# On the Criteria of Faugère's $F_{5}$ Algorithm 

Christian Eder

Technische Universität Kaiserslautern
July 08, 2008

## Overview of the Talk

1 Introduction
2 Gröbner Bases
$3 F_{5}$ Basics
4 Computing Gröbner Bases with $F_{5}$
5 Facts about the $F_{5}$ Algorithm
6 References

## Table of Contents

1 Introduction

- The main problem

■ Faugère's Idea
■ What this talk is about
2 Gröbner Bases

- Polynomial Basics

■ Characterization of Gröbner Bases
$3 F_{5}$ Basics
■ Module Basics

- Labeling of a Polynomial

4 Computing Gröbner Bases with $F_{5}$
■ New Characterization of Gröbner Bases

- Faugère's Criteria
- Example of the Rewritten Criterion

5 Facts about the $F_{5}$ Algorithm
6 References

## The main problem

Given an ideal I we want to compute a Gröbner basis $G$ of $I$.

## The main problem

Given an ideal I we want to compute a Gröbner basis $G$ of $I$.
■ We want to do this fast and without much memory usage.

## The main problem

Given an ideal I we want to compute a Gröbner basis $G$ of $I$.
■ We want to do this fast and without much memory usage.

- We do not want to compute zero-reductions of S-Polynomials as they do not give us any new information about $G$, but cost time and memory.


## The main problem

Given an ideal I we want to compute a Gröbner basis $G$ of $I$.
■ We want to do this fast and without much memory usage.
$■$ We do not want to compute zero-reductions of S-Polynomials as they do not give us any new information about $G$, but cost time and memory.
$\Rightarrow$ How do we detect such useless critical pairs/S-Polynomials?

## Faugère's Idea

(a) Connect the polynomials in $\mathbb{K}[\underline{x}]$ with module elements in $\mathbb{K}[\underline{x}]^{m}$.

## Faugère's Idea

(a) Connect the polynomials in $\mathbb{K}[\underline{x}]$ with module elements in $\mathbb{K}[\underline{x}]^{m}$.
(b) Add new data received from this connection to each polynomial investigated.

## Faugère's Idea

(a) Connect the polynomials in $\mathbb{K}[\underline{x}]$ with module elements in $\mathbb{K}[\underline{x}]^{m}$.
(b) Add new data received from this connection to each polynomial investigated.
(c) Use this data to detect useless critical pairs/S-Polynomials and delete them before they are reduced.

## Faugère's Idea

(a) Connect the polynomials in $\mathbb{K}[\underline{x}]$ with module elements in $\mathbb{K}[\underline{x}]^{m}$.
(b) Add new data received from this connection to each polynomial investigated.
(c) Use this data to detect useless critical pairs/S-Polynomials and delete them before they are reduced.

This is what the Gröbner basis algorithm called $F_{5}$ is all about.

## What this talk is about

(a) Understand the connection between polynomials and module elements.

## What this talk is about

(a) Understand the connection between polynomials and module elements.
(b) Understand the way new data is added to a polynomial.

## What this talk is about

(a) Understand the connection between polynomials and module elements.
(b) Understand the way new data is added to a polynomial.
(c) State Faugère's Criteria to detect useless critical pairs using this new data.

## What this talk is about

(a) Understand the connection between polynomials and module elements.
(b) Understand the way new data is added to a polynomial.
(c) State Faugère's Criteria to detect useless critical pairs using this new data.
(d) Understand why these criteria work in a small example.

## Table of Contents

1 Introduction

- The main problem

■ Faugère's Idea

- What this talk is about

2 Gröbner Bases
■ Polynomial Basics

- Characterization of Gröbner Bases
$3 F_{5}$ Basics
- Module Basics

■ Labeling of a Polynomial
4 Computing Gröbner Bases with $F_{5}$

- New Characterization of Gröbner Bases
- Faugère's Criteria
- Example of the Rewritten Criterion

5 Facts about the $F_{5}$ Algorithm
6 References

## Polynomial Basics

$■ \mathbb{K}$ always denotes a field, $\mathbb{K}[\underline{x}]$ is the polynomial ring over $\mathbb{K}$ in the variables $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$, $\leq$ denotes a well-ordering on $\mathbb{K}[\underline{x}], \mathcal{T}$ denotes the monoid of power products of $\underline{x}$.

## Polynomial Basics

■ $\mathbb{K}$ always denotes a field, $\mathbb{K}[\underline{x}]$ is the polynomial ring over $\mathbb{K}$ in the variables $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$, $\leq$ denotes a well-ordering on $\mathbb{K}[\underline{x}], \mathcal{T}$ denotes the monoid of power products of $\underline{x}$.
■ If $p=\sum_{k=1}^{m} a_{i} p_{i}, a_{k} \in \mathbb{K}, p_{k} \in \mathcal{T}$ for all $k \in\{1, \ldots, m\}$ where $a_{1} p_{1}<\ldots<a_{m} p_{m}$ then we denote

- the head term of $p \operatorname{HT}(p)=p_{m}$,
- the head coefficient of $p \mathrm{HC}(p)=a_{m}$,
- the head monom of $p \operatorname{HM}(p)=a_{m} p_{m}$.


