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The main problem

Given an ideal I we want to compute a Gröbner basis G of I .
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Given an ideal I we want to compute a Gröbner basis G of I .

We want to do this fast and without much memory usage.

We do not want to compute zero-reductions of
S-Polynomials as they do not give us any new information
about G , but cost time and memory.

⇒ How do we detect such useless critical pairs/S-Polynomials?
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K[x ]m.
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Faugère’s Idea

(a) Connect the polynomials in K[x ] with module elements in
K[x ]m.

(b) Add new data received from this connection to each
polynomial investigated.

(c) Use this data to detect useless critical pairs/S-Polynomials
and delete them before they are reduced.

This is what the Gröbner basis algorithm called F5 is all about.
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What this talk is about

(a) Understand the connection between polynomials and module
elements.
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What this talk is about

(a) Understand the connection between polynomials and module
elements.

(b) Understand the way new data is added to a polynomial.

(c) State Faugère’s Criteria to detect useless critical pairs using
this new data.

(d) Understand why these criteria work in a small example.
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Polynomial Basics

K always denotes a field, K[x ] is the polynomial ring over K

in the variables x = (x1, . . . , xn), ≤ denotes a well-ordering on
K[x ], T denotes the monoid of power products of x .
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K always denotes a field, K[x ] is the polynomial ring over K

in the variables x = (x1, . . . , xn), ≤ denotes a well-ordering on
K[x ], T denotes the monoid of power products of x .
If p =

∑m
k=1 aipi , ak ∈ K, pk ∈ T for all k ∈ {1, . . . ,m}

where a1p1 < . . . < ampm then we denote
the head term of p HT(p) = pm,
the head coefficient of p HC(p) = am,
the head monom of p HM(p) = ampm.
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K always denotes a field, K[x ] is the polynomial ring over K

in the variables x = (x1, . . . , xn), ≤ denotes a well-ordering on
K[x ], T denotes the monoid of power products of x .
If p =

∑m
k=1 aipi , ak ∈ K, pk ∈ T for all k ∈ {1, . . . ,m}

where a1p1 < . . . < ampm then we denote
the head term of p HT(p) = pm,
the head coefficient of p HC(p) = am,
the head monom of p HM(p) = ampm.

Let p1, p2 ∈ K[x ],

uk =
LCM(HT(p1),HT(p2))

HT(pk)
for k ∈ {1, 2},

then we denote the S-Polynomial of p1, p2

Spol(p1, p2) = HC(p2)u1p1 − HC(p1)u2p2.
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Polynomial Basics

F = (f1, . . . , fm) with fi 6= 0 ∈ K[x ] always denotes a
sequence of homogeneous polynomials.
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Polynomial Basics

F = (f1, . . . , fm) with fi 6= 0 ∈ K[x ] always denotes a
sequence of homogeneous polynomials.

Let p ∈ K[x ] be a polynomial and P := {p1, . . . , pm} be a set
of polynomials in K[x ]. Then we say that

p =
n

∑

i=1

λipi λi ∈ K[x ]

is an t-representation of p w.r.t. P if HT(λipi ) < t for all
i ∈ {1, . . . ,m}.
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Example

Consider the polynomial ring K[x , y ], ≤ a degree reverse
lexicographical ordering. Let p1 = 3x2 + y , p2 = 2xy + 1. Then
LCM

(

HT(p1),HT(p2)
)

= x2y , u1 = y and u2 = x . We get

Spol(p1, p2) = 2yp1 − 3xp2

= 6x2y2 + 2y2 − 6x2y2 − 3x

= 2y2 − 3x .
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Characterization of Gröbner Bases

Theorem

Let G ⊃ {f1, . . . , fm}. If for all pi , pj ∈ G Spol(pi , pj) has a

t-representation for t = LCM
(

HT(pi ),HT(pj)
)

or Spol(pi , pj)
reduces to zero w.r.t. G then G is a Gröbner basis of

I = 〈f1, . . . , fm〉.
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Theorem

Let G ⊃ {f1, . . . , fm}. If for all pi , pj ∈ G Spol(pi , pj) has a

t-representation for t = LCM
(

HT(pi ),HT(pj)
)

or Spol(pi , pj)
reduces to zero w.r.t. G then G is a Gröbner basis of

I = 〈f1, . . . , fm〉.

Proof.

See [BeWe].
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Module Basics

Let K[x ]m be an m-dimensional module with generators e1, . . . , em

We define the evaluation map vF : K[x ]m → K such that
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vF (ei ) = fi for all i ∈ {1, . . . ,m}.

We define a module term ordering ≺F on K[x ]m:

tiei ≺F tjej :⇔ (a) i > j , or

(b) i = j and ti < tj .

where ti , tj ∈ T . We denote the highest term of an element
g ∈ K[x ]m w.r.t. ≺F the module head term MHT(g).

