomial

m If r1, rp are admissible labeled polynomials such that
UQS(I’z) <F U15(I’1) then

Spol(r, rn) = (ulS(rl), Spol(poly(r), poly(rz))) .
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Labeling of a Polynomial

m If r1, rp are admissible labeled polynomials such that
U2$(I’2) <F U18(I’1) then

Spol(r, rn) = (ulS(rl), Spol(poly(r), poly(rz))) .

m If r = (S(r),poly(r)) is an admissible labeled polynomial and
R:={n,...,rm} is a set of admissible labeled polynomials
then we say that

n
poly(r) = > Aipoly(r;) A € K[x]
i=1

is an admissible t-representation of r w.r.t. R if
HT (Aipoly(r;)) < t and HT();)S(ri) <r S(r) for all i and
t = HT (poly(r)).
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Example

Assume the sequence F = (fi,..., ).

(a) Let p=1fi. Then r = (e1,f1) is an admissible labeled
polynomial as ve(e;) = fi.
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Example
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(a) Let p=1fi. Then r = (e1,f1) is an admissible labeled
polynomial as ve(e;) = fi.

(b) Againlet p=1fi. Then r' = (HT(f)es, f1) is also an
admissible labeled polynomial. For this consider the module
element g = (, + 1)e; — fiey. It holds that
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Example

Assume the sequence F = (f1,..., fy).

(a) Let p=1fi. Then r = (e1,f1) is an admissible labeled
polynomial as ve(e;) = fi.

(b) Againlet p=1fi. Then r' = (HT(f)es, f1) is also an
admissible labeled polynomial. For this consider the module
element g = (f; + 1)e; — f1e,. It holds that
VF(g) =hfH+FH —HfH=F and MHT(g) = HT(fQ)Gl

RENELS

For a polynomial p there can exist infinitely many different
admissible labeled polynomials r such that poly(r) = p. In the
case of F being a regular sequence the admissible labeled
polynomial r corresponding to a polynomial p computed by Fs is
uniquely defined.
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New Characterization of Grobner Bases

Notations

In the following we use a shorter notation for r = (S(r), poly(r))
denoting poly(r) by p. G ={n,...,rm} denotes a set of
admissible labeled polynomials such that

poly(G) :={p;i | i€ G} D{f,...,m}.
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New Characterization of Grobner Bases

Notations
In the following we use a shorter notation for r = (S(r), poly(r))

denoting poly(r) by p. G ={n,...,rm} denotes a set of
admissible labeled polynomials such that

poly(G) :={p;i | i€ G} D{f,...,m}.

Theorem (Admissible Representation Characterization)

If for all rj, rj € G Spol(r;, rj) has an admissible t-representation for
t = LCM(HT(p;), HT(p;)) or Spol(pi, pj) reduces to zero w.r.t. G
then poly(G) is a Grobner basis of | = (fi, ..., fm).

Proof

If r is an admissible labeled polynomial with admissible
t-representation then p has a t-representation for t = HT(p).
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Faugere's Criteria

Spol(ri, rj) is not normalized iff for uxry (k =i or k = j) there
exist ryrey € G such that

index(rprev) > index(ry)
HT(pprev) ’ ukF(S(rk)).

This Criterion is stated explicitly in Faugére's description of the Fg
Algorithm, but it is not the only one.
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Faugere's Criteria

Fs Criterion

Spol(ri, rj) is not normalized iff for uxry (k =i or k = j) there
exist ryrey € G such that

index(rprev) > index(ry)
HT(pprev) | ukF(S(rk)).

This Criterion is stated explicitly in Faugére's description of the Fg
Algorithm, but it is not the only one.

Remark

This criterion would delete the element r’ = (HT(f2)e1, f1) as the
element r» = (e2, f2) has index(r2) =2 > 1 and clearly
HT (poly(r2)) | HT(f).
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Faugere's Criteria

Rewritten Criterion

Spol(ri, rj) is rewritable iff for uxry (k =i or k = j) there exist
v, hw € G such that

index(rx) = indeX(Spol(rv,rW))
F<S(Spol(r\,,rw))) | ul (S(re)).

This Criterion is not stated explicitly, but it is part of the
pseudocode.
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Using the Criteria to compute Grobner Bases

Theorem (New Characterization using Faugere's Criteria)

Let £ C G x G such that for every element (r;, r;) € L Spol(r;, rj)
Is

(a) normalized, and

(b) not rewritable.

If each such Spol(r;, rj) has a t-representation with
t = LCM(HT(p;), HI(p;j)) or reduces to zero, then poly(G) is a
Grobner basis of | = (fi,. .., fm).
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Using the Criteria to compute Grobner Bases

Theorem (New Characterization using Faugere's Criteria)

Let £ C G x G such that for every element (r;, r;) € L Spol(r;, rj)
Is

(a) normalized, and
(b) not rewritable.

If each such Spol(r;, rj) has a t-representation with
t = LCM(HT(p;), HI(p;j)) or reduces to zero, then poly(G) is a
Grobner basis of | = (fi,. .., fm).

Remark

The idea is to only investigate on S-Polynomials with generators
being elements of £. We need to show that all other
S-Polynomials have a t-representation or reduce to zero.
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Using the Criteria to compute Grobner Bases

Idea of the Proof

If Spol(r;, rj) is not normalized and/or rewritable then we can
assume w.l.o.g. that ujr; with index(r;) = k is not normalized
and/or rewritable. It follows that there exists a (not necessarily
principal) syzygy with the element u,-F(S(r))ek. From this syzygy
we can compute a rewriter reyw such that we get the following
relationship:

Spol(ri, rj) = A1Spol(ri, frew) + A2SPOl(frew, ;).

Both, Spol(r;, frew) and Spol(fiew, rj) were already or will be
investigated in Fs. This leads to an admissible t-representation of
Spol(ri, rj) where t = LCM(HT(p;), HT(p;)).
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Example of the Rewritten Criterion

In [Fa] Faugeére computes the Grébner basis of | = (fi, f>, f3) where

fi = yz22—x*t?
fh = xz2—y%t
i = x°y—z°t

in Q[x, y, z, t] with degree reverse lexicographical ordering

x >y > z > t. During these computations

Spol(ri, r3) = (x2S(r1),x2f — z3£;) is detected to be rewritable by
the element rg = (xer, y3zt — x3t2) as both have the same index
and xI'(8(rs)) = x*T'(S(r1)). re was computed from Spol(ry, )
such that we have a syzygy s = xe; — yzer — eg, for r; we have
the trivial syzygy s; = e; — ej.
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Example of the Rewritten Criterion

If we compute

x251 + xs¢ = x2e1 — x2e1 + x2e1 — Xyzes — Xxeg

= X261 — Xyzep — Xe€g.

From this we receive that xyzHT(p,) = x?HT(p;) and
xyzHT(p2) = z3HT(p3). Thus we can rewrite

Spol(ri, r3) = xSpol(r, r2) + zSpol(rz, 13).

Thus Spol(ry, r3) can be deleted from further investigations as it
does not give us new information about the Grobner basis of /.
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Facts about the F5 Algorithm

Faugere's F5 Algorithm
m ... is one of the fastest known Grobner bases algorithms.

B ... uses two criteria, the F5 Criterion and the Rewritten
Criterion.

m ... does not compute any zero-reduction in the case of F
being a regular sequence.

m ... cannot be combined with other known criteria, e.g. the
Buchberger Criteria.

m ... should not be implemented as stated in [Fa]. The code
needs lots of optimizations to be fast.
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