## Polynomial Basics

■ $\mathbb{K}$ always denotes a field, $\mathbb{K}[\underline{x}]$ is the polynomial ring over $\mathbb{K}$ in the variables $\underline{x}=\left(x_{1}, \ldots, x_{n}\right)$, $\leq$ denotes a well-ordering on $\mathbb{K}[\underline{x}], \mathcal{T}$ denotes the monoid of power products of $\underline{x}$.
■ If $p=\sum_{k=1}^{m} a_{i} p_{i}, a_{k} \in \mathbb{K}, p_{k} \in \mathcal{T}$ for all $k \in\{1, \ldots, m\}$ where $a_{1} p_{1}<\ldots<a_{m} p_{m}$ then we denote

- the head term of $p \operatorname{HT}(p)=p_{m}$,
$\square$ the head coefficient of $p \mathrm{HC}(p)=a_{m}$,
- the head monom of $p \mathrm{HM}(p)=a_{m} p_{m}$.

■ Let $p_{1}, p_{2} \in \mathbb{K}[\underline{x}]$,

$$
u_{k}=\frac{\operatorname{LCM}\left(\operatorname{HT}\left(p_{1}\right), \operatorname{HT}\left(p_{2}\right)\right)}{\operatorname{HT}\left(p_{k}\right)} \text { for } k \in\{1,2\}
$$

then we denote the S-Polynomial of $p_{1}, p_{2}$

$$
\operatorname{Spol}\left(p_{1}, p_{2}\right)=\operatorname{HC}\left(p_{2}\right) u_{1} p_{1}-\operatorname{HC}\left(p_{1}\right) u_{2} p_{2}
$$

## Polynomial Basics

■ $F=\left(f_{1}, \ldots, f_{m}\right)$ with $f_{i} \neq 0 \in \mathbb{K}[\underline{x}]$ always denotes a sequence of homogeneous polynomials.

## Polynomial Basics

■ $F=\left(f_{1}, \ldots, f_{m}\right)$ with $f_{i} \neq 0 \in \mathbb{K}[\underline{x}]$ always denotes a sequence of homogeneous polynomials.
$■$ Let $p \in \mathbb{K}[\underline{x}]$ be a polynomial and $\mathcal{P}:=\left\{p_{1}, \ldots, p_{m}\right\}$ be a set of polynomials in $\mathbb{K}[\underline{x}]$. Then we say that

$$
p=\sum_{i=1}^{n} \lambda_{i} p_{i} \quad \lambda_{i} \in \mathbb{K}[\underline{x}]
$$

is an $t$-representation of $p$ w.r.t. $\mathcal{P}$ if $\operatorname{HT}\left(\lambda_{i} p_{i}\right)<t$ for all $i \in\{1, \ldots, m\}$.

## Example

Consider the polynomial ring $\mathbb{K}[x, y], \leq$ a degree reverse lexicographical ordering. Let $p_{1}=3 x^{2}+y, p_{2}=2 x y+1$. Then $\operatorname{LCM}\left(\operatorname{HT}\left(p_{1}\right), \operatorname{HT}\left(p_{2}\right)\right)=x^{2} y, u_{1}=y$ and $u_{2}=x$. We get

$$
\begin{aligned}
\operatorname{Spol}\left(p_{1}, p_{2}\right) & =2 y p_{1}-3 x p_{2} \\
& =\mathbf{6} \mathbf{x}^{2} \mathbf{y}^{2}+2 y^{2}-\mathbf{6} \mathbf{x}^{2} \mathbf{y}^{2}-3 x \\
& =2 y^{2}-3 x
\end{aligned}
$$

## Characterization of Gröbner Bases

## Theorem

Let $G \supset\left\{f_{1}, \ldots, f_{m}\right\}$. If for all $p_{i}, p_{j} \in G \operatorname{Spol}\left(p_{i}, p_{j}\right)$ has a $t$-representation for $t=\operatorname{LCM}\left(H T\left(p_{i}\right), H T\left(p_{j}\right)\right)$ or $\operatorname{Spol}\left(p_{i}, p_{j}\right)$ reduces to zero w.r.t. $G$ then $G$ is a Gröbner basis of $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

## Characterization of Gröbner Bases

## Theorem

Let $G \supset\left\{f_{1}, \ldots, f_{m}\right\}$. If for all $p_{i}, p_{j} \in G \operatorname{Spol}\left(p_{i}, p_{j}\right)$ has a $t$-representation for $t=\operatorname{LCM}\left(H T\left(p_{i}\right), H T\left(p_{j}\right)\right)$ or $\operatorname{Spol}\left(p_{i}, p_{j}\right)$ reduces to zero w.r.t. $G$ then $G$ is a Gröbner basis of $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

Proof.
See [BeWe].

## Table of Contents

1 Introduction

- The main problem

■ Faugère's Idea

- What this talk is about

2 Gröbner Bases

- Polynomial Basics
- Characterization of Gröbner Bases
$3 F_{5}$ Basics
■ Module Basics
- Labeling of a Polynomial

4 Computing Gröbner Bases with $F_{5}$

- New Characterization of Gröbner Bases
- Faugère's Criteria
- Example of the Rewritten Criterion

5 Facts about the $F_{5}$ Algorithm
6 References

## Module Basics

Let $\mathbb{K}[\underline{x}]^{m}$ be an m-dimensional module with generators $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$
■ We define the evaluation map $v_{F}: \mathbb{K}[\underline{x}]^{m} \rightarrow \mathbb{K}$ such that $v_{F}\left(\mathbf{e}_{i}\right)=f_{i}$ for all $i \in\{1, \ldots, m\}$.