For an element g =
∑m

i=1 giei ∈ K[x ]m we define the index
of g to be the lowest number k such that gk 6= 0 and denote
it by index(g). Thus we write g =

∑m
i=k giei in the following.
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Example

Assume the sequence F = (f1, . . . , fm), ≤ the degree reverse
lexicographical ordering, x = (x , y).
Let

g1 = (x2 + xy)e2 + x7ye4,

g2 = x2ye2 + ye3,

g3 = e1 + xe2.
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Assume the sequence F = (f1, . . . , fm), ≤ the degree reverse
lexicographical ordering, x = (x , y).
Let

g1 = (x2 + xy)e2 + x7ye4,

g2 = x2ye2 + ye3,

g3 = e1 + xe2.

(a) index(g1) = index(g2) = 2, index(g3) = 1.

(b) MHT(g1) = x2e2 as 2 < 4 and x2 > xy . Similar we receive
MHT(g2) = x2ye2 and MHT(g3) = e1.

(c) MHT(g1) ≺F MHT(g2) as both have the same index and
x2 < x2y . MHT(g2) ≺F MHT(g3) as
index(g3) < index(g2).
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Labeling of a Polynomial

A polynomial p is called admissible (w.r.t. F ) if there exists
an element g ∈ K[x ]m such that vF (g) = p.
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an element g ∈ K[x ]m such that vF (g) = p.

An admissible, labeled polynomial r is an element of
K[x ]m × K[x ] defined by r =

(

S(r),poly(r)
)

where

poly(r) ∈ K[x ] is the polynomial part,
S(r) = MHT(g) such that vF (g) = poly(r) is the signature
of r .

The index of r is defined to be index(r) = index
(

S(r)
)

.

For an admissible labeled polynomial r with S(r) = tek we
denote the term of the signature of r to be

Γ
(

S(r)
)

= t ∈ T .
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Labeling of a Polynomial

If r1, r2 are admissible labeled polynomials such that
u2S(r2) ≺F u1S(r1) then

Spol(r1, r2) =
(

u1S(r1),Spol
(

poly(r1),poly(r2)
)

)

.
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Labeling of a Polynomial

If r1, r2 are admissible labeled polynomials such that
u2S(r2) ≺F u1S(r1) then

Spol(r1, r2) =
(

u1S(r1),Spol
(

poly(r1),poly(r2)
)

)

.

If r =
(

S(r),poly(r)
)

is an admissible labeled polynomial and
R := {r1, . . . , rm} is a set of admissible labeled polynomials
then we say that

poly(r) =
n

∑

i=1

λipoly(ri ) λi ∈ K[x ]

is an admissible t-representation of r w.r.t. R if
HT

(

λipoly(ri )
)

< t and HT(λi)S(ri ) �F S(r) for all i and
t = HT

(

poly(r)
)

.
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Example

Assume the sequence F = (f1, . . . , fm).

(a) Let p = f1. Then r = (e1, f1) is an admissible labeled
polynomial as vF (e1) = f1.
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Example

Assume the sequence F = (f1, . . . , fm).

(a) Let p = f1. Then r = (e1, f1) is an admissible labeled
polynomial as vF (e1) = f1.

(b) Again let p = f1. Then r ′ = (HT(f2)e1, f1) is also an
admissible labeled polynomial. For this consider the module
element g = (f2 + 1)e1 − f1e2. It holds that
vF (g) = f2f1 + f1 − f1f2 = f1 and MHT(g) = HT(f2)e1.
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Example

Assume the sequence F = (f1, . . . , fm).

(a) Let p = f1. Then r = (e1, f1) is an admissible labeled
polynomial as vF (e1) = f1.

(b) Again let p = f1. Then r ′ = (HT(f2)e1, f1) is also an
admissible labeled polynomial. For this consider the module
element g = (f2 + 1)e1 − f1e2. It holds that
vF (g) = f2f1 + f1 − f1f2 = f1 and MHT(g) = HT(f2)e1.

Remark

For a polynomial p there can exist infinitely many different
admissible labeled polynomials r such that poly(r) = p. In the
case of F being a regular sequence the admissible labeled
polynomial r corresponding to a polynomial p computed by F5 is
uniquely defined.
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New Characterization of Gröbner Bases

Notations

In the following we use a shorter notation for r =
(

S(r),poly(r)
)

denoting poly(r) by p. G = {r1, . . . , rm} denotes a set of
admissible labeled polynomials such that
poly(G ) := {pi | ri ∈ G} ⊃ {f1, . . . , fm}.
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Notations

In the following we use a shorter notation for r =
(

S(r),poly(r)
)

denoting poly(r) by p. G = {r1, . . . , rm} denotes a set of
admissible labeled polynomials such that
poly(G ) := {pi | ri ∈ G} ⊃ {f1, . . . , fm}.

Theorem (Admissible Representation Characterization)

If for all ri , rj ∈ G Spol(ri , rj ) has an admissible t-representation for

t = LCM
(

HT(pi ),HT(pj)
)

or Spol(pi , pj ) reduces to zero w.r.t. G

then poly(G ) is a Gröbner basis of I = 〈f1, . . . , fm〉.

Proof

If r is an admissible labeled polynomial with admissible
t-representation then p has a t-representation for t = HT(p).
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Faugère’s Criteria

F5 Criterion

Spol(ri , rj ) is not normalized iff for uk rk (k = i or k = j) there
exist rprev ∈ G such that

index(rprev) > index(rk)

HT(pprev) | ukΓ
(

S(rk)
)

.