## Module Basics

Let $\mathbb{K}[\underline{x}]^{m}$ be an m-dimensional module with generators $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$
■ We define the evaluation map $v_{F}: \mathbb{K}[\underline{x}]^{m} \rightarrow \mathbb{K}$ such that $v_{F}\left(\mathbf{e}_{i}\right)=f_{i}$ for all $i \in\{1, \ldots, m\}$.
■ We define a module term ordering $\prec_{\mathrm{F}}$ on $\mathbb{K}[\underline{x}]^{m}$ :

$$
\begin{aligned}
t_{i} \mathbf{e}_{i} \prec_{\mathrm{F}} t_{j} \mathbf{e}_{j}: \Leftrightarrow & \text { (a) } i>j, \text { or } \\
& \text { (b) } i=j \text { and } t_{i}<t_{j} .
\end{aligned}
$$

where $t_{i}, t_{j} \in \mathcal{T}$. We denote the highest term of an element $\mathbf{g} \in \mathbb{K}[\underline{x}]^{m}$ w.r.t. $\prec_{\mathrm{F}}$ the module head term $\operatorname{MHT}(\mathbf{g})$.

## Module Basics

Let $\mathbb{K}[\underline{x}]^{m}$ be an m-dimensional module with generators $\mathbf{e}_{1}, \ldots, \mathbf{e}_{m}$
■ We define the evaluation map $v_{F}: \mathbb{K}[\underline{x}]^{m} \rightarrow \mathbb{K}$ such that $v_{F}\left(\mathbf{e}_{i}\right)=f_{i}$ for all $i \in\{1, \ldots, m\}$.
■ We define a module term ordering $\prec_{\mathrm{F}}$ on $\mathbb{K}[\underline{x}]^{m}$ :

$$
\begin{aligned}
t_{i} \mathbf{e}_{i} \prec_{\mathrm{F}} t_{j} \mathbf{e}_{j}: \Leftrightarrow & \text { (a) } i>j, \text { or } \\
& \text { (b) } i=j \text { and } t_{i}<t_{j} .
\end{aligned}
$$

where $t_{i}, t_{j} \in \mathcal{T}$. We denote the highest term of an element $\mathbf{g} \in \mathbb{K}[\underline{x}]^{m}$ w.r.t. $\prec_{\mathrm{F}}$ the module head term $\operatorname{MHT}(\mathbf{g})$.
■ For an element $\mathbf{g}=\sum_{i=1}^{m} g_{i} \mathbf{e}_{i} \in \mathbb{K}[\underline{x}]^{m}$ we define the index of $\mathbf{g}$ to be the lowest number $k$ such that $g_{k} \neq 0$ and denote it by index $(\mathbf{g})$. Thus we write $\mathbf{g}=\sum_{i=k}^{m} g_{i} \mathbf{e}_{i}$ in the following.

## Example

Assume the sequence $F=\left(f_{1}, \ldots, f_{m}\right)$, $\leq$ the degree reverse lexicographical ordering, $\underline{x}=(x, y)$.
Let

$$
\begin{aligned}
& \mathbf{g}_{1}=\left(x^{2}+x y\right) \mathbf{e}_{2}+x^{7} y \mathbf{e}_{4}, \\
& \mathbf{g}_{2}=x^{2} y \mathbf{e}_{2}+y \mathbf{e}_{3}, \\
& \mathbf{g}_{3}=\mathbf{e}_{1}+x \mathbf{e}_{2} .
\end{aligned}
$$

## Example

Assume the sequence $F=\left(f_{1}, \ldots, f_{m}\right)$, $\leq$ the degree reverse lexicographical ordering, $\underline{x}=(x, y)$.
Let

$$
\begin{aligned}
& \mathbf{g}_{1}=\left(x^{2}+x y\right) \mathbf{e}_{2}+x^{7} y \mathbf{e}_{4}, \\
& \mathbf{g}_{2}=x^{2} y \mathbf{e}_{2}+y \mathbf{e}_{3}, \\
& \mathbf{g}_{3}=\mathbf{e}_{1}+x \mathbf{e}_{2} .
\end{aligned}
$$

(a) index $\left(\mathbf{g}_{1}\right)=\operatorname{index}\left(\mathbf{g}_{2}\right)=2$, index $\left(\mathbf{g}_{3}\right)=1$.

## Example

Assume the sequence $F=\left(f_{1}, \ldots, f_{m}\right)$, $\leq$ the degree reverse lexicographical ordering, $\underline{x}=(x, y)$.
Let

$$
\begin{aligned}
& \mathbf{g}_{1}=\left(x^{2}+x y\right) \mathbf{e}_{2}+x^{7} y \mathbf{e}_{4}, \\
& \mathbf{g}_{2}=x^{2} y \mathbf{e}_{2}+y \mathbf{e}_{3}, \\
& \mathbf{g}_{3}=\mathbf{e}_{1}+x \mathbf{e}_{2} .
\end{aligned}
$$

(a) index $\left(\mathbf{g}_{1}\right)=\operatorname{index}\left(\mathbf{g}_{2}\right)=2$, index $\left(\mathbf{g}_{3}\right)=1$.
(b) $\operatorname{MHT}\left(\mathbf{g}_{1}\right)=x^{2} \mathbf{e}_{2}$ as $2<4$ and $x^{2}>x y$. Similar we receive $\operatorname{MHT}\left(\mathbf{g}_{2}\right)=x^{2} y \mathbf{e}_{2}$ and $\operatorname{MHT}\left(\mathbf{g}_{3}\right)=\mathbf{e}_{1}$.

## Example

Assume the sequence $F=\left(f_{1}, \ldots, f_{m}\right)$, $\leq$ the degree reverse lexicographical ordering, $\underline{x}=(x, y)$.
Let

$$
\begin{aligned}
& \mathbf{g}_{1}=\left(x^{2}+x y\right) \mathbf{e}_{2}+x^{7} y \mathbf{e}_{4}, \\
& \mathbf{g}_{2}=x^{2} y \mathbf{e}_{2}+y \mathbf{e}_{3}, \\
& \mathbf{g}_{3}=\mathbf{e}_{1}+x \mathbf{e}_{2} .
\end{aligned}
$$

(a) index $\left(\mathbf{g}_{1}\right)=\operatorname{index}\left(\mathbf{g}_{2}\right)=2$, index $\left(\mathbf{g}_{3}\right)=1$.
(b) $\operatorname{MHT}\left(\mathbf{g}_{1}\right)=x^{2} \mathbf{e}_{2}$ as $2<4$ and $x^{2}>x y$. Similar we receive $\operatorname{MHT}\left(\mathbf{g}_{2}\right)=x^{2} y \mathbf{e}_{2}$ and $\operatorname{MHT}\left(\mathbf{g}_{3}\right)=\mathbf{e}_{1}$.
(c) $\operatorname{MHT}\left(\mathbf{g}_{1}\right) \prec_{\mathrm{F}} \operatorname{MHT}\left(\mathbf{g}_{2}\right)$ as both have the same index and $x^{2}<x^{2} y . \operatorname{MHT}\left(\mathbf{g}_{2}\right) \prec_{\mathrm{F}} \operatorname{MHT}\left(\mathbf{g}_{3}\right)$ as index $\left(\mathbf{g}_{3}\right)<\operatorname{index}\left(\mathbf{g}_{2}\right)$.

## Labeling of a Polynomial

■ A polynomial $p$ is called admissible (w.r.t. $F$ ) if there exists an element $\mathbf{g} \in \mathbb{K}[\underline{x}]^{m}$ such that $v_{F}(\mathbf{g})=p$.

## Labeling of a Polynomial

■ A polynomial $p$ is called admissible (w.r.t. $F$ ) if there exists an element $\mathbf{g} \in \mathbb{K}[\underline{x}]^{m}$ such that $v_{F}(\mathbf{g})=p$.
■ An admissible, labeled polynomial $r$ is an element of $\mathbb{K}[\underline{x}]^{m} \times \mathbb{K}[\underline{x}]$ defined by $r=(\mathcal{S}(r)$, poly $(r))$ where

## Labeling of a Polynomial

■ A polynomial $p$ is called admissible (w.r.t. $F$ ) if there exists an element $\mathbf{g} \in \mathbb{K}[\underline{x}]^{m}$ such that $v_{F}(\mathbf{g})=p$.
■ An admissible, labeled polynomial $r$ is an element of $\mathbb{K}[\underline{x}]^{m} \times \mathbb{K}[\underline{x}]$ defined by $r=(\mathcal{S}(r)$, poly $(r))$ where

■ $\operatorname{poly}(r) \in \mathbb{K}[\underline{x}]$ is the polynomial part,

## Labeling of a Polynomial

■ A polynomial $p$ is called admissible (w.r.t. $F$ ) if there exists an element $\mathbf{g} \in \mathbb{K}[\underline{x}]^{m}$ such that $v_{F}(\mathbf{g})=p$.
■ An admissible, labeled polynomial $r$ is an element of $\mathbb{K}[\underline{x}]^{m} \times \mathbb{K}[\underline{x}]$ defined by $r=(\mathcal{S}(r)$, poly $(r))$ where

- $\operatorname{poly}(r) \in \mathbb{K}[\underline{x}]$ is the polynomial part,
- $\mathcal{S}(r)=\operatorname{MHT}(\mathbf{g})$ such that $v_{F}(\mathbf{g})=\operatorname{poly}(r)$ is the signature of $r$.


## Labeling of a Polynomial

■ A polynomial $p$ is called admissible (w.r.t. $F$ ) if there exists an element $\mathbf{g} \in \mathbb{K}[\underline{x}]^{m}$ such that $v_{F}(\mathbf{g})=p$.