This Criterion is stated explicitly in Faugère’s description of the F5

Algorithm, but it is not the only one.
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F5 Criterion

Spol(ri , rj ) is not normalized iff for uk rk (k = i or k = j) there
exist rprev ∈ G such that

index(rprev) > index(rk)

HT(pprev) | ukΓ
(

S(rk)
)

.

This Criterion is stated explicitly in Faugère’s description of the F5

Algorithm, but it is not the only one.

Remark

This criterion would delete the element r ′ = (HT(f2)e1, f1) as the
element r2 = (e2, f2) has index(r2) = 2 > 1 and clearly
HT

(

poly(r2)
)

| HT(f2).
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Faugère’s Criteria

Rewritten Criterion

Spol(ri , rj ) is rewritable iff for uk rk (k = i or k = j) there exist
rv , rw ∈ G such that

index(rk) = index
(

Spol(rv , rw )
)

Γ
(

S
(

Spol(rv , rw )
)

)

| ukΓ
(

S(rk)
)

.

This Criterion is not stated explicitly, but it is part of the
pseudocode.
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Using the Criteria to compute Gröbner Bases

Theorem (New Characterization using Faugère’s Criteria)

Let L ⊂ G × G such that for every element (ri , rj) ∈ L Spol(ri , rj )
is

(a) normalized, and

(b) not rewritable.

If each such Spol(ri , rj ) has a t-representation with

t = LCM
(

HT(pi ),HT(pj)
)

or reduces to zero, then poly(G ) is a

Gröbner basis of I = 〈f1, . . . , fm〉.
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Using the Criteria to compute Gröbner Bases

Theorem (New Characterization using Faugère’s Criteria)

Let L ⊂ G × G such that for every element (ri , rj) ∈ L Spol(ri , rj )
is

(a) normalized, and

(b) not rewritable.

If each such Spol(ri , rj ) has a t-representation with

t = LCM
(

HT(pi ),HT(pj)
)

or reduces to zero, then poly(G ) is a

Gröbner basis of I = 〈f1, . . . , fm〉.

Remark

The idea is to only investigate on S-Polynomials with generators
being elements of L. We need to show that all other
S-Polynomials have a t-representation or reduce to zero.
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Using the Criteria to compute Gröbner Bases

Idea of the Proof

If Spol(ri , rj) is not normalized and/or rewritable then we can
assume w.l.o.g. that ui ri with index(ri ) = k is not normalized
and/or rewritable. It follows that there exists a (not necessarily
principal) syzygy with the element uiΓ

(

S(r)
)

ek . From this syzygy
we can compute a rewriter rrew such that we get the following
relationship:

Spol(ri , rj) = λ1Spol(ri , rrew) + λ2Spol(rrew, rj).

Both, Spol(ri , rrew) and Spol(rrew, rj) were already or will be
investigated in F5. This leads to an admissible t-representation of
Spol(ri , rj ) where t = LCM

(

HT(pi ),HT(pj )
)

.
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Example of the Rewritten Criterion

In [Fa] Faugère computes the Gröbner basis of I = 〈f1, f2, f3〉 where

f1 = yz3 − x2t2

f2 = xz2 − y2t

f3 = x2y − z2t

in Q[x , y , z , t] with degree reverse lexicographical ordering
x > y > z > t. During these computations
Spol(r1, r3) = (x2S(r1), x

2f1 − z3f3) is detected to be rewritable by
the element r6 = (xe1, y

3zt − x3t2) as both have the same index
and xΓ

(

S(r6)
)

= x2Γ
(

S(r1)
)

. r6 was computed from Spol(r1, r2)
such that we have a syzygy s6 = xe1 − yze2 − e6, for r1 we have
the trivial syzygy s1 = e1 − e1.
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Example of the Rewritten Criterion

If we compute

x2s1 + xs6 = x2e1 − x2e1 + x2e1 − xyze2 − xe6

= x2e1 − xyze2 − xe6.

From this we receive that xyzHT(p2) = x2HT(p1) and
xyzHT(p2) = z3HT(p3). Thus we can rewrite
Spol(r1, r3) = xSpol(r1, r2) + zSpol(r2, r3).
Thus Spol(r1, r3) can be deleted from further investigations as it
does not give us new information about the Gröbner basis of I .
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4 Computing Gröbner Bases with F5

New Characterization of Gröbner Bases
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Facts about the F5 Algorithm

Faugère’s F5 Algorithm

... is one of the fastest known Gröbner bases algorithms.
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Facts about the F5 Algorithm

Faugère’s F5 Algorithm

... is one of the fastest known Gröbner bases algorithms.

... uses two criteria, the F5 Criterion and the Rewritten
Criterion.

... does not compute any zero-reduction in the case of F

being a regular sequence.

... cannot be combined with other known criteria, e.g. the
Buchberger Criteria.

... should not be implemented as stated in [Fa]. The code
needs lots of optimizations to be fast.
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