- An admissible, labeled polynomial $r$ is an element of $\mathbb{K}[\underline{x}]^{m} \times \mathbb{K}[\underline{x}]$ defined by $r=(\mathcal{S}(r)$, poly $(r))$ where

■ $\operatorname{poly}(r) \in \mathbb{K}[\underline{x}]$ is the polynomial part,

- $\mathcal{S}(r)=\operatorname{MHT}(\mathbf{g})$ such that $v_{F}(\mathbf{g})=\operatorname{poly}(r)$ is the signature of $r$.
■ The index of $r$ is defined to be index $(r)=\operatorname{index}(\mathcal{S}(r))$.


## Labeling of a Polynomial

■ A polynomial $p$ is called admissible (w.r.t. $F$ ) if there exists an element $\mathbf{g} \in \mathbb{K}[\underline{x}]^{m}$ such that $v_{F}(\mathbf{g})=p$.

- An admissible, labeled polynomial $r$ is an element of $\mathbb{K}[\underline{x}]^{m} \times \mathbb{K}[\underline{x}]$ defined by $r=(\mathcal{S}(r)$, poly $(r))$ where

■ $\operatorname{poly}(r) \in \mathbb{K}[\underline{x}]$ is the polynomial part,

- $\mathcal{S}(r)=\operatorname{MHT}(\mathbf{g})$ such that $v_{F}(\mathbf{g})=\operatorname{poly}(r)$ is the signature of $r$.
- The index of $r$ is defined to be index $(r)=\operatorname{index}(\mathcal{S}(r))$.

■ For an admissible labeled polynomial $r$ with $\mathcal{S}(r)=t \mathbf{e}_{k}$ we denote the term of the signature of $r$ to be

$$
\Gamma(\mathcal{S}(r))=t \in \mathcal{T} .
$$

## Labeling of a Polynomial

■ If $r_{1}, r_{2}$ are admissible labeled polynomials such that $u_{2} \mathcal{S}\left(r_{2}\right) \prec_{\mathrm{F}} u_{1} \mathcal{S}\left(r_{1}\right)$ then

$$
\operatorname{Spol}\left(r_{1}, r_{2}\right)=\left(u_{1} \mathcal{S}\left(r_{1}\right), \operatorname{Spol}\left(\operatorname{poly}\left(r_{1}\right), \operatorname{poly}\left(r_{2}\right)\right)\right)
$$

## Labeling of a Polynomial

■ If $r_{1}, r_{2}$ are admissible labeled polynomials such that $u_{2} \mathcal{S}\left(r_{2}\right) \prec_{\mathrm{F}} u_{1} \mathcal{S}\left(r_{1}\right)$ then

$$
\operatorname{Spol}\left(r_{1}, r_{2}\right)=\left(u_{1} \mathcal{S}\left(r_{1}\right), \operatorname{Spol}\left(\operatorname{poly}\left(r_{1}\right), \operatorname{poly}\left(r_{2}\right)\right)\right)
$$

■ If $r=(\mathcal{S}(r), \operatorname{poly}(r))$ is an admissible labeled polynomial and $\mathcal{R}:=\left\{r_{1}, \ldots, r_{m}\right\}$ is a set of admissible labeled polynomials then we say that

$$
\operatorname{poly}(r)=\sum_{i=1}^{n} \lambda_{i} \operatorname{poly}\left(r_{i}\right) \quad \lambda_{i} \in \mathbb{K}[\underline{x}]
$$

is an admissible $t$-representation of $r$ w.r.t. $\mathcal{R}$ if $\operatorname{HT}\left(\lambda_{i} \operatorname{poly}\left(r_{i}\right)\right)<t$ and $\operatorname{HT}\left(\lambda_{i}\right) \mathcal{S}\left(r_{i}\right) \preceq_{\mathrm{F}} \mathcal{S}(r)$ for all $i$ and $t=\mathrm{HT}(\operatorname{poly}(r))$.

## Example

Assume the sequence $F=\left(f_{1}, \ldots, f_{m}\right)$.
(a) Let $p=f_{1}$. Then $r=\left(\mathbf{e}_{1}, f_{1}\right)$ is an admissible labeled polynomial as $v_{F}\left(\mathbf{e}_{1}\right)=f_{1}$.

## Example

Assume the sequence $F=\left(f_{1}, \ldots, f_{m}\right)$.
(a) Let $p=f_{1}$. Then $r=\left(\mathbf{e}_{1}, f_{1}\right)$ is an admissible labeled polynomial as $v_{F}\left(\mathbf{e}_{1}\right)=f_{1}$.
(b) Again let $p=f_{1}$. Then $r^{\prime}=\left(\operatorname{HT}\left(f_{2}\right) \mathbf{e}_{1}, f_{1}\right)$ is also an admissible labeled polynomial. For this consider the module element $\mathbf{g}=\left(f_{2}+1\right) \mathbf{e}_{1}-f_{1} \mathbf{e}_{2}$. It holds that $v_{F}(\mathbf{g})=f_{2} f_{1}+f_{1}-f_{1} f_{2}=f_{1}$ and $\operatorname{MHT}(\mathbf{g})=\operatorname{HT}\left(f_{2}\right) \mathbf{e}_{1}$.

## Example

Assume the sequence $F=\left(f_{1}, \ldots, f_{m}\right)$.
(a) Let $p=f_{1}$. Then $r=\left(\mathbf{e}_{1}, f_{1}\right)$ is an admissible labeled polynomial as $v_{F}\left(\mathbf{e}_{1}\right)=f_{1}$.
(b) Again let $p=f_{1}$. Then $r^{\prime}=\left(\operatorname{HT}\left(f_{2}\right) \mathbf{e}_{1}, f_{1}\right)$ is also an admissible labeled polynomial. For this consider the module element $\mathbf{g}=\left(f_{2}+1\right) \mathbf{e}_{1}-f_{1} \mathbf{e}_{2}$. It holds that $v_{F}(\mathbf{g})=f_{2} f_{1}+f_{1}-f_{1} f_{2}=f_{1}$ and $\operatorname{MHT}(\mathbf{g})=\operatorname{HT}\left(f_{2}\right) \mathbf{e}_{1}$.

## Remark

For a polynomial $p$ there can exist infinitely many different admissible labeled polynomials $r$ such that poly $(r)=p$. In the case of $F$ being a regular sequence the admissible labeled polynomial $r$ corresponding to a polynomial $p$ computed by $F_{5}$ is uniquely defined.

## Table of Contents

1 Introduction

- The main problem

■ Faugère's Idea

- What this talk is about

2 Gröbner Bases

- Polynomial Basics
- Characterization of Gröbner Bases
$3 F_{5}$ Basics
- Module Basics
- Labeling of a Polynomial

4 Computing Gröbner Bases with $F_{5}$
■ New Characterization of Gröbner Bases

- Faugère's Criteria

■ Example of the Rewritten Criterion
5 Facts about the $F_{5}$ Algorithm
6 References

## New Characterization of Gröbner Bases

## Notations

In the following we use a shorter notation for $r=(\mathcal{S}(r)$, poly $(r))$ denoting poly $(r)$ by $p . G=\left\{r_{1}, \ldots, r_{m}\right\}$ denotes a set of admissible labeled polynomials such that $\operatorname{poly}(G):=\left\{p_{i} \mid r_{i} \in G\right\} \supset\left\{f_{1}, \ldots, f_{m}\right\}$.

## New Characterization of Gröbner Bases

## Notations

In the following we use a shorter notation for $r=(\mathcal{S}(r)$, poly $(r))$ denoting poly $(r)$ by $p . G=\left\{r_{1}, \ldots, r_{m}\right\}$ denotes a set of admissible labeled polynomials such that $\operatorname{poly}(G):=\left\{p_{i} \mid r_{i} \in G\right\} \supset\left\{f_{1}, \ldots, f_{m}\right\}$.

## Theorem (Admissible Representation Characterization)

If for all $r_{i}, r_{j} \in G \operatorname{Spol}\left(r_{i}, r_{j}\right)$ has an admissible $t$-representation for $t=\operatorname{LCM}\left(H T\left(p_{i}\right), H T\left(p_{j}\right)\right)$ or $\operatorname{Spol}\left(p_{i}, p_{j}\right)$ reduces to zero w.r.t. $G$ then $\operatorname{poly}(G)$ is a Gröbner basis of $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

## New Characterization of Gröbner Bases

## Notations

In the following we use a shorter notation for $r=(\mathcal{S}(r)$, poly $(r))$ denoting poly $(r)$ by $p . G=\left\{r_{1}, \ldots, r_{m}\right\}$ denotes a set of admissible labeled polynomials such that $\operatorname{poly}(G):=\left\{p_{i} \mid r_{i} \in G\right\} \supset\left\{f_{1}, \ldots, f_{m}\right\}$.

## Theorem (Admissible Representation Characterization)

If for all $r_{i}, r_{j} \in G \operatorname{Spol}\left(r_{i}, r_{j}\right)$ has an admissible $t$-representation for $t=\operatorname{LCM}\left(H T\left(p_{i}\right), H T\left(p_{j}\right)\right)$ or $\operatorname{Spol}\left(p_{i}, p_{j}\right)$ reduces to zero w.r.t. $G$ then $\operatorname{poly}(G)$ is a Gröbner basis of $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

## Proof

If $r$ is an admissible labeled polynomial with admissible $t$-representation then $p$ has a $t$-representation for $t=\operatorname{HT}(p)$.

## Faugère's Criteria

## $F_{5}$ Criterion

$\operatorname{Spol}\left(r_{i}, r_{j}\right)$ is not normalized iff for $u_{k} r_{k}(k=i$ or $k=j)$ there exist $r_{\text {prev }} \in G$ such that

$$
\begin{array}{rll}
\operatorname{index}\left(r_{\text {prev }}\right) & > & \text { index }\left(r_{k}\right) \\
\operatorname{HT}\left(p_{\text {prev }}\right) & \mid & u_{k} \Gamma\left(\mathcal{S}\left(r_{k}\right)\right)
\end{array}
$$

This Criterion is stated explicitly in Faugère's description of the $F_{5}$ Algorithm, but it is not the only one.

## Faugère's Criteria

## $F_{5}$ Criterion

$\operatorname{Spol}\left(r_{i}, r_{j}\right)$ is not normalized iff for $u_{k} r_{k}(k=i$ or $k=j)$ there exist $r_{\text {prev }} \in G$ such that

$$
\begin{array}{rll}
\operatorname{index}\left(r_{\text {prev }}\right) & > & \text { index }\left(r_{k}\right) \\
\operatorname{HT}\left(p_{\text {prev }}\right) & \mid & u_{k} \Gamma\left(\mathcal{S}\left(r_{k}\right)\right)
\end{array}
$$

This Criterion is stated explicitly in Faugère's description of the $F_{5}$ Algorithm, but it is not the only one.

## Remark

This criterion would delete the element $r^{\prime}=\left(\operatorname{HT}\left(f_{2}\right) \mathbf{e}_{1}, f_{1}\right)$ as the element $r_{2}=\left(\mathbf{e}_{2}, f_{2}\right)$ has index $\left(r_{2}\right)=2>1$ and clearly $\operatorname{HT}\left(\operatorname{poly}\left(r_{2}\right)\right) \mid \operatorname{HT}\left(f_{2}\right)$.

## Faugère's Criteria

## Rewritten Criterion

$\operatorname{Spol}\left(r_{i}, r_{j}\right)$ is rewritable iff for $u_{k} r_{k}(k=i$ or $k=j)$ there exist $r_{v}, r_{w} \in G$ such that

$$
\begin{aligned}
\operatorname{index}\left(r_{k}\right) & =\operatorname{index}\left(\operatorname{Spol}\left(r_{v}, r_{w}\right)\right) \\
\Gamma\left(\mathcal{S}\left(\operatorname{Spol}\left(r_{v}, r_{w}\right)\right)\right) & \mid u_{k} \Gamma\left(\mathcal{S}\left(r_{k}\right)\right) .
\end{aligned}
$$

This Criterion is not stated explicitly, but it is part of the pseudocode.

## Using the Criteria to compute Gröbner Bases

## Theorem (New Characterization using Faugère's Criteria)

Let $\mathcal{L} \subset G \times G$ such that for every element $\left(r_{i}, r_{j}\right) \in \mathcal{L} \operatorname{Spol}\left(r_{i}, r_{j}\right)$ is
(a) normalized, and
(b) not rewritable.

If each such Spol $\left(r_{i}, r_{j}\right)$ has a $t$-representation with $t=\operatorname{LCM}\left(H T\left(p_{i}\right), H T\left(p_{j}\right)\right)$ or reduces to zero, then poly $(G)$ is a Gröbner basis of $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

## Using the Criteria to compute Gröbner Bases

## Theorem (New Characterization using Faugère's Criteria)

Let $\mathcal{L} \subset G \times G$ such that for every element $\left(r_{i}, r_{j}\right) \in \mathcal{L} \operatorname{Spol}\left(r_{i}, r_{j}\right)$ is
(a) normalized, and
(b) not rewritable.

If each such Spol $\left(r_{i}, r_{j}\right)$ has a $t$-representation with
$t=\operatorname{LCM}\left(H T\left(p_{i}\right), H T\left(p_{j}\right)\right)$ or reduces to zero, then poly $(G)$ is a Gröbner basis of $I=\left\langle f_{1}, \ldots, f_{m}\right\rangle$.

## Remark

The idea is to only investigate on S-Polynomials with generators being elements of $\mathcal{L}$. We need to show that all other S-Polynomials have a $t$-representation or reduce to zero.

## Using the Criteria to compute Gröbner Bases

## Idea of the Proof

If $\operatorname{Spol}\left(r_{i}, r_{j}\right)$ is not normalized and/or rewritable then we can assume w.l.o.g. that $u_{i} r_{i}$ with index $\left(r_{i}\right)=k$ is not normalized and/or rewritable. It follows that there exists a (not necessarily principal) syzygy with the element $u_{i} \Gamma(\mathcal{S}(r)) \mathbf{e}_{k}$. From this syzygy we can compute a rewriter $r_{\text {rew }}$ such that we get the following relationship:

$$
\operatorname{Spol}\left(r_{i}, r_{j}\right)=\lambda_{1} \operatorname{Spol}\left(r_{i}, r_{\text {rew }}\right)+\lambda_{2} \operatorname{Spol}\left(r_{\text {rew }}, r_{j}\right)
$$

Both, $\operatorname{Spol}\left(r_{i}, r_{\text {rew }}\right)$ and $\operatorname{Spol}\left(r_{\text {rew }}, r_{j}\right)$ were already or will be investigated in $F_{5}$. This leads to an admissible $t$-representation of $\operatorname{Spol}\left(r_{i}, r_{j}\right)$ where $t=\operatorname{LCM}\left(\operatorname{HT}\left(p_{i}\right), \operatorname{HT}\left(p_{j}\right)\right)$.

## Example of the Rewritten Criterion

In [Fa] Faugère computes the Gröbner basis of $I=\left\langle f_{1}, f_{2}, f_{3}\right\rangle$ where

$$
\begin{aligned}
& f_{1}=y z^{3}-x^{2} t^{2} \\
& f_{2}=x z^{2}-y^{2} t \\
& f_{3}=x^{2} y-z^{2} t
\end{aligned}
$$

in $\mathbb{Q}[x, y, z, t]$ with degree reverse lexicographical ordering $x>y>z>t$. During these computations
$\operatorname{Spol}\left(r_{1}, r_{3}\right)=\left(x^{2} \mathcal{S}\left(r_{1}\right), x^{2} f_{1}-z^{3} f_{3}\right)$ is detected to be rewritable by the element $r_{6}=\left(x \mathbf{e}_{1}, y^{3} z t-x^{3} t^{2}\right)$ as both have the same index and $x \Gamma\left(\mathcal{S}\left(r_{6}\right)\right)=x^{2} \Gamma\left(\mathcal{S}\left(r_{1}\right)\right)$. $r_{6}$ was computed from $\operatorname{Spol}\left(r_{1}, r_{2}\right)$ such that we have a syzygy $\mathbf{s}_{6}=x \mathbf{e}_{1}-y z \mathbf{e}_{2}-\mathbf{e}_{6}$, for $r_{1}$ we have the trivial syzygy $\mathbf{s}_{1}=\mathbf{e}_{1}-\mathbf{e}_{1}$.

## Example of the Rewritten Criterion

If we compute

$$
\begin{aligned}
x^{2} \mathbf{s}_{1}+x \mathbf{s}_{6} & =x^{2} \mathbf{e}_{1}-x^{2} \mathbf{e}_{1}+x^{2} \mathbf{e}_{1}-x y z \mathbf{e}_{2}-x \mathbf{e}_{6} \\
& =x^{2} \mathbf{e}_{1}-x y z \mathbf{e}_{2}-x \mathbf{e}_{6}
\end{aligned}
$$

From this we receive that $x y z \mathrm{HT}\left(p_{2}\right)=x^{2} \mathrm{HT}\left(p_{1}\right)$ and $x y z \mathrm{HT}\left(p_{2}\right)=z^{3} \mathrm{HT}\left(p_{3}\right)$. Thus we can rewrite
$\operatorname{Spol}\left(r_{1}, r_{3}\right)=x \operatorname{Spol}\left(r_{1}, r_{2}\right)+z \operatorname{Spol}\left(r_{2}, r_{3}\right)$.
Thus $\operatorname{Spol}\left(r_{1}, r_{3}\right)$ can be deleted from further investigations as it does not give us new information about the Gröbner basis of $I$.

## Table of Contents

1 Introduction

- The main problem

■ Faugère's Idea
■ What this talk is about
2 Gröbner Bases
■ Polynomial Basics

- Characterization of Gröbner Bases
$3 F_{5}$ Basics
■ Module Basics
- Labeling of a Polynomial

4 Computing Gröbner Bases with $F_{5}$
■ New Characterization of Gröbner Bases

- Faugère's Criteria
- Example of the Rewritten Criterion

5 Facts about the $F_{5}$ Algorithm
6 References

## Facts about the $F_{5}$ Algorithm

Faugère's $F_{5}$ Algorithm
■ ... is one of the fastest known Gröbner bases algorithms.

## Facts about the $F_{5}$ Algorithm

Faugère's $F_{5}$ Algorithm
■ ... is one of the fastest known Gröbner bases algorithms.
■ ... uses two criteria, the $F_{5}$ Criterion and the Rewritten Criterion.

## Facts about the $F_{5}$ Algorithm

Faugère's $F_{5}$ Algorithm
■ ... is one of the fastest known Gröbner bases algorithms.
■ ... uses two criteria, the $F_{5}$ Criterion and the Rewritten Criterion.
■ ... does not compute any zero-reduction in the case of $F$ being a regular sequence.

## Facts about the $F_{5}$ Algorithm

Faugère's $F_{5}$ Algorithm
■ ... is one of the fastest known Gröbner bases algorithms.
■ ... uses two criteria, the $F_{5}$ Criterion and the Rewritten Criterion.

■ ... does not compute any zero-reduction in the case of $F$ being a regular sequence.
■ ... cannot be combined with other known criteria, e.g. the Buchberger Criteria.

## Facts about the $F_{5}$ Algorithm

Faugère's $F_{5}$ Algorithm
■ ... is one of the fastest known Gröbner bases algorithms.
■ ... uses two criteria, the $F_{5}$ Criterion and the Rewritten Criterion.

■ ... does not compute any zero-reduction in the case of $F$ being a regular sequence.

■ ... cannot be combined with other known criteria, e.g. the Buchberger Criteria.
■ ... should not be implemented as stated in [Fa]. The code needs lots of optimizations to be fast.

## Table of Contents

1 Introduction

- The main problem

■ Faugère's Idea

- What this talk is about

2 Gröbner Bases
■ Polynomial Basics
■ Characterization of Gröbner Bases
$3 F_{5}$ Basics
■ Module Basics

- Labeling of a Polynomial

4 Computing Gröbner Bases with $F_{5}$
■ New Characterization of Gröbner Bases

- Faugère's Criteria
- Example of the Rewritten Criterion

5 Facts about the $F_{5}$ Algorithm
6 References

## References

T. Becker, V. Weispfenning and H. Kredel.

## Gröbner Bases

Springer Verlag, 1993
R J.-C. Faugère.
A new efficient algorithm for computing Gröbner bases without reduction to zero $F_{5}$
Proceedings of the 2002 International Symposium on Symbolic and Algebraic Computation ISSAC, pages 75-83, 2002
© G.-M. Greuel, G. Pfister and H. Schönemann.
Singular 3-0-4. A computer algebra system for polynomial computations, TU Kaiserslautern, 2008, http://www.singular.uni-kl.de.

